×
20.12.2015
216.013.9a52

Результат интеллектуальной деятельности: СПЛАВ ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА НА ОСНОВЕ АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химии и может быть использовано для получения водорода. Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, содержит в качестве добавки лантан при следующем соотношении компонентов: лантан- 1,5÷3,0 мас.%, алюминий - остальное. Изобретение позволяет получить сплав, характеризующийся простым составом наряду с высокой полнотой газовыделения. 3 пр.
Основные результаты: Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, отличающийся тем, что он содержит в качестве добавки лантан при следующем соотношении компонентов, мас. %:

Изобретение относится к области химии и может быть использовано для получения водорода.

Известна гидрореагирующая композиция для получения водорода, содержащая алюминий и активирующий сплав из группы металлов: галлий, индий, олово и цинк при следующем соотношении компонентов, масс.%: индий 10-40: олово 1-40; цинк 1-20; галлий - остальное, причем алюминий и активирующий сплав входят в состав композиции при следующем соотношении компонентов, масс.%: активирующий сплав 1-10; алюминий - остальное (патент RU 2394753, МПК C01B 3/08, 2010 г.). Известная композиция обеспечивает высокий выход выделившегося водорода (в пересчете на металлический алюминий 98-98,5%).

Однако известная композиция имеет недостатки: ухудшение реакционных свойств с течением времени при хранении на воздухе, многостадийность получения.

Известен сплав на основе алюминия для генерирования водорода (патент RU 2253606, МПК C01B 3/08, 2005 г.) на основе алюминия и в качестве добавки обезвоженного гидроксида щелочного металла (натрия, лития или калия) в весовом количестве до 10% или обезвоженного гидроксида щелочного металла и медь до 5% так, чтобы в сумме этот сплав содержал эти добавки до 10% (прототип).

Недостатками известного сплава на основе алюминия для генерирования водорода являются его сложный состав с использованием гидроксида щелочного металла, высокая энергоемкость и технологическая трудоемкость его получения, при этом полнота газовыделения по сравнению с теоретической не достигает максимальной величины и составляет 92%.

Таким образом, перед авторами стояла задача разработать простой по составу сплав для получения водорода, характеризующийся наряду с этим высокой полнотой газовыделения.

Поставленная задача решена в составе сплава для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, который в качестве добавки содержит лантан, при следующем соотношении компонентов, масс. %:

лантан 1,5÷3,0
алюминий остальное.

В настоящее время из патентной и научно-технической литературы не известен сплав для получения водорода предлагаемого состава, содержащий компоненты в предлагаемых интервалах значений.

Авторами были проведены исследования по определению оптимального состава сплава, в частности авторами экспериментально установлено (методом РФЭС) наличие значительной сегрегации лантана на поверхности алюминиевых порошков. Лантан также является и слабо снижающим поверхностное натяжение алюминия элементом, при этом наиболее активно из ряда РЗМ взаимодействует с водой. Высокая поверхностная и химическая активность лантана позволяет активизировать процесс окисления в воде порошков на основе алюминия, наличие щелочной среды приводит к разрушению оксидной пленки и ускорению выделения водорода, а также к повышению полноты протекания процесса (степени превращения), практически до полного окисления металла. Экспериментальным путем авторами установлены пределы количественного содержания добавки, оказывающие влияние на получения положительного технического результата. Так, при содержании добавки менее 1,5 масс. % наблюдается снижение гидрореакционной активности алюминиевого сплава. Содержание добавки в количестве 1,5-3,0 масс. % обеспечивает оптимальную концентрацию ее на поверхности порошка сплава и тем самым достигается наибольшая активность при взаимодействии с водой. Дальнейшее увеличение содержания более 3 масс. % является нецелесообразным и не увеличивает выход водорода.

Предлагаемый порошок сплава может быть получен методом газоплазменной переконденсации. При получении использован замкнутый газовый цикл. Предварительно систему вакуумируют до остаточного давления 5. 10-3 мм рт. ст. и заполняют инертным газом (аргоном). В качестве реактора используют плазменный испаритель-конденсатор ИК-150.

