×
27.06.2015
216.013.5b2f

Результат интеллектуальной деятельности: СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА КРЕКИНГА ВАКУУМНОГО ГАЗОЙЛЯ С РЕГУЛИРУЕМЫМ ВЫХОДОМ ОЛЕФИНОВ С3 И С4

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нефтеперерабатывающей промышленности, а именно к способу приготовления микросферических катализаторов крекинга вакуумного газойля для получения регулируемого выхода легких олефинов C-C. Предлагаемый способ приготовления катализатора крекинга вакуумного газойля с регулируемым выходом олефинов C и C включает смешение ультрастабильного цеолита Y в катион-декатионированной форме и цеолита HZSM-5 с компонентами матрицы, в качестве которых используют аморфный алюмосиликат, гидроксид алюминия и бентонитовую глину, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора. Гидроксид алюминия перед смешением с компонентами катализатора подвергают обработке ортофосфорной кислотой до содержания фосфора в пересчете на оксид алюминия от 1 до 10 мас. %. Содержание компонентов катализатора, мас. %: цеолит НРЗЭУ 10-20, цеолит HZSM-5 2-20, гидроксид алюминия, обработанный ортофосфорной кислотой, 10-20, аморфный алюмосиликат 28-38, бентонитовая глина 15-25. Технический результат - получение высокоактивного катализатора, обеспечивающего регулируемый выход легких олефинов C-C. 2 табл., 9 пр.
Основные результаты: Способ приготовления катализатора крекинга вакуумного газойля с регулируемым выходом олефинов C и C, включающий смешение ультрастабильного цеолита Y в катион-декатионированной форме и цеолита HZSM-5 с компонентами матрицы, в качестве которых используют аморфный алюмосиликат, гидроксид алюминия и бентонитовую глину, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора, отличающийся тем, что гидроксид алюминия перед смешением с компонентами катализатора подвергают обработке ортофосфорной кислотой до содержания фосфора в пересчете на оксид алюминия от 1 до 10 мас. %, при следующем содержании компонентов, мас. %: цеолит НРЗЭУ 10-20, цеолит HZSM-5 2-20, гидроксид алюминия, обработанный ортофосфорной кислотой, 10-20, аморфный алюмосиликат 28-38, бентонитовая глина 15-25.

Изобретение относится к области нефтеперерабатывающей промышленности, а именно к способу приготовления микросферических катализаторов крекинга вакуумного газойля для получения регулируемого выхода легких олефинов C3-C4.

Основные способы производства олефинов C2-C4 - это паровая конверсия природного газа, термический крекинг в трубчатой печи нафты или легкого газойля (пиролиз), термический крекинг на твердом теплоносителе более тяжелого углеводородного сырья, а также каталитическая конверсия легких спиртов.

Традиционный каталитический крекинг в процессе производства высокооктанового бензина и легкого газойля также производит олефины C3-C4, но их выход не превышает 15,0 мас. %

В последние годы используется множество различных каталитических добавок, позволяющих без изменений в конструкции установок обеспечить возможность варьирования составом продуктов процесса. Наиболее распространенной добавкой является цеолит ZSM-5, который может использоваться самостоятельно как крекирующий агент либо может быть встроенным в состав катализатора крекинга.

Катализаторы крекинга на основе цеолитов НРЗЭY и ZSM-5 позволяют получать высокий выход легких олефинов C3-C4. Для регулируемой активности катализатора и регулированного выхода олефинов C3-C4 необходимо варьировать состав катализатора.

Известен катализатор и способ получения катализатора крекинга на основе цеолита типа ZSM-5, природной глины, неорганического оксида с внесением оксида марганца и фосфора в катализатор при крекинге фракции с пределами температур кипения 30-200°C (патент РФ №2494809). В указанном способе внесение предшественника фосфора осуществляют на композицию катализатора или его составляющие. Недостатком указанного способа является низкая активность получаемого на основе только цеолита ZSM-5 катализатора, а также использование бензиновой фракции в качестве сырья крекинга с получением преимущественно олефинов C2-C3. Недостатком данного способа является также использование в качестве предшественника неорганического оксида дорогостоящего золя оксида алюминия.

