×
20.07.2015
216.013.6329

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПРИВИТЫХ СИЛОКСАНОВЫХ ПОКРЫТИЙ С СОРБЦИОННЫМИ N-АМИНОДИ(МЕТИЛЕНФОСФОНОВЫМИ) ГРУППАМИ НА ВОЛОКНАХ И МОДИФИЦИРОВАННЫЕ ВОЛОКНИСТЫЕ МАТЕРИАЛЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической технологии волокнистых материалов и касается способа получения привитых силоксановых покрытий с сорбционными N-пропиламиноди(метиленфосфоновыми) группами на волокнах. Способ включает на первой стадии обработку волокон спиртовым раствором олиго(аминопропил)этоксисилоксана, удаление растворителя, протонирование модифицированной поверхности водным раствором HCl и просушивание, на второй стадии - получение на протонированной поверхности N-пропиламиноди(мстиленфосфоновой) кислоты кипячением с параформом и HPO в среде бензола и диглима, отгонку азеотропа, промывку волокон диглимом и этанолом и сушку при 100°C. В качестве волокнистого материала используют материал из органического и неорганического волокна в виде моноволокна, комплексной нити, ленты, пряжи, ткани, нетканого полотна, трикотажного полотна. Изобретение обеспечивает придание волокну сорбционных свойств, характерных для класса фосфорсодержащих сорбентов. Обработанные волокна обладают совокупностью уникальных сорбционных и эксплутационных свойств, так как являются селективными сорбентами для ряда цветных металлов, редкоземельных элементов, урана, актиноидов, что делает их перспективными сорбентами для многих отраслей промышленности. 2 н. и 2 з.п. ф-лы, 2 ил., 3 табл.

Изобретение относится к текстильной промышленности и может найти применение для отделки волокон с целью придания им сорбционных свойств. Более конкретно изобретение относится к способу получения привитых силоксановых покрытий с сорбционными N-пропиламиноди(метиленфосфоновыми) группами на различных волокнах, который делает возможным получение волокнистых сорбентов с улучшенными свойствами.

Полученные заявляемым способом новые волокнистые сорбенты перспективны для использования во многих отраслях промышленности, в частности, для извлечения ионов металлов из различных сред.

Придание различным волокнам сорбционных свойств является актуальной задачей, поскольку волокнистые сорбенты обладают значительным преимуществом по сравнению с гранульными, а именно высокой удельной поверхностью и, как следствие, высокой скоростью хемосорбции, которая на 1-2 порядка выше, чем у гранульных сорбентов. Развитая поверхность, различные формы органических и неорганических волокнистых материалов с сорбционными свойствами (моноволокно, комплексная нить, лента, пряжа, ткань, нетканое и трикотажное полотно) способствуют рациональному оформлению фильтровальных аппаратов.

Известны способы получения гранульных кремнеземов с ковалентно закрепленными группами фосфоноых кислот [Синявская Э.И., Цымбал Л.В. Адсорбция и адсорбенты. Изд. НАН Украины, Киев, 1984, 12, 51; Кудрявцев Г.В., Мильченко Д.В., Теоретическая и экспериментальная химия. Изд. Института физической химии им. Л.В. Писаржевского НАН Украины, Киев, 1987, 6, 71; Вертинская Т.Э., Фадеева В.И., Мильченко Д.В., Тихомирова Т.И., Кудрявцева Г.В. Журн. аналит. химии, 1986, 41; Гриненко С.Б., Белоусов В.М., Носков A.M., Лысова Н.Н., Бучеренко Е.Ф., Чернышев Е.А., Укр. хим. журнал, 1983, 49, 136]. Однако указанными способами удалось получить либо гидролитически неустойчивые арилфосфоновые кислоты (Кудрявцев Г.В., Мильченко Д.В., Теоретическая и экспериментальная химия. Изд. Института физической химии им. Л.В. Писаржевского НАН Украины, Киев, 1987, 6, 71), либо полифункциональные материалы, содержащие смесь привитых групп различной природы, с низким содержанием закрепленных фосфоновых кислот (Синявская Э.И., Цымбал Л.В. Адсорбция и адсорбенты. Изд. НАН Украины, Киев, 1984, 12, 51). Таким образом, недостатком указанных способов обработки гранульных кремнеземов является возможность получения только гидролитически неустойчивых фосфоновых кислот и недостаточно высокий уровень сорбционных характеристик полученных материалов.

Известен способ обработки полиакрилонитрильного волокна (ПАН), в котором функциональные группы вводят с помощью реакций аминирования и последующего фосфорилирования (Грачек В.И., Шункевич А.А., Марцинкевич Р.В., Журн. прикл. химии, 2009, т.82, №1, С.19-24). Этот способ наиболее близок по существенным признакам к заявляемому способу, он был выбран в качестве прототипа.