Режимы обработки следующие: электрическая мощность реактора - 15-25 кВт (I - 90 A, U - 180-250 В); расход технологического газа: в дозатор сырья - 3 нм3/ч, в закалочный узел - 7 нм3/ч, в вихревую камеру - 15 нм3/ч; расход сырья - 0,2 кг/ч. Исходное сырье (порошок алюминия с лантаном) загружают в дозатор, затем из дозатора подают в реактор пневмотранспортным способом, используя поток технологического газа. При этом образовавшийся в дозаторе аэрозоль через узел ввода подают в зону электрического разряда реактора. В реакторе при температуре 5000-6000°C происходит испарение порошка. На выходе из высокотемпературной зоны полученную парогазовую смесь резко охлаждают газовыми струями для создания условий конденсации. Затем аэрозоль с температурой 100-200°C подают в холодильник, где охлаждают до температуры 60-80°C. После конденсации получают порошок. Крупные частицы отделяют от ультрадисперсных частиц в классификаторе инерционного типа, улавливание ультрадисперсных частиц осуществляют рукавным тканевым фильтром. Получают ультрадисперсный порошок с размером частиц менее 300 нм. Из фильтра ультрадисперсные частицы выгружают в инертной атмосфере (в боксе) в герметично закрываемую тару или перемещают в систему микрокапсулирования, где на поверхность частиц наносят защитный слой, предохраняющий их от внешних воздействий при контакте с воздухом. Удельную поверхность полученного порошка сплава определяют, например, методом тепловой десорбции аргона. При использовании предлагаемого сплава для получения водорода наряду с водородом получают гидроксиды соответствующих металлов, которые могут быть использованы, например, в качестве сорбентов, носителей каталитических систем.

Ниже приведены примеры, иллюстрирующие получение сплава предлагаемого состава.

Пример 1. Порошковый сплав, содержащий 98,5 г (98,5 масс. %) алюминия и 1,5 г (1,5 масс. %) лантана загружают в дозатор, затем из дозатора подают в реактор пневмотранспортным способом, используя поток технологического газа. При этом образовавшийся в дозаторе аэрозоль через узел ввода подают в зону электрического разряда реактора. В реакторе при температуре 5000°C происходит испарение порошка. На выходе из высокотемпературной зоны полученную парогазовую смесь резко охлаждают газовыми струями для создания условий конденсации. Затем аэрозоль с температурой 200°C подают в холодильник, где охлаждают до температуры 80°C. После конденсации получают порошок. Крупные частицы отделяют от ультрадисперсных частиц в классификаторе инерционного типа, улавливание ультрадисперсных частиц осуществляют рукавным тканевым фильтром. Из фильтра ультрадисперсные частицы выгружают в инертной атмосфере (в боксе) в герметично закрываемую тару. Удельная поверхность полученного порошка сплава равна 27 м2/г.

Пример 2. Порошковый сплав, содержащий 97,0 г (97,0 масс. %) алюминия, 3,0 г (3,0 масс. %) лантана загружают в дозатор, затем из дозатора подают в реактор пневмотранспортным способом, используя поток технологического газа. При этом образовавшийся в дозаторе аэрозоль через узел ввода подают в зону электрического разряда реактора. В реакторе при температуре 5000°C происходит испарение порошка. На выходе из высокотемпературной зоны полученную парогазовую смесь резко охлаждают газовыми струями для создания условий конденсации. Затем аэрозоль с температурой 100°C подают в холодильник, где охлаждают до температуры 60°C. После конденсации получают порошок. Крупные частицы отделяют от ультрадисперсных частиц в классификаторе инерционного типа, улавливание ультрадисперсных частиц осуществляют рукавным тканевым фильтром. Из фильтра ультрадисперсные частицы выгружают в инертной атмосфере (в боксе) в герметично закрываемую тару, где на поверхность частиц наносят защитный слой, предохраняющий их от внешних воздействий при контакте с воздухом. Удельная поверхность полученного порошка сплава равна 13 м2/г.

Способ применения предлагаемого гидрореагирующего сплава, используемого для получения водорода, включает приготовление суспензии ультрадисперсного порошка сплава в дистиллированной воде при соотношении сплав:Н2О=1:10-25 (вес. ч.) и проведение окисления при температурах 25-80°С.

Пример, иллюстрирующий способ использования предлагаемого сплава для получения водорода и оксидных продуктов соответствующих металлов, приведен ниже.

Пример 4. Берут 5 г сплава, включающего (масс. %): лантан 3,0; алюминий 97. Удельная поверхность порошка сплава - 13 м2/г.

