×
29.05.2018
218.016.52b6

СПОСОБ ОПРЕДЕЛЕНИЯ ПРОИЗВОДИТЕЛЬНОСТИ УСТАНОВЛЕННОЙ НА КОСМИЧЕСКОМ АППАРАТЕ СОЛНЕЧНОЙ БАТАРЕИ С ПОЛОЖИТЕЛЬНОЙ ВЫХОДНОЙ МОЩНОСТЬЮ ТЫЛЬНОЙ ПОВЕРХНОСТИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002653890
Дата охранного документа
15.05.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к солнечным батареям (СБ) космических аппаратов (КА). Способ включает измерение вектора направления на Солнце в инерциальной системе координат, угла между направлением на Солнце и нормалью к плоскости орбиты КА, а также изменения данного угла за виток. При некотором условии, зависящем от этих угловых величин, измеряют ток от СБ на световом участке витка орбиты. Поддерживают орбитальную ориентацию КА, при которой ось вращения СБ, совпадающая с осью раскрытия СБ, перпендикулярна плоскости орбиты. Повторяют измерения тока на следующем световом участке, при этом разворачивают СБ в дискретные положения с заданной точностью ориентации на Солнце. Контроль производительности СБ выполняют из сравнения значений тока СБ для пар последовательных световых участков, где ток осредняют с учетом определяемого расстояния от Земли до Солнца и точности ориентации СБ на Солнце. Технический результат состоит в обеспечении одинаковых условий измерения тока от СБ в ходе штатного полета КА. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к области космической техники, а именно к системам электроснабжения (СЭС) космических аппаратов (КА), и может быть использовано при эксплуатации солнечных батарей (СБ) СЭС КА.

Одной из составляющей контроля текущей производительности СБ КА является контроль основных электрических характеристик СБ - выходного тока, напряжения и мощности СБ. На стадии проектирования и изготовления СБ осуществляется теоретический расчет выходных параметров СБ, который может быть основан на методе перемещений вольт-амперной характеристики, учитывающем различные влияния окружающей среды и параметров нагрузки на характеристики СБ (Система электроснабжения КА. Техническое описание. 300ГК.20Ю.0000-АТО. РКК «Энергия», 1998; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983, стр. 49, 54).

Недостаток указанного способа контроля текущей производительности СБ заключается в том, что используемые в расчетах модели факторов космического полета имеют ограниченную точность, что не позволяет получить достоверные данные о реальных характеристиках СБ в полете, учитывающих процесс «деградации» СБ.

Для контроля фактических характеристик СБ в полете используются измерения фактического выходного тока СБ, генерируемого фотоэлектрическими преобразователями (ФЭП) под воздействием солнечного излучения, при этом СБ выставлены таким образом, чтобы световой поток поступал перпендикулярно рабочей поверхности СБ (Елисеев А.С. Техника космических полетов. Москва, «Машиностроение», 1983, стр. 190-194; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983, стр. 57; патент РФ №2353555 по заявке №2006131395/11, приоритет от 31.08.2006 - прототип), для чего разворачивают панели СБ в рабочее положение, соответствующее совмещению нормали к их освещенной рабочей поверхности с направлением на Солнце, и контроль текущей производительности панели СБ осуществляют по результатам сравнения измеренных значений тока с задаваемыми значениями - текущая эффективность СБ оценивается по отношению измеренных фактических выходных параметров СБ к их номинальным значениям - проектным или некоторым исходным значениям, например, измеренным на предыдущих этапах полета.

Выбор силы тока в качестве контролируемой выходной характеристики СБ вызван тем, что его сила является переменной величиной, напрямую зависит от состояния СБ в целом, а напряжение на СБ является достаточно стабильной величиной и определяется в основном физическими свойствами используемых для изготовления СБ фотоэлектрических преобразователей, при этом режим работы ФЭП еще на стадии проектирования СБ задается таким образом, чтобы генерируемая мощность (как произведение силы тока и напряжения) была максимально возможной.

Данный способ обеспечивает контроль суммарной эффективности панели СБ в ходе полета КА. Меньшие значения фактических выходных токов от СБ по отношению к заданным проектным или исходным значениям означают «деградацию» СБ.