Способ-прототип включает аминирование, которое проводят путем обработки волокна 40% водным раствором полиамина, такого как этилендиамин (ЭДА), диэтилентриамин (ДЭТА) или триэтилентетрамин (ТЭТА), при температуре 95°C в течение 10-12 ч. Полученные аминированные сорбционные волокнистые материалы после протонирования раствором соляной кислоты подвергают фосфорилированию по реакции Кабачника-Филдса (Кабачник М.И., Медведь Т.Я. и др. Успехи химии, 1968, 37, №7, С.1161-1188), причем в качестве карбонильной компоненты используют формальдегид, а в качестве фосфорилирующего агента - гипофосфит натрия. Оптимальная температура фосфорилирования 95°C, время 3-3,5 ч. В сильнокислых средах при pH=0 происходит дизамещение по первичной аминогруппе и фосфорилирование приводит к образованию азотфосфорсодержащих материалов с функциональными группами следующего строения R-N[(CH2PO(CH2OH)OH]2, которые могут взаимодействовать с ионами металлов с образованием хелатных комплексов.

Недостатком прототипа является то, что в способе используют только полиакрилонитрильное волокно одного типа (нитрон Д), кроме того, аминирование проводят высокотоксичными реагентами, такими как этилендиамин, диэтилентриамин и триэтилентетрамин (Вредные вещества в промышленности. Изд. «Химия», Л., 1976, изд. 7, т.2, с.232-233; Ullmans Encyclopedia. 5 ed., Bd. A2. Weinheim, 1985, p.23-26; Kisk-Othmer Encyclopedia, 3 ed., vol.7, No.V, 1979, p.580).

Задачей изобретения является разработка нового способа получения привитых силоксановых покрытий с сорбционными группами, способными взаимодействовать с ионами металлов с образованием хелатных комплексов, на волокнах различной природы в различных формах и получение новых волокнистых сорбентов.

Задача решается заявляемым способом получения привитых силоксановых покрытий с сорбционными N-пропиламиноди(метиленфосфоновыми) группами R-N[(CH2PO(CH2OH)OH]2 на волокнах, включающим на первой стадии модификацию поверхности волокна (волокнистого материала) путем обработки раствором аминирующего агента (модификатора), удаление растворителя, протонирование полученного привитого покрытия раствором соляной кислоты и на второй стадии фосфорилирование протонированной поверхности волокнистого материала путем обработки раствором фосфорилирующего агента и карбонилсодержащего соединения с образованием N-пропиламиноди(метиленфосфоновой) кислоты и последующее удаление растворителя, причем в качестве аминирующего агента используют олиго(аминопропил)этоксисилоксан, конкретно дека(аминопропил)додека(этокси)декасилоксан структурной формулы

в качестве фосфорилирующего агента используют фосфористую кислоту формулы H3PO3, в качестве карбонильной компоненты - параформ формулы (CH2O)n=1000, при этом в качестве исходного волокнистого материала используют материал из органического и неорганического волокна, выбранного из ряда, включающего хлопчатобумажное, полиэфирное, полиамидное, шерстяное, асбестовое, базальтовое, стеклянное, кварцевое, кремнеземное, углеродное волокно в различных формах, таких как моноволокно, комплексная нить, лента, пряжа, нетканое полотно, трикотажное полотно.

Заявляемым способом получают модифицированные волокнистые материалы, представляющие собой новый класс волокнистых сорбентов и содержащие на поверхности группы -N[(CH2PO(CH2OH)OH]2, способные взаимодействовать с ионами металлов с образованием хелатных комплексов.

Новые привитые силоксановые покрытия на волокнах получают методом молекулярной сборки в две стадии. На первой стадии проводят иммобилизацию олиго(аминопропил)этоксисилоксана (модификатора) на поверхность волокон смачиванием их этанольным раствором олигомера заданной концентрации (0,1; 1,0; 2,0%) и сушкой на воздухе.

Указанная обработка приводит к тому, что олиго(аминопропил)этоксисилоксан (модификатор) ковалентно закрепляется на поверхности волокон в результате конденсации этоксигрупп модификатора с функциональными группами полимера волокон, образуя на поверхности микронаноразмерное привитое органосилоксановое покрытие (схема 1), содержащее аминогруппы.

Схема 1

Количество органосилоксанового покрытия на поверхности волокон определяют по привесу волокна после пропитки и сушки. Если после однократной пропитки и сушки привес не достигает требуемых значений, пропитку и сушку проводят несколько раз до тех пор, пока привес не достигает этих значений.