Сплав при постоянном перемешивании помещают в реактор в воду комнатной температуры (21÷23°C). Объем воды в реакторе постоянен и составляет 12,5 мл.

Полученный гидроксид алюминия бемитной формы с небольшой примесью гидроксидов Са и La отфильтровывают и высушивают. Удельная поверхность оксидных продуктов реакции составляет 217 м2/г.

Содержание активного алюминия в продуктах реакции составляет 0,26%.

Полнота газовыделения (по сравнению с теоретической) составляет 97%.

Таким образом, авторами предлагается сплав на основе алюминия для получения водорода, характеризующийся простым составом наряду с высокой полнотой газовыделения (97-98%).

Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, отличающийся тем, что он содержит в качестве добавки лантан при следующем соотношении компонентов, мас. %:

Источник поступления информации: Роспатент

Показаны записи 51-60 из 102.
15.11.2018
№218.016.9da3

Способ получения нанокристаллического порошка титан-молибденового карбида

Изобретение может быть использовано в металлургии при получении тугоплавкой основы безвольфрамовых твердых сплавов. Способ получения нанокристаллического порошка титан-молибденового карбида включает высокотемпературную обработку исходной смеси порошков соединения титана и молибдена с...
Тип: Изобретение
Номер охранного документа: 0002672422
Дата охранного документа: 14.11.2018
24.11.2018
№218.016.a0ba

Германат редкоземельных элементов в наноаморфном состоянии

Изобретение может быть использовано в электронике. Германат редкоземельных элементов состава CaLaEuGeO, где 0,05≤х≤0,15, в наноаморфном состоянии используют в качестве люминофора белого цвета свечения. Предложенное изобретение позволяет расширить номенклатуру люминофоров белого свечения,...
Тип: Изобретение
Номер охранного документа: 0002673287
Дата охранного документа: 23.11.2018
26.12.2018
№218.016.ab38

Способ получения фотокаталитически активной пленки

Изобретение относится к области получения фотокаталитически активных полупроводниковых пленок. Предложен способ получения фотокаталитически активной пленки, включающий осаждение ионов Cu в виде оксида меди или гидроксида меди из раствора неорганической соли меди на подложку. Осаждение ведут из...
Тип: Изобретение
Номер охранного документа: 0002675808
Дата охранного документа: 25.12.2018
18.01.2019
№219.016.b0ee

Стоматологический гель для реминерализации твердых тканей зубов и способ реминерализации твердых тканей зубов

Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для реминерализации твердых тканей зубов с целью профилактики и лечения кариеса в стадии пятна, гиперестезии твердых тканей зуба. Предлагаемый стоматологический гель содержит в качестве гидрофильной основы...
Тип: Изобретение
Номер охранного документа: 0002677231
Дата охранного документа: 16.01.2019
08.02.2019
№219.016.b84c

Способ модифицирования порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам модифицирования порошков алюминия. Порошок алюминия пропитывают модификатором, представляющим собой гель, полученный растворением формиата железа состава Fe(HCOO)·2HO в смеси дистиллированной воды и глицерина,...
Тип: Изобретение
Номер охранного документа: 0002679156
Дата охранного документа: 06.02.2019
21.02.2019
№219.016.c51a

Способ получения лигатуры на основе алюминия

Изобретение относится к области металлургии и может быть использовано для производства алюминиевых лигатур, применяемых для модифицирования сплавов. Способ включает приготовление и расплавление смеси, содержащей фторид натрия, фторид калия, соединение редкого металла и алюминий,...
Тип: Изобретение
Номер охранного документа: 0002680330
Дата охранного документа: 19.02.2019
23.02.2019
№219.016.c6da

Способ очистки вод, загрязненных тритием

Изобретение относится к области сорбционных технологий дезактивации воды и водных растворов и может быть использовано для обработки природной воды. Способ очистки воды, загрязнённой тритием, включает ее обработку природной или синтетической гуминовой кислотой в жидком или порошкообразном...
Тип: Изобретение
Номер охранного документа: 0002680507
Дата охранного документа: 21.02.2019
23.02.2019
№219.016.c6ee

Способ получения порошка оксида кобальта

Изобретение может быть использовано для получения катодных и анодных материалов литий-ионных аккумуляторов. Cпособ получения порошка оксида кобальта CoO включает нагревание исходной смеси кобальта азотнокислого 6-водного и гелирующего агента с последующим отжигом полученного порошка. Исходная...
Тип: Изобретение
Номер охранного документа: 0002680514
Дата охранного документа: 21.02.2019
03.03.2019
№219.016.d280