Известен катализатор и способ приготовления катализаторов крекинга на основе цеолита типа ZSM-5 с содержанием его в катализаторе 30-85 мас. %, источника оксида алюминия и наполнителя с внесением предшественника фосфора в композицию катализатора (патент US №6916757). Недостатком указанного способа является низкая активность получаемого на основе только цеолита ZSM-5 катализатора.

Известен катализатор и способ его приготовления с использованием широкопористого цеолита типа Y и мезопористого алюмофосфатного материала состава MPAlOx, где M - металл из группы металлов Zr, Ce, Mn, Zn, Fe, Co, V для крекинга тяжелого нефтяного сырья (патент US №6797155). Недостатком указанного катализатора является низкий выход легких олефинов.

Известен способ приготовления катализатора, содержащего 20-50 мас. % цеолита ZSM-5, 10-45 мас. % глины, 10-45 мас. % неорганического оксида, 1-10 мас. % одного или нескольких металлов и 5-15 мас. % фосфора для увеличения выхода сжиженных газов (патент РФ №2397811), в котором модификацию фосфором проводят для цеолита ZSM-5. Недостатком указанного способа является низкая активность получаемого на основе только цеолита ZSM-5 катализатора.

Известен способ получения катализатора (патент US №3758403), содержащего цеолит ZSM-5 и широкопористый цеолит (например, цеолит X или цеолит Y) в качестве активных компонентов, что проявилось в одновременном повышении октанового числа бензина и увеличении выхода олефинов C3-C4 на 10 мас. %. Недостатком данного изобретения является невысокий выход олефинов C3-C4.

Известен способ получения катализатора (патент CN 1093101, аналог US №5380690), содержащего смесь цеолита из семейства ZSM-5 и цеолита Y как активных компонентов, которые влияли на одновременное повышение октанового числа бензина и выход олефинов C2-C4, особенно олефинов C3-C4. Матрицей данного катализатора являлась смесь галлуазита и гидроксида алюминия псевдобемитной модификации. Недостатком данного изобретения является низкий выход бензина.

Наиболее близким к предлагаемому является способ приготовления катализатора для глубокого крекинга нефтяных фракций (патент РФ №2365409, прототип). Способ включает проведение ионных обменов катионов Na, содержащихся в цеолите Y, на катионы редкоземельных элементов и аммония, ультрастабилизацию цеолита в среде водяного пара, смешение цеолита Y с суспензией цеолита HZSM-5 и компонентами матрицы, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора, причем в качестве компонентов матрицы используют бентонитовую глину и аморфный алюмосиликат или бентонитовую глину, гидроксид алюминия и аморфный алюмосиликат. В прототипе катализаторы испытывают при температурах ниже 530°C. Недостатком указанного способа является недостаточная активность применяемого катализатора и невысокий выход легких олефинов C3-C4.

Задачей, на решение которой направлено предлагаемое изобретение, является получение высокоактивного катализатора, обеспечивающего регулируемый выход легких олефинов C3-C4 при температурах ниже 530°C.

Предлагаемый способ приготовления катализатора крекинга вакуумного газойля с регулируемым выходом олефинов C3 и C4 включает смешение ультрастабильного цеолита Y в катион-декатионированной форме и цеолита HZSM-5 с компонентами матрицы, в качестве которых используют аморфный алюмосиликат, гидроксид алюминия и бентонитовую глину, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора, причем гидроксид алюминия перед смешением с компонентами катализатора подвергают обработке ортофосфорной кислотой до содержания фосфора в пересчете на оксид алюминия от 1 до 10 мас. % при следующем содержании компонентов, мас. %: цеолит HPЗЭY 10-20, цеолит HZSM-5 2-20, гидроксид алюминия, обработанный ортофосфорной кислотой, 10-20, аморфный алюмосиликат 28-38, бентонитовая глина 15-25.