Протонирование модифицированных волокон осуществляют смачиванием водным раствором HCl (схема 2), затем избыток кислоты отмывают этанолом, волокно просушивают и подвергают термообработке при 100°C в течение 20 мин.

Схема 2

На второй стадии проводят конденсацию привитых протонированных аминогрупп с H3PO3 и параформом (схема 3).

Схема 3

N-пропиламиноди(метиленфосфоновую) кислоту, ковалентно закрепленную на поверхности волокон, получают на основе протежированных волокон с различной концентрацией закрепленных групп и различной природой поверхности носителя (табл.1).

Заявляемый способ получения привитых силоксановых покрытий можно использовать для модификации волокон различной природы (органических, таких как целлюлозные, хлопчатобумажные, полиэфирные, полиамидные, шерстяные и т.п., и неорганических, таких как асбестовые, базальтовые, стеклянные, кварцевые, кремнеземные и т.п.) и различных форм (моноволокно, комплексная нить, лента, пряжа, ткань, нетканое полотно, трикотажное полотно). Обработанные в соответствии с заявленным способом волокна приобретают сорбционные свойства, характеризующиеся содержанием фосфорнокислых групп от 21,0 до 22.5% и фосфора от 19,0 до 20,3% (Таблица 2).

На фигурах 1 и 2 представлены данные, иллюстрирующие сорбционные свойства полученных материалов (I-XXII). На фиг.1 показано влияние кислотности среды на степень извлечения следующих металлов: ванадия (V) (кривая 3), вольфрама (VI) (кривые 1 и 5), Th (IV) (кривые 4 и 6) и U (VI) (кривая 2) полученными волокнистыми сорбентами (I-XXII). На фиг.2 показано влияние времени сорбции на степень извлечения ванадия (V) (кривая 4), Mo (VI) (кривая 5), W (VI) (кривая 1), Th (IV) (кривая 3) и U (VI) (кривая 2) волокнистыми сорбентами (I-XXII).

Изобретение иллюстрируется следующими ниже примерами его осуществления на различных волокнистых материалах из волокон различной природы. Некоторые свойства исходных волокнистых материалов приводятся в таблице 1. Сорбционные свойства полученных материалов и условия получения привитых силоксановых покрытий с N-пропиламиноди(метиленфосфоновыми) группами приводятся в таблицах 2 и 3.

Пример 1. Получение привитого силоксанового покрытия на хлопчатобумажной ткани «Белтинг».

а) На первой стадии проводят иммобилизацию олиго(аминопропил)этоксисилоксана (модификатора), на поверхность волокон смачиванием их 1% раствором олиго(аминопропил)этоксисилоксана в этаноле и сушкой на воздухе. Протонирование модифицированных волокон осуществляют смачиванием 15% водным раствором HCl, промывкой этанолом, просушкой и термообработкой при 100°C в течение 20 мин.

Поверхность хлопчатобумажной ткани «Белтинг» смачивают 1% раствором олиго(аминопропил)этоксисилоксана в этаноле и сушат на воздухе. Затем смачивают модифицированную ткань 15% водным раствором соляной кислоты, промывают этанолом, сушат, подвергают термообработке при 100°C в течение 20 мин и получают ткань «Белтинг» с концентрацией закрепленных NH2 групп 0,25 ммоль/г.

(б) В трехгорлую колбу, снабженную мешалкой, капельной воронкой и обратным холодильником с хлоркальциевой трубкой, вносят 10 г протонированной хлопчатобумажной ткани «Белтинг» с концентрацией закрепленных NH2 групп 0,25 ммоль/г, 25 мл бензола и 75 мл диглима. Затем в бумажном патроне вносят 0,15 г (0,5 ммоль) параформа и при перемешивании прибавляют 4,1 мл (0,5 ммоль) 10% раствора H3PO3 в диглиме. После прибавления H3PO3 смесь нагревают до 80-100°C и выдерживают, собирая азеотроп бензола с водой в насадку для азеотропной перегонки. После окончания выделения воды ткань отделяют, промывают диглимом и этанолом, сушат в шкафу при 100°C и получают сорбционный волокнистый материал I (табл.2).

Для экспресс-контроля полноты превращения протонированных аминоалкильных групп в N-пропиламиноди(метиленфосфоновые) ткань обрабатывали нингидрином. Отсутствие характерной окраски ткани свидетельствует об отсутствии на поверхности модифицированных волокон остаточных аминогрупп. Исходные аминопропил-содержащие ткани и ткани с полифункциональными покрытиями окрашиваются этим реагентом в синий цвет. Анализ весьма эффективен и позволяет добиться оптимизации процесса модификации без анализа продуктов реакции.