Недостаток способа-прототипа связан с тем, что он не предусматривает проведение замера тока от СБ при одинаковых внешних полетных условиях, что необходимо для обоснованности дальнейшего сравнения результатов выполненных замеров.

Задачей, на решение которой направлено настоящее изобретение, является повышение точности оценки текущей эффективности СБ в ходе полета КА.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в обеспечении одинаковых условий замера тока от СБ при выполнении сеансов оценки эффективности СБ по результатам прямого замера электрического тока, генерируемого СБ на фоне полета КА в орбитальной ориентации.

Технический результат достигается тем, что в способе определения производительности установленной на космическом аппарате солнечной батареи с положительной выходной мощностью тыльной поверхности, включающем поворот панели солнечной батареи в положения, при которых ее рабочая поверхность ориентируется нормалью на Солнце, измерение значений тока от солнечной батареи, контроль текущей производительности солнечной батареи по результатам сравнения текущих измеренных значений тока и значений тока, измеренных на предыдущих этапах полета, дополнительно измеряют вектор направления на Солнце в инерциальной системе координат, определяют значения угла между направлением на Солнце и нормалью к плоскости орбиты космического аппарата на моменты прохождения подсолнечной точки витков орбиты γS, определяют текущую величину изменения угла между направлением на Солнце и нормалью к плоскости орбиты за виток Δγ, поддерживают орбитальную ориентацию космического аппарата, при которой ось вращения солнечной батареи, совпадающая с осью раскрытия солнечной батареи, перпендикулярна плоскости орбиты, измеряют ток от солнечной батареи на световом участке витка орбиты, на котором выполнено условие , и повторяют измерения тока на следующем световом участке, при этом последовательно разворачивают солнечную батарею в дискретные положения, в которых значение угла между нормалью к рабочей поверхности солнечной батареи и направлением на Солнце составляет величину менее фиксированного значения; и измеряют моменты времени переориентации солнечной батареи в данные дискретные положения, с учетом которых определяют текущие значения угла между нормалью к рабочей поверхности солнечной батареи и направлением на Солнце, определяют текущее значение расстояния от Земли до Солнца, в ходе полета повторяют вышеописанные действия и контроль производительности панели солнечной батареи выполняют по результатам сравнения полученных для упомянутых пар последовательных световых участков витков орбиты осредненных значений тока от солнечной батареи, умноженных на квадрат определенного на моменты соответствующих измерений тока текущего значения расстояния от Земли до Солнца и отнесенных к квадрату среднего расстояния от Земли до Солнца и определенным на моменты соответствующих измерений тока текущим значениям косинуса угла между нормалью к рабочей поверхности солнечной батареи и направлением на Солнце.

Суть предлагаемого изобретения поясняется на фиг. 1 и 2, на которых соответственно представлен пример схемы расположения направления на Солнце относительно плоскости орбиты на двух витках измерения тока от СБ и пример схемы расположения точек орбиты, в которых измеряется ток от СБ, относительно подсолнечной точки витка.

На фиг. 1 и 2 введены обозначения:

A - орбита КА;

О - центр Земли;

NОРБ - вектор нормали к плоскости орбиты КА;

S, S1 - вектора направления на Солнце на моменты прохождения подсолнечной точки первого и последующего витков измерения тока от СБ, соответственно;

γS= угол между направлением на Солнце и нормалью к плоскости орбиты КА на момент прохождения подсолнечной точки витка орбиты;

Δγ - величина изменения угла между направлением на Солнце и нормалью к плоскости орбиты КА за виток;

R - радиус-вектор КА;

NСБ - вектор нормали к рабочей поверхности СБ;

SПР - проекция вектора направления на Солнце на плоскость орбиты;

С - подсолнечная точка витка орбиты;

Tjik, J=1, …, 5 - точки витка, в которых измеряется ток от СБ.

Для наглядности на фиг. 1 представлен случай, когда вектор нормали к плоскости орбиты КА и вектора направления на Солнце на моменты прохождения подсолнечной точки первого и следующего витков измерения токов от СБ лежат в одной плоскости.

Поясним предложенные в способе действия.

