×
08.02.2019
219.016.b84c

Способ модифицирования порошка алюминия

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области порошковой металлургии, в частности к способам модифицирования порошков алюминия. Порошок алюминия пропитывают модификатором, представляющим собой гель, полученный растворением формиата железа состава Fe(HCOO)·2HO в смеси дистиллированной воды и глицерина, взятых в соотношении 1:25, или основного формиата железа состава Fe(ОН)(HCOO) в монометиловом эфире этиленгликоля, при температуре 80С. Соотношение порошок алюминия (г):гель (мл) составляет 1,5-2,5:1. Полученную массу сушат при температуре 100-150С и прокаливают при температуре 300-350С. Обеспечивается повышение степень полноты сгорания и снижение температуры начала горения при нагревании на воздухе. 3 пр., 4 ил.
Реферат Свернуть Развернуть

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут найти применение в различных областях промышленности.

Известен способ активации порошка алюминия путем добавления к исходному порошку активатора на основе оксидного соединения ванадия, в котором в качестве активатора используют гель, содержащий 4,0-8,2 г/л ванадия и полученный путем плавления оксида ванадия (V) или оксида ванадия (V) и карбоната лития или натрия или оксида ванадия (V) и борной кислоты или их смеси с последующим добавлением расплава к дистиллированной воде при интенсивном перемешивании и выдержкой, которым пропитывают исходный порошок алюминия при соотношении гель(мл): алюминий(г) = 1÷2 : 1, а затем полученную массу фильтруют на вакуумном фильтре и просушивают при температуре 50-60оС в течение 0,5-1 ч.(Патент RU 2509790; МПК C09K 8/60, B22F 1/00, C01f 7/42; 2014 год).

Недостатками известного способа являются, во-первых, повышенная кислотность геля, что может быть причиной частичного взаимодействия с алюминием; во-вторых, низкая температура просушивания не исключает присутствие воды в модифицированном порошке, и, следовательно, не обеспечивается полное обезвоживание конечного продукта, в-третьих, используемый в известном способе оксид ванадия (V) токсичен.

Известен способ модифицирования порошков алюминия, включающий пропитку исходного порошка модификатором на основе оксидного соединения железа. В качестве модификатора используют железосодержащий ксерогель. Для приготовления композита состава Al/Fe-оксид используют золь-гель метод. Предварительно порошок алюминия погружают в горячий этанол с перемешиванием и затем вводят в раствор Fe(NO3)3·9H2O в этаноле. Суспензию диспергируют ультразвуком в течение нескольких минут, после чего вводят 1,2-эпоксипропан (C2H4O) – гелеобразователь и нейтрализатор для понижения кислотности геля. После выдержки в течение 3-5 дней влажный гель высушивают в вакууме и получают ксерогель, содержащий частицы алюминия. Ксерогель промывают в этаноле при 45°С и прокаливают до образования композита Al/Fe-оксид(Y. Wang, X.I. Song, W. Jiang, G.D. Deng, X.D. Guo, H.Y. Liu, F.S. Li, Mechanism for thermite reactions of aluminum/iron-oxide nanocomposites based on residue analysis // Trans. Nonferrous Met. Soc. China. 2014. V. 24. P. 263-270)(прототип).

К недостатком известного способа относятся, во-первых, сложность технологии, сопряженной с необходимостью обработки порошка алюминия в горячем этаноле и ультразвуковом диспергировании его смеси с раствором нитрата железа в этаноле; во-вторых, повышенная кислотность нитратного раствора и необходимость ее подавления путем введения 1,2-эпоксипропана, в-третьих, высокая токсичность 1,2-эпоксипропана; в четвертых, длительность выдержки влажного геля.

Таким образом, перед авторами стояла задача разработать технологически простой способ модифицирования порошка алюминия, обеспечивающий наряду с простотой высокую степень полноты сгорания и относительно невысокую температуру начала горения при нагревании на воздухе.