Пример 2. Нетканое полотно из вискозных волокон образец 2 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1 (а и б), используя 2-кратный мольный избыток H3PO3 и 2-кратный мольный избыток CH2O, и получают сорбционный материал II (таблица 2).

Пример 3. Ткань из шерстяных волокон образец 3 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1, используя 5-кратный мольный избыток H3PO3 и 6-кратный мольный избыток CH2O, и получают сорбционный материал III (таблица 2).

Пример 4. Пряжу из шерстяных волокон образец 4 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1, используя 7-кратный мольный избыток H3PO3 и 8-кратный мольный избыток CH2O, и получают сорбционный материал IV (таблица 2).

Пример 5. Нетканое полотно из шерстяных волокон образец 5 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1, используя 6-кратный мольный избыток H3PO3 и 7-кратный мольный избыток CH2O, и получают сорбционный материал V (таблица 2).

Пример 6. Нетканое полотно из полиэфирных волокон образец 6 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1, используя 6-кратный мольный избыток H3PO3 и 6-кратный мольный избыток CH2O, и получают сорбционный материал VI) (таблица 2).

Пример 7. Нетканое полотно из полиамидных волокон образец 7 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1, используя 4-кратный мольный избыток H3PO3 и 6-кратный мольный избыток CH2O, и получают сорбционный материал VII (таблица 2).

Пример 8. Асботкань из крокидолитовых волокон образец 8 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1, используя 6-кратный мольный избыток H3PO3 и 7-кратный мольный избыток CH2O, и получают сорбционный материал VIII (таблица 2).

Пример 9. Асбопряжу из крокидолитовых волокон образец 9 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1, используя 7-кратный мольный избыток H3PO3 и 8-кратный мольный избыток CH2O, получают сорбционный материал IX (таблица 2).

Пример 10. Ткань из базальтовых волокон образец 10 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1, используя 5-кратный мольный избыток H3PO3 и 5-кратный мольный избыток CH2O, получают сорбционный материал X (таблица 2).

Пример 11. Жгут из базальтовых волокон образец 11 (таблица 1)подвергают превращениям, аналогичным описанным в примере 1, используя 6-кратный мольный избыток H3PO3 и 6-кратный мольный избыток CH2O, получают сорбционный материал XI (таблица 2).

Пример 12. Нить из базальтовых волокон образец 12 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1, используя 7-кратный мольный избыток H3PO3 и 7-кратный мольный избыток CH2O, получают сорбционный материал XII (таблица 2).

Пример 13. Ткань 181 из стекловолокон образец 13 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1, используя 3-кратный мольный избыток H3PO3 и 3-кратный мольный избыток CH2O, получают сорбционный материал XIII (таблица 2).

Пример 14. Нетканое полотно из стекловолокон образец 14 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1, используя 5-кратный мольный избыток H3PO3 и 5-кратный мольный избыток CH2O, получают сорбционный материал XIV (таблица 2).

Пример 15. Ткань из кремнеземного волокна образец 15 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1, используя 3-кратный мольный избыток H3PO3 и 3-кратный мольный избыток CH2O, получают сорбционный материал XV (таблица 2).

Пример 16. Шерстяное полотно из кремнеземного волокна образец 16 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1, используя 5-кратный мольный избыток H3PO3 и 5-кратный мольный избыток CH2O, получают сорбционный материал XVI (таблица 2).

Пример 17. Ткань из волокон рефразил образец 17 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1, используя 4-кратный мольный избыток H3PO3 и 4-кратный мольный избыток CH2O, получают сорбционный материал XVII (таблица 2).

Пример 18. Нетканое полотно из волокон рефразил образец 18 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1, используя 6-кратный мольный избыток H3PO3 и 6-кратный мольный избыток CH2O, получают сорбционный материал XVIII (таблица 2).

Пример 19. Ткань из волокон рефразил образец 19 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1, используя 4-кратный мольный избыток H3PO3 и 4-кратный мольный избыток CH2O, получают сорбционный материал XIX (таблица 2).

Пример 20. Ленту из волокон рефразил образец 20 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1, используя 6-кратный мольный избыток H3PO3 и 6-кратный мольный избыток CH2O, получают сорбционный материал XX (таблица 2).

Пример 21. Пряжу из волокон рефразил образец 21 (таблица 1). Синтез проводили аналогично, используя 6-кратный мольный избыток H3PO3 и 6-кратный мольный избыток CH2O, получают сорбционный материал XXI (таблица 2).

Пример 22. Войлок из волокон микрокварц образец 22 (таблица 1) подвергают превращениям, аналогичным описанным в примере 1, используя 4-кратный мольный избыток H3PO3 и 4-кратный мольный избыток CH2O, получают сорбционный материал XXII (таблица 2).