Цеолит Y представляет собой кристаллический порошок белого цвета с размером частиц 0,2-0,8 микрон. Решеточный модуль цеолита составляет от 7,0 до 12,0. Цеолит используется в НРЗЭ-форме, содержание редкоземельных элементов составляет от 4,5 до 6,5 мас. % в пересчете на оксиды редкоземельных элементов, содержание оксида натрия должно составлять 0,5-1,2 мас. %.

Цеолит ZSM-5 представляет собой кристаллический порошок белого цвета с размером частиц менее 2 микрон. Содержание оксида натрия должно составлять менее 0,3 мас. %. Цеолит используется в Н-форме.

Способ приготовления катализатора заключается в следующем. Бентонитовую глину подвергают активации азотнокислым аммонием по методу ионного обмена для снижения содержания оксида натрия. После активации остаточное содержание оксида натрия в глине менее 0,2 мас. %. Суспензию переосажденного гидроксида алюминия обрабатывают концентрированной ортофосфорной кислотой. Затем смешивают суспензии активированной бентонитовой глины и переосажденного гидроксида алюминия, обработанного ортофосфорной кислотой, в необходимой пропорции. Следующая стадия заключается во введении аморфного алюмосиликата. Суспензии цеолита Y и цеолита ZSM-5 добавляют в приготовленную суспензию матрицы (бентонитовая глина - переосажденный гидроксид алюминия, обработанный ортофосфорной кислотой, - аморфный алюмосиликат). Смесь тщательно перемешивают до получения однородной суспензии, фильтруют, формуют в микросферические частицы с размером менее 0,25 мм. Полученный катализатор высушивают и прокаливают.

Каталитические испытания проводят на лабораторной установке проточного типа МАК-2М, соответствующей стандарту ASTM D 3907-03, с неподвижным слоем катализатора. Реакторную систему продувают азотом с расходом 30 мл/мин. Катализатор загружают в количестве 5 г. Углеводородное сырье дозируют в течение 30 с. Активность при этом оценивают как степень превращения сырья в приведенных стандартных условиях. Катализаторы перед испытанием обрабатывают 100% водяным паром при температуре 760°C в течение 5 ч.

Состав газообразных продуктов крекинга (C1-C5+), а также содержание продувочного газа (N2) определяют хроматографически. Хроматограф Кристалл 5000.1 оборудован капиллярной колонкой HP-PLOT Al2O3 ′′S′′ (50 м × 0,537 мм × 15,00 мкм, неподвижная фаза HP-Al/S), стальной насадочной колонкой (3 м × 3 мм, адсорбент NaX фракции 45/60), пламенно-ионизационным детектором и детектором по теплопроводности.

Количественный анализ жидких продуктов проводят в соответствии с методикой ASTM D 2887 (метод имитированной дистилляции) на хроматографе GC-2010 (Shimadzu) с капиллярной колонкой Rtx-2887 (10 м × 0,53 мм × 2,65 мкм, неподвижная фаза - диметилполисилоксан) и пламенно-ионизационным детектором. К бензиновой фракции относят все углеводороды, которые выкипают до 216°C.

Содержание коксовых отложений на отработанном катализаторе определяют по убыли массы выдержанного при 150°C образца после его последовательного прокаливания при температурах 500 (1 ч) и 550°C (1 ч).

Свойства вакуумного газойля, применяемого для испытаний катализаторов, приведены в таблице 1.

Таблица 1
Показатели качества сырья Вакуумный газойль
Плотность при 20°C, г/см3 0,899
Фракционный состав по ASTM D-2887 (°C):
н.к. 288
10% 357
50% 434
90% 523
95% 546
к.к. 561 (98%)
Содержание серы, мас.% 0,07
Коксуемость по Конрадсону, мас.% 0,08
Групповой химический состав, мас.%:
содержание парафино-нафтеновой фракции 52,0
содержание ароматической фракции 46,0
содержание смол 2,0

Условия реакции для оценки микроактивности образцов катализатора следующие: температура 527°C, соотношение катализатор/сырье 4,0, время подачи сырья 30 сек. Результаты испытаний описываемых катализаторов в соответствии с методом ASTM D-3907 приведены в таблице 2. Для иллюстрации изобретения приведены следующие примеры.