Поставленная задача решена в предлагаемом способе модифицирования порошка алюминия путем пропитки исходного порошка гелеобразным модификатором на основе кислородсодержащего соединения железа с последующей сушкой и прокаливанием, в котором в качестве модификатора используют гель, полученный растворением при температуре 80оС формиата железа состава Fe(HCOO)2∙2H2O в смеси дистиллированной воды и глицерина, взятых в соотношении 1:25 , или основного формиата железа состава Fe(ОН)(HCOO)2 в монометиловом эфире этиленгликоля, при этом соотношение порошок алюминия (г):гель(мл), равно 1,5÷2,5:1; сушат полученную массу при температуре 100-150оС и прокаливают при температуре 300-350оС.

В настоящее время из патентной и научно-технической литературы не известен способе модифицирования порошка алюминия путем пропитки исходного порошка модификатором в виде геля, полученного растворением при температуре 80оС формиата железа состава Fe(HCOO)2∙2H2O в смеси дистиллированной воды и глицерина, взятых в соотношении 1:25, или основного формиата железа состава Fe(ОН)(HCOO)2 в монометиловом эфире этиленгликоля, и обработкой полученной массы в предлагаемых температурных интервалах.

Исследования, проведенные авторами, позволили выявить условия модификации порошка алюминия, обеспечивающие смещение процесса горения в низкотемпературную область и полноту сгорания порошка. Экспериментальным путем было установлено, что пропитка порошка алюминия гелем, полученный растворением формиата железа состава Fe(HCOO)2∙2H2O при температуре 80оС в смеси дистиллированной воды и глицерина, взятых в соотношении 1:25, или основного формиата железа состава Fe(ОН)(HCOO)2 при температуре 80оС в монометиловом эфире этиленгликоля, устраняет возможность агломерации частиц алюминия, отсутствие агломератов обусловливают значительное повышение полноты сгорания на всех этапах взаимодействия. При этом существенным является соблюдение при пропитке предлагаемого соотношения количества геля и порошка алюминия: увеличение соотношения более 2,5:1, ведет к образование густой массы, что ухудшает условия смешения. Уменьшение соотношения менее 1,5:1 ведет к ухудшению контакта между частицами смеси и, как следствие, к снижению полноты сгорания. Интервал температур прокаливания обусловлен следующими причинами: при температуре ниже 300оС не обеспечивается полная трансформация формиата железа в оксид железа, что, как следствие, не способствует в дальнейшем снижению температуры горения. При температуре выше 350оС наблюдается преждевременное снижение массы полученного композита, что оказывает отрицательное влияние на процесс воспламенения и горения топлива. Необходимо отметить, формиат железа(II) состава Fe(HCOO)2∙2H2O имеет низкую растворимость в воде при комнатной температуре (~4.5%), что затрудняет его использование для приготовления композитов Al-Fe2O3. Исследования, проведенные авторами, позволили повысить растворимость Fe(HCOO)2∙2H2O путем добавления глицерина, подавляющего кристаллизацию формиата при охлаждении, что значительно увеличивает его растворимость. Использование в качестве растворителя монометилового эфира этиленгликоля повышает растворимость основного формиата железа (III) Fe(OH)(HCOO)2 при комнатной температуре до ~20% и почти вдвое при нагревании до 80°С.

Предлагаемый способ может быть осуществлен следующим образом. Формиат железа состава Fe(HCOO)2·2H2O растворяют при температуре 80оС в смеси дистиллированной воды и глицерина, взятых в соотношении 1:25 , или основной формиат железа состава Fe(ОН)(HCOO)2 растворяют в монометиловом эфире этиленгликоля. Затем полученный раствор выдерживают при температуре 80оС в течение 0,5 ч. с целью упаривания до минимально возможного объема, охлаждают до комнатной температуры. Полученным гелем пропитывают порошок алюминия при этом соотношение порошок алюминия (г):гель(мл), равно 1,5÷2,5:1, сушат полученную массу при температуре 100-150оС и прокаливают при температуре 300-350оС.