На многих КА, например, на международной космической станции (МКС), система управления положением СБ предусматривает выставку СБ в заданные дискретные положения, фиксированные в связанной с КА системе координат, а поворот СБ между данными положениями выполняется с заданной угловой скоростью вращения СБ. При этом для выполнения различных полетных операций предусмотрены различные режимы управления ориентаций СБ, в том числе режим автоматического наведения (отслеживания) СБ на Солнце и режим выставки СБ в заданное положение (такие положения выбираются из перечня упомянутых заданных дискретных положений СБ, фиксированных в связанной с КА системе координат). При этом в режиме автоматического наведения (отслеживания) СБ на Солнце система управления автоматически выбирает момент начала поворота СБ для перевода СБ из текущего фиксированного положения СБ в последующее.

Таким образом, в произвольный текущий момент времени СБ находится или в одном из фиксированных положений (в этом случае оно является текущим дискретным фиксированным положением СБ), или в процессе перехода между двумя дискретными фиксированными положениями. При этом в режиме автоматического наведения (отслеживания) СБ на Солнце моменты нахождения панели СБ в одном из дискретных положений определяются по измерениям текущей ориентации КА и измерениям положения Солнца путем определения моментов начала и окончания поворотов СБ с учетом логики автоматического управления СБ в данном режиме.

Считаем, что на этапе выведения КА СБ находятся в сложенном состоянии и раскрываются (развертываются) на орбите, при этом ось раскрытия СБ совпадает с осью вращения СБ. При этом после раскрытия СБ последовательные сегменты СБ могут быть расположены с некоторыми остаточными (технологическими) углами между собой (например, «гармошкой»).

В предложенном техническом решении для решения поставленной задачи измеряют вектор направления на Солнце в инерциальной системе координат, определяют значения угла между направлением на Солнце и нормалью к плоскости орбиты КА на моменты прохождения подсолнечной точки витков орбиты γS, определяют текущую величину изменения угла между направлением на Солнце и нормалью к плоскости орбиты за виток Δγ, поддерживают штатную орбитальную ориентацию КА, при которой ось вращения солнечной батареи, совпадающая с осью раскрытия СБ, перпендикулярна плоскости орбиты, измеряют ток от СБ на световом участке витка орбиты, на котором выполнено условие

и повторяют измерения тока на следующем световом участке. При этом реализуют штатный режим автоматического наведения (отслеживания) СБ на Солнце: последовательно разворачивают СБ в дискретные положения, в которых значение угла между нормалью к рабочей поверхности СБ и направлением на Солнце составляет величину менее фиксированного значения, равного, например, 360°/N, где N - число дискретных положений СБ, и измеряют моменты времени переориентации СБ в данные дискретные положения, с учетом которых определяют текущие значения угла между нормалью к рабочей поверхности СБ и направлением на Солнце.

На фиг. 2 показано положение вектора NСБ нормали к рабочей поверхности СБ, направленное в момент прохождения подсолнечной точки витка по вектору SПР проекции вектора направления на Солнце на плоскость орбиты. Показанное положение NСБ может быть реализовано как одним из дискретных положений СБ, так и промежуточным положением между дискретными положениями СБ в момент поворота СБ.

Условие (1) означает, что между двумя последовательными витками, на которых измеряют ток панели СБ, Солнце переходит через плоскость орбиты, в которой вращается нормаль к рабочей поверхности СБ.

Определяют текущее значение расстояние от Земли до Солнца.

Контроль производительности панели СБ выполняют по результатам сравнения полученных для упомянутых пар последовательных световых участков витков орбиты осредненных значений тока от СБ, умноженных на квадрат определенного на моменты соответствующих измерений тока текущего значения расстояния от Земли до Солнца и отнесенных к квадрату среднего расстояния от Земли до Солнца и определенным на моменты соответствующих измерений тока текущим значениям косинуса угла между нормалью к рабочей поверхности солнечной батареи и направлением на Солнце. Например, осредняют значения тока от СБ, полученные на каждой вышеописанной паре последовательных световых участков витков орбиты, по формуле

где Dср - фиксированное номинальное (среднее) значение расстояния от Земли до Солнца;

Dk - текущее значение расстояния от Земли до Солнца во время k-й пары упомянутых последовательных световых участков;

Ijik - измеренные значения тока в j-ой точке i-го светового участка k-й пары упомянутых последовательных световых участков;

γjik - значения угла между нормалью к рабочей поверхности солнечной батареи и направлением на Солнце в j-й точке i-го светового участка k-й пары упомянутых последовательных световых участков;

jik, j=1, …, М - задаваемые точки i-го светового участка k-й пары упомянутых последовательных световых участков.