Анализ привитых силоксановых покрытий с N-пропиламиноди-(метиленфосфоновыми) группами проводили по следующей методике.

На поверхности стеклоткани из стекла «Е» синтезировали привитое силоксановое покрытие с N-пропиламиноди(метиленфосфоновыми) группами. Затем механическим способом с поверхности стеклоткани соскабливали полимерное покрытие в виде тонкодисперсного порошка белого или слегка желтоватого цвета (удельная масса порошка - 0,96 г/см3). Состав и строение силоксанового покрытия подтверждено данными элементного анализа (найдено, %: C - 20,0; H - 4.02; N - 4,12; P - 20,11; Si - 9.10; C2H14N1P2O7,5Si1. Вычислено, %: C - 20,13; H - 4,73; N - 4.69; P - 20,79; Si - 9,41) и ИК-спектрами.

В ИК-спектрах полимерных силоксановых покрытий с N-пропиламиноди (метиленфосфоновыми) группами регистрируются полосы поглощения в области 2920-2850 и 1660-1580 см-1, соответствующие колебаниям С-Н и С-С привитых углеводородных групп. Полоса поглощения группы ≡P=O (1240-1140 см-1) перекрывается полосами поглощения силоксановых связей и потому недоступна для наблюдения. Отнесение полос поглощения привитой кислоты проводили на основе сравнения со спектрами волокнистых материалов с аминопропильными группами и их протонированными формами. В спектре исчезает интенсивная полоса поглощения в области 1516 см-1, характерная для протонированной формы аминогруппы, и появляется полоса поглощения в области 1698 см-1. Наличие полос поглощения в области 3689 см-1 указывает на наличие валентных колебаний группы ≡P(ОН)2, а в области 3350 см-1 - на наличие цвиттер-ионной формы привитого метиленфосфонового лиганда.

Сопоставление данных ИК-спектров и элементного анализа показывает, что при выбранных условиях реакция модификации смесью CH2O и H3PO3 (реакция Кабачника-Филдса: Кабачник М.И. и др., Успехи химии, 1974, т.43, в.9, С.55-59; Матвеева Е.Д., Зефиров Н.С., Докл. АН, 2008, т.420, №4, С.492-495) протекает с дизамещением по первичной аминогруппе, в результате образуются покрытия с функциональными N-пропиламиноди(метиленфосфоновыми) группами строения,

которые могут взаимодействовать с находящимися в растворе ионами металлов.

По данным термогравиметрии полимерное силоксановое покрытие стабильно до 220°C.

О химической устойчивости силоксанового покрытия свидетельствует отсутствие изменений в его массе при его нагревании до 100°C в течение 1 часа в 5N растворах HCl, H2SO4 и HNO3 кислот. Силоксановое покрытие разрушается только при действии концентрированных растворов едкого калия или натрия. За счет своей химической стабильности привитое силоксановое покрытие с N-пропиламиноди-(метиленфосфоновыми) группами функционирует в диапазоне кислотной среды - pH~1-8. Волокнистые сорбенты (I-XXII) наиболее чувствительны и избирательны по отношению к ионам тяжелых и цветных металлов.

Сорбционная активность полученных заявляемым способом волокнистых сорбентов (I-XXII) исследована по отношению к ионам 10 элементов. Эффективность извлечения ионов и оптимальные условия сорбции представлены в таблице 3.

Исследование сорбции V(V), Mo(VI), W(VI), Th(IV) и U(VI) волокнистыми сорбентами (I-XXII) осуществляли из модельных растворов, содержащих 2-5 мг/л извлекаемого иона элемента. Стандартные растворы ионов элементов готовили из препаратов NH4VO3, (NH4)6Mo7O24·4H2O, NaWO4·2H2O, Th(NO3)4 и UO2(NO3)2·6H2O квалификации «х.ч.».

Влияние pH раствора на степень извлечения V(V), Mo(VI), W(VI), Th(IV) и U(VI) волокнистыми сорбентами (I-XXII) изучено в кислой и слабокислой (pH 1-5) средах. Исследование сорбции в нейтральных и щелочных средах (pH>5) нецелесообразно, так как в этих условиях ионы растворимых тяжелых элементов, особенно тория и урана, могут осаждаться в виде малорастворимых гидролизованных соединений.

На фиг.1 показано, что увеличение pH растворов от 1 до 3 приводит к резкому повышению степени извлечения ионов исследованных элементов (фиг.1).

Волокнистые сорбенты (I-XXII) извлекают из растворов только катионные формы элементов, о чем свидетельствует наличие максимумов извлечения в области pH~3 при сорбции ионов V(V), Mo(VI), W(VI), Th(IV) и U(VI) (фиг.1).