Эффективность полученного модифицированного порошка оценивают с помощью методов ДТА и ТГА по степени конверсии при 1300 oC (изменение массы по кривой ТГ - Δm) и по величине температуры начала горения (максимум на кривой ДТА - Tмакс) модифицированного порошка алюминия относительно исходного порошка марки АСД-4, которому соответствуют Δm = 43% и Tмакс = 1049 oC (фиг.1).

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Навеску Fe(HCOO)2·2H2O, взятого в количестве 0.651 г, растворяют в 10 мл дистиллированной воде с добавлением 0.5 мл глицерина при 80oC при соотношении дистиллированная вода: глицерин, равном 1:25. Затем раствор выдерживают при температуре 80оС в течение 0,5 ч., охлаждают до комнатной температуры и полученной массой пропитывают 9.8 г порошка алюминия марки АСД-4 с содержанием активного металла 98.7 масс% при этом соотношение порошок алюминия(г):гель(мл), равно 2,5:1. Полученную массу просушивают при 150oC в течение 1 ч. и прокаливают в муфельной печи при температуре 350oC в течение 0,5 ч. Получают композит Al/Fe2O3 с содержанием 2 масс% Fe, Δm = 82% и Tмакс = 958 oC (фиг. 2).

Пример 2. Навеску Fe(OH)(HCOO)2, взятого в количестве 1.458 г, растворяют в 10 мл монометилового эфира этиленгликоля при 80oC. Затем раствор выдерживают при температуре 80оС в течение 0,5 ч., охлаждают до комнатной температуры и смешивают с 9.5 г порошка алюминия марки АСД-4 с содержанием активного металла 98.7 масс%, при этом соотношение порошок алюминия(г):гель(мл), равно 1,5:1. Полученную массу просушивают при 100oC в течение 0,5 ч. и прокаливают в муфельной печи при температуре 300oC в течение 1 ч. Получают композит Al/Fe2O3 с содержанием 5 масс% Fe,: Δm = 73% и Tмакс = 910 oC (фиг.3).

Пример 3. Навеску Fe(OH)(HCOO)2, взятого в количестве 2.915 г, растворяют в 10 мл монометиловом эфире этиленгликоля при 80oC. Затем раствор выдерживают при температуре 80оС в течение 0,5 ч., охлаждают до комнатной температуры и смешивают с 9.0 г порошка алюминия марки АСД-4 с содержанием активного металла 98.7 масс%, при этом соотношение порошок алюминия(г):гель(мл), равно 1,5:1 сушат при 100oC в течение 0,5 ч. и прокаливают в муфельной печи при температуре 350oC в течение 1 ч. Получают композит Al/Fe2O3 с содержанием 10 масс% Fe, Δm = 76% и Tмакс = 893 oC (фиг. 4).

Таким образом, авторами предлагается технологически простой способ модифицирования порошка алюминия, обеспечивающий наряду с простотой высокую степень полноты сгорания и относительно невысокую температуру начала горения при нагревании на воздухе.

Способ модифицирования порошка алюминия, включающий пропитку исходного порошка гелеобразным модификатором на основе кислородсодержащего соединения железа и последующую сушку с прокаливанием, отличающийся тем, что в качестве модификатора используют гель, полученный растворением при температуре 80С формиата железа состава Fe(HCOO)·2HO в смеси дистиллированной воды и глицерина, взятых в соотношении 1:25, или основного формиата железа состава Fe(ОН)(HCOO) в монометиловом эфире этиленгликоля, при этом соотношение порошок алюминия (г):гель(мл) составляет 1,5-2,5:1, а полученную массу сушат при температуре 100-150С и прокаливают при температуре 300-350С.
Способ модифицирования порошка алюминия
Способ модифицирования порошка алюминия
Способ модифицирования порошка алюминия
Способ модифицирования порошка алюминия
Источник поступления информации: Роспатент

Показаны записи 1-10 из 99.
10.11.2013
№216.012.7cd8

Способ получения нанодисперсного порошка карбида вольфрама (варианты)