На фиг. 2 показаны М=5 точек jik, j=1, …, М, в которых берутся измерения тока от СБ, и показано, что данные точки одинаково расположены относительно подсолнечной точки витка С на всех описанных световых участках измерения тока от СБ.

В соотношении (2) деление на текущие значения косинуса угла между нормалью к рабочей поверхности СБ и направлением на Солнце обеспечивает одинаковые условия замера тока от СБ в части учета изменений тока от СБ, вызванных отклонением направления солнечного излучения от нормали к СБ. При этом учитывается, что текущий ток I от СБ определятся выражением (Грилихес В.А., Орлов П.П., Попов Л.Б. Солнечная энергия и космические полеты. Москва, Наука, 1984, стр. 109; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983)

I=IMAXcosα,

где IМАХ - максимальный ток, вырабатываемый при ориентации освещенной рабочей поверхности панели СБ перпендикулярно солнечным лучам; α - угол между направлением на Солнце и нормалью к рабочей поверхности СБ.

В соотношении (2) умножение на квадрат текущего значения расстояния от Земли до Солнца обеспечивает одинаковые условия замера тока от СБ в части учета изменений тока от СБ, вызванных отклонением текущего значения внеатмосферной интенсивности солнечной радиации от фиксированного номинального (среднего) значения. При этом учитывается, что текущее значение внеатмосферной интенсивности солнечной радиации с достаточной степенью точности обратно пропорционально значению расстояния от Земли до Солнца (Макарова Е.А., Харитонов А.В., Распределение энергии в спектре Солнца и солнечная постоянная, М., 1972; Поток энергии Солнца и его изменения, под ред. О. Уайта, пер. с англ., М., 1980; Кмито А.А., Скляров Ю.А., Пиргелиометрия, Л.)

,

Вср - фиксированное номинальное (среднее) значение внеатмосферной интенсивности солнечной радиации;

Вk - текущее значение внеатмосферной интенсивности солнечной радиации во время k-й пары упомянутых последовательных световых участков.

Использование описанных двух последовательных витков, между которыми Солнце переходит через плоскость орбиты КА, в которой вращается нормаль к рабочей поверхности СБ (ось вращения и ось раскрытия СБ перпендикулярны плоскости орбиты), обеспечивает измерение тока в моменты, когда направление на Солнце перпендикулярно оси раскрытия СБ (с точностью отклонения направления на Солнце от плоскости орбиты). Это обеспечивает одинаковые условия освещения Солнцем последовательных сегментов «гармошки» СБ, расположенных с технологическими углами между собой.

Использование для измерения тока от СБ двух световых участков, а именно, двух световых участков на двух последовательных витках орбиты, позволяет обеспечить осреднение влияния подсветки СБ уходящим (отраженным) от Земли излучением.

Действительно, например, для КА, движущегося по околокруговой орбите высотой 300-400 км (например, МКС) при положении Солнца, близком к плоскости орбиты, продолжительность светового участка витка составляет порядка 56 минут (порядка 2/3 периода обращения КА), что соответствует длине трассы КА на поверхности Земли более 25 тыс. км. При этом в каждый момент времени видимая с КА подстилающая поверхность составляет площадь более 12 млн км2.

При пролете над освещенной подстилающей поверхностью СБ КА подсвечиваются уходящем (отраженным) от Земли излучением, при этом яркость излучения зависит от вида/типа подстилающей поверхности. Использование двух световых участков обеспечивает получение измерений тока над более чем 50 тыс. км трассы полета, что позволяет обоснованно заключить о прохождении КА над многообразными видами/типами подстилающей поверхности. Таким образом обеспечивается осреднение влияния подсветки СБ уходящим от Земли излучением.

В ходе полета повторяют вышеописанные действия на различных этапах полета КА, для каждого этапа полета получают осредненное на описанной паре последовательных световых участков витков орбиты значение тока, рассчитываемое по соотношению (2), и контроль текущей производительности панели СБ осуществляют по результатам сравнения получаемых осредненных значений.