Способ получения мезопористого углерода

Изобретение может быть использовано в качестве электродного материала в химических источниках тока, носителя катализаторов и сорбента медицинского назначения. Металлорганическое соединение - глицеролат цинка состава Zn(СНО) - термообрабатывают в инертной атмосфере при 500-750°С. Полученный...
Тип: Изобретение
Номер охранного документа: 0002681005
Дата охранного документа: 01.03.2019
29.03.2019
№219.016.ede3

Способ получения магнетита

Изобретение относится к области металлургии и может быть использовано для получения магнетита в целях повышения эффективности переработки красных шламов, являющихся отходами глиноземного производства. Способ получения магнетита включает обработку красного шлама в присутствии гидроксида кальция,...
Тип: Изобретение
Номер охранного документа: 0002683149
Дата охранного документа: 26.03.2019
Показаны записи 41-48 из 48.
25.10.2018
№218.016.9605

Способ получения формиата железа (ii)

Изобретение относится к получению солей железа из органических кислот, в частности к соли двухвалентного железа из муравьиной кислоты. Предлагается способ получения формиата железа (II), включающий нагревание соединения железа и муравьиной кислоты в присутствии металлической стружки, где...
Тип: Изобретение
Номер охранного документа: 0002670440
Дата охранного документа: 23.10.2018
08.02.2019
№219.016.b84c

Способ модифицирования порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам модифицирования порошков алюминия. Порошок алюминия пропитывают модификатором, представляющим собой гель, полученный растворением формиата железа состава Fe(HCOO)·2HO в смеси дистиллированной воды и глицерина,...
Тип: Изобретение
Номер охранного документа: 0002679156
Дата охранного документа: 06.02.2019
04.04.2019
№219.016.fb11

Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки

Изобретение относится к области оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения линейного коэффициента теплового расширения тонких прозрачных пленок. Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки, при котором...
Тип: Изобретение
Номер охранного документа: 0002683879
Дата охранного документа: 02.04.2019
29.05.2019
№219.017.6683

Технологическая крышка

Крышка предназначена для защиты солнечных батарей при наземной эксплуатации космических аппаратов различного назначения. Устройство (технологическая крышка), закрепленное на солнечной батарее космического аппарата содержит кожух с элементами крепления к каркасу солнечной батареи. Кожух...
Тип: Изобретение
Номер охранного документа: 0002375270
Дата охранного документа: 10.12.2009
09.10.2019
№219.017.d3a2

Способ получения формиата меди (ii)

Изобретение относится к получению солей меди с использованием органических кислот, в частности к получению формиатов двухвалентной меди, которые могут быть использованы для синтеза купратов щелочноземельных металлов и высокотемпературных сверхпроводников, получения медных порошков для...
Тип: Изобретение
Номер охранного документа: 0002702227
Дата охранного документа: 07.10.2019
01.12.2019
№219.017.e91f

Бессопловой ракетный двигатель твердого топлива

Изобретение относится к ракетной технике, в частности к ракетам с бессопловом двигателем твердого топлива. Бессопловой ракетный двигатель твердого топлива содержит корпус, имеющий переднее днище, цилиндрическую часть и задний торец, заряд твердого топлива, торец которого выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002707648
Дата охранного документа: 28.11.2019
24.06.2020
№220.018.29dd

Способ определения оптической ширины запрещенной зоны наноразмерных пленок

Использование: для определения ширины запрещенной зоны наноразмерных полупроводниковых и диэлектрических пленок. Сущность изобретения заключается в том, что способ определения оптической ширины запрещенной зоны наноразмерных пленок включает определение спектров эллипсометрического параметра...
Тип: Изобретение
Номер охранного документа: 0002724141
Дата охранного документа: 22.06.2020
23.05.2023
№223.018.6c03

Способ активации порошка алюминия

Изобретение относится к порошковой металлургии и предназначено для получения порошка активированного алюминия, используемого в качестве энергетической добавки в различных композициях. Способ активации порошка алюминия, включающий пропитку исходного порошка алюминия гелем, полученным путем...
Тип: Изобретение
Номер охранного документа: 0002737950
Дата охранного документа: 07.12.2020
+ добавить свой РИД