Изобретение относится к области порошковой металлургии. Нанодисперсные порошки могут быть использованы для изготовления инструментов, близких по твердости и износоустойчивости к инструментам на основе алмаза. Способ (вариант 1) позволяет получить нанодисперсный порошок карбида вольфрама. Смесь...
Тип: Изобретение
Номер охранного документа: 0002497633
Дата охранного документа: 10.11.2013
20.02.2014
№216.012.a27a

Способ нанесения пленки металла

Изобретение относится к способам получения пленок металлов, например, в виде покрытий, и может быть использован в металлургии и машиностроении при изготовлении материалов с необычными физико-химическими, электрофизическими, фотофизическими, магнитными или каталитическими свойствами. Согласно...
Тип: Изобретение
Номер охранного документа: 0002507309
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ab87

Способ получения нанодисперсных порошков металлов или их сплавов

Изобретение относится к области порошковой металлургии. Порошкообразный хлорид металла или порошкообразную смесь по крайней мере двух хлоридов металлов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в...
Тип: Изобретение
Номер охранного документа: 0002509626
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac2b

Способ активации порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут быть использованы в различных областях промышленности. Способ активации порошка алюминия включает пропитку исходного порошка активатором на основе...
Тип: Изобретение
Номер охранного документа: 0002509790
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b088

Катодный материал для резервной батареи, активируемой водой

Изобретение относится к электротехнике и электрохимии и касается катодного материала водоактивируемых резервных батарей, которые преимущественно предназначены для энергопитания метеорологических радиозондов, шаров-пилотов, морских сигнальных устройств, спасательных средств, буев, аварийных...
Тип: Изобретение
Номер охранного документа: 0002510907
Дата охранного документа: 10.04.2014
10.08.2014
№216.012.e86c

Твердая смазка для абразивной обработки металлов и сплавов

Настоящее изобретение относится к твердой смазке для абразивной обработки металлов и сплавов, содержащей хлорфторуглеродное масло, низкомолекулярный полиэтилен, минеральное масло, высокодисперсный порошок смеси продукта термического восстановления лейкоксена и карбида кремния или нитрида...
Тип: Изобретение
Номер охранного документа: 0002525293
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eabf

Способ получения сульфата ванадила

Изобретение может быть использовано в производстве катализаторов. Способ получения сульфата ванадила включает экстракцию из сернокислого раствора ванадия (IV) неразбавленной ди-2-этилгексилфосфорной кислотой в присутствии сульфата натрия и последующую фильтрацию под вакуумом. Экстракцию ведут...
Тип: Изобретение
Номер охранного документа: 0002525903
Дата охранного документа: 20.08.2014
27.11.2014
№216.013.0ad6

Способ легирования алюминия или сплавов на его основе

Изобретение относится к области металлургии, в частности к легированию алюминия и сплавов на его основе. В способе осуществляют введение в расплав легирующего компонента в составе порошковой смеси путем продувки смесью в струе транспортирующего газа. При этом используют порошковую смесь,...
Тип: Изобретение
Номер охранного документа: 0002534182
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ce6

Способ диагностики реальной структуры кристаллов

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого...
Тип: Изобретение
Номер охранного документа: 0002534719
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.25f6

Биосовместимый пористый материал и способ его получения

Группа изобретений относится к области медицины. Описан биосовместимый пористый материал, содержащий никелид титана с пористостью 90-95% и открытой пористостью 70-80% со средним размером пор 400 мкм, который пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана. Описан...
Тип: Изобретение
Номер охранного документа: 0002541171
Дата охранного документа: 10.02.2015
Показаны записи 1-10 из 21.
10.11.2013
№216.012.7cd8

Способ получения нанодисперсного порошка карбида вольфрама (варианты)