Опишем технический эффект предлагаемого изобретения.

При эксплуатации в открытом космосе СБ подвергаются воздействию факторов открытого космического пространства, что приводит к их постепенной «деградации». Контроль производительности панели СБ, в частности, связан с получением текущих значений параметров производительности панели СБ и количественных оценок ее текущей эффективности.

Предлагаемое техническое решение позволяет обеспечить одинаковые условия замера тока от СБ при выполнении сеансов оценки эффективности СБ по результатам прямого замера электрического тока, генерируемого СБ на фоне штатного полета КА в орбитальной ориентации.

При этом обеспечиваются одинаковые условия замера тока от СБ с учетом изменений тока от СБ, вызванных как отклонением направления солнечного излучения от нормали к СБ, так и вызванных изменениями текущего значения внеатмосферной интенсивности солнечной радиации, технологическими углами между последовательными сегментами «гармошки» СБ и подсветкой СБ уходящим от Земли излучением.

Одинаковые условия замера тока от СБ при выполнении сеансов оценки эффективности СБ позволяют обоснованно сравнивать получаемые измерения и судить по ним об изменениях и текущей производительности СБ.

Знание текущих значений параметров производительности СБ необходимо для более точного моделирования функционирования СЭС КА в полете, например, для прогнозирования генерации тока СБ при решении различных задач управления полета КА. Таким образом, получаемый технический эффект повышает эффективность контроля производительности СЭС КА, в том числе повышает точность оценки текущей эффективности СБ в ходе штатного полета КА.

Данный технический результат достигается путем определения значений предложенных углов, измерения ток от СБ в предложенные моменты времени в предложенной штатной ориентации КА при предложенной ориентации СБ и выполнения контроля производительности панели СБ по результатам сравнения полученных осредненных значений тока от СБ, взятых с учетом предложенной зависимости от предложенных параметров.

В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.


СПОСОБ ОПРЕДЕЛЕНИЯ ПРОИЗВОДИТЕЛЬНОСТИ УСТАНОВЛЕННОЙ НА КОСМИЧЕСКОМ АППАРАТЕ СОЛНЕЧНОЙ БАТАРЕИ С ПОЛОЖИТЕЛЬНОЙ ВЫХОДНОЙ МОЩНОСТЬЮ ТЫЛЬНОЙ ПОВЕРХНОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОИЗВОДИТЕЛЬНОСТИ УСТАНОВЛЕННОЙ НА КОСМИЧЕСКОМ АППАРАТЕ СОЛНЕЧНОЙ БАТАРЕИ С ПОЛОЖИТЕЛЬНОЙ ВЫХОДНОЙ МОЩНОСТЬЮ ТЫЛЬНОЙ ПОВЕРХНОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОИЗВОДИТЕЛЬНОСТИ УСТАНОВЛЕННОЙ НА КОСМИЧЕСКОМ АППАРАТЕ СОЛНЕЧНОЙ БАТАРЕИ С ПОЛОЖИТЕЛЬНОЙ ВЫХОДНОЙ МОЩНОСТЬЮ ТЫЛЬНОЙ ПОВЕРХНОСТИ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 92.
25.08.2017
№217.015.c699

Способ поиска и обнаружения микроорганизмов космического происхождения

Изобретение относится к исследованиям материалов методом проб в условиях космического полета с целью обнаружения микроорганизмов космического происхождения. Способ предусмативает взятие проб с поверхностей орбитальной станции посредством стерилизованного и гермоизолированного на Земле...
Тип: Изобретение
Номер охранного документа: 0002618603
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.c69b

Способ и устройство взятия проб вещества с поверхности астрономического объекта

Группа изобретений относится к активным исследованиям астрономического объекта (АО), например астероида или кометы. Способ включает воздействие на поверхность АО направленным электронным лучом с борта космического аппарата, зависшего над поверхностью этого АО. Продукты испарения грунта АО...
Тип: Изобретение
Номер охранного документа: 0002618608
Дата охранного документа: 04.05.2017
19.01.2018
№218.016.099b

Способ проведения режима циклирования герметичной никель-кадмиевой аккумуляторной батареи