Изучение влияния кислотности среды на степень извлечения ионов указанных элементов позволили выбрать pH, равный 3, в качестве оптимального для всех последующих исследований сорбционной активности волокнистых сорбентов (I-XXII).

На фиг.2 показано, что скорость установления сорбционного равновесия для волокнистых сорбентов (I-XXII) незначительно увеличивается при переходе от урана (30 мин) к молибдену, вольфраму, торию (40 мин) и ванадию (60 мин) (фиг.2). При этом основная доля ионов элемента извлекается в течение первых 10-20 мин контакта раствора адсорбата с волокнистым сорбентом (фиг.2).

Ионы цветных металлов, таких как Cu(II), Zn(II), Cd(II), Co(II), Ni(II), в условиях сорбции ионов V(V), Mo(VI), W(VI), Th(IV) и U(VI) волокнистыми сорбентами (I-XXII) извлекаются менее эффективно (таблица 3). Присутствие в растворе ионов указанных цветных металлов мало влияет на сорбцию Mo(VI) и W(VI), количественное извлечение которых волокнистыми сорбентами (I-XXII) возможно при соотношениях Mo(W): M(M=Zn, Cd, Со, Ni)=1:1000 и Mo(W): Cu=1:100. При сорбции ионов V(V) сорбентами (I-XXII) избирательность сохраняется в присутствии 100-кратного избытка Cu(II), Zn(II), Cd(II), Co(II), Ni(II).

Наибольшее влияние ионов сопутствующих цветных металлов оказывает на полноту извлечения ионов тория (IV) и урана (VI). Ионы никеля (II) и кобальта (II) не оказывают мешающего действия на сорбцию ионов Th(IV) и U(VI) только при соотношении элементов 1:10, a Cu(II), Zn(II), Cd(II) - 1:1.

Исследована возможность регенерации и многократного использования волокнистых сорбентов (I-XXII). В качестве десорбента наиболее универсальным элюентом, позволяющим осуществлять количественную десорбцию ионов всех указанных элементов, оказалась 6 М соляная кислота. Регенерированные сорбенты (I-XXII) практически полностью сохраняют свою сорбционную активность и могут быть использованы многократно.

Преимуществом нового способа является использование волокон различной природы (органических, неорганических) в различных формах (волокно, комплексная нить, лента, пряжа, ткань, нетканое полотно, трикотажное полотно), которым можно придавать сорбционные свойства. Способ не требует применения исходных высокотоксичных реагентов, используемых в прототипе. Способ технологичен и его реализация не требует больших затрат.

Полученные заявляемым способом волокнистые сорбенты применимы для эффективного извлечения ионов тяжелых и цветных металлов, причем полученные сорбенты сохраняют свою активность после регенерации.

Технический результат состоит в придании сорбционных свойств разнообразным волокнам и получении новых эффективных волокнистых сорбентов.


СПОСОБ ПОЛУЧЕНИЯ ПРИВИТЫХ СИЛОКСАНОВЫХ ПОКРЫТИЙ С СОРБЦИОННЫМИ N-АМИНОДИ(МЕТИЛЕНФОСФОНОВЫМИ) ГРУППАМИ НА ВОЛОКНАХ И МОДИФИЦИРОВАННЫЕ ВОЛОКНИСТЫЕ МАТЕРИАЛЫ
СПОСОБ ПОЛУЧЕНИЯ ПРИВИТЫХ СИЛОКСАНОВЫХ ПОКРЫТИЙ С СОРБЦИОННЫМИ N-АМИНОДИ(МЕТИЛЕНФОСФОНОВЫМИ) ГРУППАМИ НА ВОЛОКНАХ И МОДИФИЦИРОВАННЫЕ ВОЛОКНИСТЫЕ МАТЕРИАЛЫ
СПОСОБ ПОЛУЧЕНИЯ ПРИВИТЫХ СИЛОКСАНОВЫХ ПОКРЫТИЙ С СОРБЦИОННЫМИ N-АМИНОДИ(МЕТИЛЕНФОСФОНОВЫМИ) ГРУППАМИ НА ВОЛОКНАХ И МОДИФИЦИРОВАННЫЕ ВОЛОКНИСТЫЕ МАТЕРИАЛЫ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 110.
10.01.2013
№216.012.190f

Способ получения нетканых текстильных материалов с антимикробными свойствами

Изобретение относится к нетканым текстильным материалам на основе химических и натуральных волокон с антимикробными свойствами, которые могут быть использованы в качестве протирочных материалов в медицине. На готовый нетканый текстильный материал наносят кремнийорганический препарат в качестве...
Тип: Изобретение
Номер охранного документа: 0002471907
Дата охранного документа: 10.01.2013
27.02.2013
№216.012.2a8e