Изобретение относится к области порошковой металлургии. Нанодисперсные порошки могут быть использованы для изготовления инструментов, близких по твердости и износоустойчивости к инструментам на основе алмаза. Способ (вариант 1) позволяет получить нанодисперсный порошок карбида вольфрама. Смесь...
Тип: Изобретение
Номер охранного документа: 0002497633
Дата охранного документа: 10.11.2013
20.03.2014
№216.012.ac2b

Способ активации порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут быть использованы в различных областях промышленности. Способ активации порошка алюминия включает пропитку исходного порошка активатором на основе...
Тип: Изобретение
Номер охранного документа: 0002509790
Дата охранного документа: 20.03.2014
10.08.2014
№216.012.e86c

Твердая смазка для абразивной обработки металлов и сплавов

Настоящее изобретение относится к твердой смазке для абразивной обработки металлов и сплавов, содержащей хлорфторуглеродное масло, низкомолекулярный полиэтилен, минеральное масло, высокодисперсный порошок смеси продукта термического восстановления лейкоксена и карбида кремния или нитрида...
Тип: Изобретение
Номер охранного документа: 0002525293
Дата охранного документа: 10.08.2014
20.12.2015
№216.013.9a52

Сплав для получения водорода на основе алюминия

Изобретение относится к области химии и может быть использовано для получения водорода. Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, содержит в качестве добавки лантан при следующем соотношении компонентов: лантан-...
Тип: Изобретение
Номер охранного документа: 0002571131
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9e2d

Способ получения нанодисперсного ферромагнитного материала

Изобретение относится к химической технологии. Способ включает упаривание смеси водных растворов цинк- и железосодержащих солей карбоновой кислоты, взятых в стехиометрическом соотношении. В качестве солей карбоновой кислоты используют формиат цинка состава Zn(НСОО)·2НО и формиат железа состава...
Тип: Изобретение
Номер охранного документа: 0002572123
Дата охранного документа: 27.12.2015
25.08.2017
№217.015.d252

Устройство для засветки фотоэлектрических преобразователей солнечной батареи космического аппарата

Изобретение относится к средствам наземной эксплуатации солнечных батарей (СБ), в частности для проверки их работоспособности. Устройство содержит кожух, включающий корпуса (2) из термостойкой пластмассы со светодиодными излучателями (5). Со стороны, обращенной к СБ, закреплены откидные крышки...
Тип: Изобретение
Номер охранного документа: 0002621786
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.e398

Сложный оксид кадмия и железа и способ его получения

Изобретение относится к области спиновой электроники, конкретно к получению нового магнитного материала - сложного оксида кадмия и железа состава CdFeO, где 0,025≤x≤0,07. Способ получения сложного оксида кадмия и железа состава CdFeO, где 0,025≤x≤0,07 включает получение смеси растворов формиата...
Тип: Изобретение
Номер охранного документа: 0002626209
Дата охранного документа: 24.07.2017
29.12.2017
№217.015.fd73

Способ обнаружения усталостных поверхностных трещин в электропроводящем изделии

Использование: для обнаружения и регистрации в электропроводящих изделиях усталостных поверхностных трещин с использованием метода акустической эмиссии (АЭ). Сущность изобретения заключается в том, что инициируют акустическую эмиссию в контролируемом изделии путем его нагружения, выполняют...
Тип: Изобретение
Номер охранного документа: 0002638395
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.00dc

Способ определения показателя преломления оптически прозрачного материала

Изобретение относится к измерительной технике, а именно к способам оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения показателя преломления оптически прозрачных материалов. Предлагается способ определения показателя преломления оптически прозрачного...
Тип: Изобретение
Номер охранного документа: 0002629695
Дата охранного документа: 31.08.2017
20.06.2018
№218.016.6538

Способ получения наноструктурированного углерода

Изобретение относится к химической технологии и может быть использовано при изготовлении сорбентов, катализаторов и носителей для катализаторов, сенсоров, газовых накопителей, конструкционных, футеровочных, оптических материалов и электродов для высокоёмких источников тока и энергетических...
Тип: Изобретение
Номер охранного документа: 0002658036
Дата охранного документа: 19.06.2018
+ добавить свой РИД