Изобретение относится к электротехнике, а именно к эксплуатации герметичных никель-кадмиевых аккумуляторных батарей, используемых для энергообеспечения потребителей на космических аппаратах. Способ проведения режима циклирования герметичных никель-кадмиевых аккумуляторных батарей содержит...
Тип: Изобретение
Номер охранного документа: 0002631918
Дата охранного документа: 29.09.2017
20.01.2018
№218.016.1dcb

Способ контроля текущего состояния солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) с инерционными исполнительными органами включает ориентацию нормали к рабочей поверхности СБ на Солнце, измерение значений тока от СБ и контроль текущего...
Тип: Изобретение
Номер охранного документа: 0002640905
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.1eac

Ракетный разгонный блок

Изобретение относится к ракетно-космической технике. Ракетный разгонный блок содержит криогенный бак окислителя с основными продольными перегородками, дополнительными придонными перегородками и заборным устройством, маршевый двигатель и дополнительную автономную двигательную установку системы...
Тип: Изобретение
Номер охранного документа: 0002641022
Дата охранного документа: 15.01.2018
13.02.2018
№218.016.2674

Способ контроля положения фронтальной части ледника с находящегося на околокруговой орбите космического аппарата

Изобретение относится к области дистанционного мониторинга опасных природных процессов. Способ контроля положения фронтальной части ледника с находящегося на околокруговой орбите космического аппарата (КА) включает определение текущих параметров орбиты, съемку с КА ледника и неподвижных...
Тип: Изобретение
Номер охранного документа: 0002644039
Дата охранного документа: 07.02.2018
04.04.2018
№218.016.319c

Блок конденсаторов и способ контроля его исправности (2 варианта)

Изобретение относится к области электротехники и электроники, может быть использовано в устройствах электропитания, в частности в резервированных фильтрах цепей электропитания электронной аппаратуры, в устройствах накопления электроэнергии. Блок конденсаторов содержит конденсаторы,...
Тип: Изобретение
Номер охранного документа: 0002645152
Дата охранного документа: 16.02.2018
10.05.2018
№218.016.3fa9

Механизм герметизации стыка стыковочного агрегата космического корабля

Изобретение относится к стыковочным устройствам космических аппаратов. Механизм герметизации стыка стыковочного агрегата космического корабля содержит стыковочный шпангоут с равномерно распределенными по периметру стыка системами замков, электроприводы, торцевое уплотнение на стыковочной...
Тип: Изобретение
Номер охранного документа: 0002648662
Дата охранного документа: 27.03.2018
10.05.2018
№218.016.446f

Способ контроля телеметрической информации

Изобретение относится к области информационных технологий и вычислительной техники и может быть использовано для контроля телеметрической информации. В способе контроля телеметрической информации, основанном на сравнении реальных значений телеметрических параметров с их эталонными значениями,...
Тип: Изобретение
Номер охранного документа: 0002649843
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4ef1

Способ контроля действий находящегося на борту космического аппарата космонавта

Изобретение относится к управлению космическим аппаратом (КА) с участием космонавта (К). Способ включает определение параметров местоположения К, их сравнение с задаваемыми параметрами и формирование команд К. При этом измеряют параметры текущего положения и ориентации головы К относительно...
Тип: Изобретение
Номер охранного документа: 0002652721
Дата охранного документа: 28.04.2018
Показаны записи 1-10 из 95.
20.07.2013
№216.012.57c5

Устройство для выбора астрономических объектов наблюдения с орбитального космического аппарата

Устройство для выбора астрономических объектов наблюдения с орбитального космического аппарата (КА) относится к космической технике. Устройство для выбора астрономических объектов наблюдения с орбитального КА, включает глобус с нанесенной на него картой звездного неба, два охватывающих глобус...
Тип: Изобретение
Номер охранного документа: 0002488077
Дата охранного документа: 20.07.2013
10.10.2013
№216.012.7419

Устройство для выбора астрономических объектов наблюдения с орбитального космического аппарата

Устройство для выбора астрономических объектов наблюдения с орбитального космического аппарата (КА) относится к космической технике. Устройство для выбора астрономических объектов наблюдения с орбитального КА включает глобус с нанесенной на него картой звездного неба, два охватывающих глобус...
Тип: Изобретение
Номер охранного документа: 0002495378
Дата охранного документа: 10.10.2013
27.07.2014
№216.012.e38f