Способ получения 1,3-дикарбонильных производных адамантанов

Изобретение относится к способу получения 1,3-дикарбонильных производных адамантантана общей формулы I, где R=H, X=OH, OMe, OEt, OPr, OBu, OCHCH(Et)Bu, OCHCF, ОСН(СН)CF, OCHCFCFH, OCHCHCHBr, OCHC≡CH, NEt, NCH (пиперидил), NCHO (морфолил), CHNH, CHOMe, CHO (фурил); R=Me, X=OH, Me, OMe, O-Pr,...
Тип: Изобретение
Номер охранного документа: 0002476421
Дата охранного документа: 27.02.2013
20.06.2013
№216.012.4b16

Реабилитационная противопролежневая кровать для ожоговых больных

Изобретение относится к медицинской технике, а именно к оборудованию, предназначенному для лечения и реабилитации лежачих больных, преимущественно больных с ожогами и пролежнями. Предложена реабилитационная, противопролежневая кровать для ожоговых больных, которая представляет собой емкость в...
Тип: Изобретение
Номер охранного документа: 0002484804
Дата охранного документа: 20.06.2013
20.09.2013
№216.012.6c06

Способ придания материалам гидрофильных свойств при помощи органосилоксанового покрытия с глицидолом

Изобретение относится к обработке различных материалов (стекло, текстиль, полимерные материалы, керамика, дерево, металлы, кожа) для придания гидрофильных свойств поверхностям этих материалов. Осуществляют последовательное нанесение на поверхность материалов водного или спиртового раствора...
Тип: Изобретение
Номер охранного документа: 0002493305
Дата охранного документа: 20.09.2013
27.10.2013
№216.012.797d
Тип: Изобретение
Номер охранного документа: 0002496763
Дата охранного документа: 27.10.2013
27.11.2013
№216.012.856a

Способ ингибирования активности фермента рнк-полимеразы

Изобретение относится к области биохимии. Предложен способ ингибирования активности фермента РНК-полимеразы. Ингибирование осуществляют путем введения в транскрипционную систему ингибитора на основе по крайней мере одного соединения, содержащего органический макроциклический комплекс с...
Тип: Изобретение
Номер охранного документа: 0002499832
Дата охранного документа: 27.11.2013
27.12.2013
№216.012.921d

Твердый полимерный электролит для литиевых источников тока

Изобретение относится к области композиций на основе органических высокомолекулярных соединений, конкретнее, к твердому полимерному электролиту для литиевых аккумуляторов. Заявляемый твердый полимерный электролит состоит из полимерной матрицы, наполненной раствором литиевой соли в ионной...
Тип: Изобретение
Номер охранного документа: 0002503098
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.945f

3,6-диметокси-17-метил-7альфа-(трифторацетил)-4,5альфа-эпокси-6альфа,14альфа-этеноизоморфинан и способ его получения

Изобретение относится к 17-метил-3,6-диметокси-7α-(трифторацетил)-4,5α-эпокси-6α,14α-этеноизоморфинану формулы Изобретение также относится к способу получения указанного соединения, включающему взаимодействие альдегида формулы с реактивом Руперта-Пракаша [CFSi(CH)] в присутствии источника F и...
Тип: Изобретение
Номер охранного документа: 0002503677
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.9460

7α-(1-гидрокси-2,2,2-трифторэтил)-17-метил-3,6-диметокси-4,5α-эпокси-6α,14αэтеноизоморфинан и способ его получения

Настоящее изобретение относится к новому соединению -7α-(1-гидрокси-2,2,2-трифторэтил)-17-метил-3,6-диметокси-4,5α-эпокси-6α,14α-этеноизоморфинану формулы (1) который является предшественником фторсодержащих тевинона, тевинолов и орвинолов и может быть использован для их получения, а также к...
Тип: Изобретение
Номер охранного документа: 0002503678
Дата охранного документа: 10.01.2014
10.02.2014
№216.012.9e6d

Фторсодержащие производные тевинола и орвинола и способы их получения (варианты)

Изобретение относится к производным тевинола и орвинола общей формулы I, где R=OH; R=H, CF, C-C алкил, арил, или (R+R) обозначает O=; R=H, CH; R=H, CH; R=CH, циклопропилметил, аллил; Z~Z=CHCH, СН=СН. Также изобретение относится к способу получения производных формулы I. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002506265
Дата охранного документа: 10.02.2014
Показаны записи 1-10 из 71.
27.02.2013
№216.012.2a8e

Способ получения 1,3-дикарбонильных производных адамантанов

Изобретение относится к способу получения 1,3-дикарбонильных производных адамантантана общей формулы I, где R=H, X=OH, OMe, OEt, OPr, OBu, OCHCH(Et)Bu, OCHCF, ОСН(СН)CF, OCHCFCFH, OCHCHCHBr, OCHC≡CH, NEt, NCH (пиперидил), NCHO (морфолил), CHNH, CHOMe, CHO (фурил); R=Me, X=OH, Me, OMe, O-Pr,...
Тип: Изобретение
Номер охранного документа: 0002476421
Дата охранного документа: 27.02.2013
20.06.2013
№216.012.4b16

Реабилитационная противопролежневая кровать для ожоговых больных

Изобретение относится к медицинской технике, а именно к оборудованию, предназначенному для лечения и реабилитации лежачих больных, преимущественно больных с ожогами и пролежнями. Предложена реабилитационная, противопролежневая кровать для ожоговых больных, которая представляет собой емкость в...
Тип: Изобретение
Номер охранного документа: 0002484804
Дата охранного документа: 20.06.2013
20.09.2013
№216.012.6c06

Способ придания материалам гидрофильных свойств при помощи органосилоксанового покрытия с глицидолом

Изобретение относится к обработке различных материалов (стекло, текстиль, полимерные материалы, керамика, дерево, металлы, кожа) для придания гидрофильных свойств поверхностям этих материалов. Осуществляют последовательное нанесение на поверхность материалов водного или спиртового раствора...
Тип: Изобретение
Номер охранного документа: 0002493305
Дата охранного документа: 20.09.2013
27.10.2013
№216.012.797d
Тип: Изобретение
Номер охранного документа: 0002496763
Дата охранного документа: 27.10.2013
27.11.2013
№216.012.856a

Способ ингибирования активности фермента рнк-полимеразы

Изобретение относится к области биохимии. Предложен способ ингибирования активности фермента РНК-полимеразы. Ингибирование осуществляют путем введения в транскрипционную систему ингибитора на основе по крайней мере одного соединения, содержащего органический макроциклический комплекс с...
Тип: Изобретение
Номер охранного документа: 0002499832
Дата охранного документа: 27.11.2013
27.12.2013
№216.012.921d

Твердый полимерный электролит для литиевых источников тока

Изобретение относится к области композиций на основе органических высокомолекулярных соединений, конкретнее, к твердому полимерному электролиту для литиевых аккумуляторов. Заявляемый твердый полимерный электролит состоит из полимерной матрицы, наполненной раствором литиевой соли в ионной...
Тип: Изобретение
Номер охранного документа: 0002503098
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.945f

3,6-диметокси-17-метил-7альфа-(трифторацетил)-4,5альфа-эпокси-6альфа,14альфа-этеноизоморфинан и способ его получения

Изобретение относится к 17-метил-3,6-диметокси-7α-(трифторацетил)-4,5α-эпокси-6α,14α-этеноизоморфинану формулы Изобретение также относится к способу получения указанного соединения, включающему взаимодействие альдегида формулы с реактивом Руперта-Пракаша [CFSi(CH)] в присутствии источника F и...
Тип: Изобретение
Номер охранного документа: 0002503677
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.9460

7α-(1-гидрокси-2,2,2-трифторэтил)-17-метил-3,6-диметокси-4,5α-эпокси-6α,14αэтеноизоморфинан и способ его получения

Настоящее изобретение относится к новому соединению -7α-(1-гидрокси-2,2,2-трифторэтил)-17-метил-3,6-диметокси-4,5α-эпокси-6α,14α-этеноизоморфинану формулы (1) который является предшественником фторсодержащих тевинона, тевинолов и орвинолов и может быть использован для их получения, а также к...
Тип: Изобретение
Номер охранного документа: 0002503678
Дата охранного документа: 10.01.2014
10.02.2014
№216.012.9e6d

Фторсодержащие производные тевинола и орвинола и способы их получения (варианты)

Изобретение относится к производным тевинола и орвинола общей формулы I, где R=OH; R=H, CF, C-C алкил, арил, или (R+R) обозначает O=; R=H, CH; R=H, CH; R=CH, циклопропилметил, аллил; Z~Z=CHCH, СН=СН. Также изобретение относится к способу получения производных формулы I. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002506265
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a216

Способ получения полифторарил(триметил)силанов

Изобретение относится к способу получения фторсодержащих ароматических силанов. Предложен способ получения полифторарил(триметил)силанов формулы взаимодействием полифторароматических кислот с раствором гидроксида калия с образованием соответствующих калиевых или дикалиевых солей, последующим...
Тип: Изобретение
Номер охранного документа: 0002507209
Дата охранного документа: 20.02.2014
+ добавить свой РИД