Способ определения географических координат области наблюдения перемещаемой относительно космического аппарата аппаратуры наблюдения, система для его осуществления и устройство размещения излучателей на аппаратуре наблюдения

Изобретение относится к космической технике. Способ определения географических координат области наблюдения перемещаемой относительно КА аппаратуры наблюдения включает навигационные измерения движения КА, определение положения центра масс и ориентации КА, определение пространственного положения...
Тип: Изобретение
Номер охранного документа: 0002524045
Дата охранного документа: 27.07.2014
10.10.2014
№216.012.fce3

Устройство для доставки объекта

Изобретение относится к области космической техники и может быть использовано для доставки сферических объектов экипажем пилотируемого космического аппарата (КА) из рабочего отсека КА на внешнюю поверхность КА и далее на целевую орбиту объекта. Устройство содержит держатель, на котором...
Тип: Изобретение
Номер охранного документа: 0002530585
Дата охранного документа: 10.10.2014
27.10.2014
№216.013.017f

Способ ориентирования перемещаемого в пилотируемом аппарате прибора и система для его осуществления

Группа изобретений относится к методам и средствам прицеливания (наведения) бортовых приборов, преимущественно аэрокосмического пилотируемого аппарата (ПА). Предлагаемый способ включает определение положения и ориентации свободно перемещаемого прибора внутри ПА. Для этого подают команды на...
Тип: Изобретение
Номер охранного документа: 0002531781
Дата охранного документа: 27.10.2014
20.12.2014
№216.013.11bc

Способ управления орбитальным космическим аппаратом

Изобретение относится к управлению движением космического аппарата (КА), на котором размещены теплоизлучающий радиатор и солнечная батарея (СБ). Способ включает выполнение полета КА по орбите вокруг планеты с разворотом СБ в положение, соответствующее совмещению нормали к рабочей поверхности СБ...
Тип: Изобретение
Номер охранного документа: 0002535963
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.14dd

Способ управления орбитальным космическим аппаратом

Изобретение относится к управлению движением космического аппарата (КА), на котором размещены теплоизлучающий радиатор и солнечная батарея (СБ). Способ включает выполнение полета КА по орбите вокруг планеты с разворотом СБ в положение, соответствующее совмещению нормали к рабочей поверхности СБ...
Тип: Изобретение
Номер охранного документа: 0002536765
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1dd8

Способ управления ориентацией космического транспортного грузового корабля с неподвижными панелями солнечных батарей при проведении работ в условиях вращательного движения

Изобретение относится к управлению ориентацией космического, в частности транспортного грузового корабля (ТГК) с неподвижными панелями солнечных батарей (СБ). Способ включает закрутку ТГК вокруг нормали к рабочей поверхности СБ, направленной на Солнце, с угловой скоростью не менее 1,5 град/сек....
Тип: Изобретение
Номер охранного документа: 0002539068
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1e91

Способ управления ориентацией космического транспортного грузового корабля с неподвижными панелями солнечных батарей при проведении работ в условиях вращательного движения

Изобретение относится к управлению движением космического, в частности транспортного грузового корабля (ТГК) с неподвижными панелями солнечных батарей (СБ). Способ включает закрутку ТГК вокруг направления нормали к рабочей поверхности СБ, направленной на Солнце, с угловой скоростью не менее...
Тип: Изобретение
Номер охранного документа: 0002539266
Дата охранного документа: 20.01.2015
20.01.2015
№216.013.1e96

Способ управления ориентацией космического транспортного грузового корабля с неподвижными панелями солнечных батарей при проведении работ в условиях вращательного движения

Изобретение относится к управлению ориентацией космического, в частности транспортного грузового корабля (ТГК) с неподвижными панелями солнечных батарей (СБ). Способ включает закрутку ТГК вокруг нормали к рабочей поверхности СБ, направленной на Солнце, с угловой скоростью не менее 1,5 град/сек....
Тип: Изобретение
Номер охранного документа: 0002539271
Дата охранного документа: 20.01.2015
+ добавить свой РИД