Пример 1 (по прототипу)

80,0 г суспензии бентонитовой глины (концентрация бентонитовой глины в суспензии 10,0 мас. %) смешивают с 80,0 г суспензии гидроксида алюминия псевдобемитной модификации с концентрацией 10,0 мас. % в пересчете на Al2O3 и с 90,1 г аморфного алюмосиликата с влажностью 88,9 мас. %. Затем в полученную суспензию добавляют 26,7 г суспензии цеолита Y (концентрация цеолита в суспензии 30,0 мас. %) и 26,7 г суспензии цеолита ZSM-5 (концентрация цеолита в суспензии 30,0 мас. %). Полученную суспензию фильтруют, формуют в микросферические частицы с размером менее 0,25 мм. Катализатор высушивают при температуре 100°C и прокаливают при 550°C. В результате полученный катализатор содержит 20,0 мас. % бентонитовой глины, 20,0 мас. % гидроксида алюминия, 20,0 мас. % аморфного алюмосиликата, 20,0 мас. % цеолита Y и 20,0 мас. % цеолита ZSM-5. Выход олефинов C3-C4 составляет при указанных выше условиях 27,3 мас. %.

Пример 2. По заявляемому способу приготовления при высоких содержаниях цеолитов Y и ZSM-5

80,0 г суспензии гидроксида алюминия псевдобемитной модификации с концентрацией 10,0 мас. % в пересчете на Al2O3 обрабатывают концентрированной ортофосфорной кислотой (с концентрацией 15,3 моль/л) при добавлении 5,2 мл кислоты к 10% суспензии гидроксида алюминия и выдерживают при температуре 70°C в течение 2 часов с получением содержания фосфора на оксиде алюминия 1 мас. %, добавляют 80,0 г суспензии бентонитовой глины (концентрация бентонитовой глины в суспензии 10,0 мас. %) и смешивают с 90,1 г аморфного алюмосиликата с влажностью 88,9 мас. %. Затем в полученную суспензию добавляют 26,7 г суспензии цеолита Y (концентрация цеолита в суспензии 30,0 мас. %) и 26,7 г суспензии цеолита ZSM-5 (концентрация цеолита в суспензии 30,0 мас. %). Полученную суспензию фильтруют, формуют в микросферические частицы с размером менее 0,25 мм. Катализатор высушивают при температуре 100°C и прокаливают при 550°C. В результате полученный катализатор содержит 20,0 мас. % бентонитовой глины, 20,0 мас. % гидроксида алюминия (совместно с фосфором), 20,0 мас. % аморфного алюмосиликата, 20,0 мас. % цеолита Y и 20,0 мас. % цеолита ZSM-5. Выход олефинов C3-C4 составляет при указанных выше условиях 28,7 мас. %.

Пример 3

Аналогичен примеру 2. Отличие состоит в том, что 80,0 г суспензии гидроксида алюминия псевдобемитной модификации с концентрацией 5,0 мас. % в пересчете на Al2O3 обрабатывают концентрированной ортофосфорной кислотой в течение 2 часов из расчета содержания фосфора на оксиде алюминия 5 мас. %. Выход олефинов C3-C4 составляет при указанных выше условиях 30,4 мас. %.

Пример 4

Аналогичен примеру 2. Отличие состоит в том, что 80,0 г суспензии гидроксида алюминия псевдобемитной модификации с концентрацией 5,0 мас. % в пересчете на Al2O3 обрабатывают концентрированной ортофосфорной кислотой в течение 2 часов из расчета содержания фосфора на оксиде алюминия 10 мас. %. Выход олефинов C3-C4 составляет при указанных выше условиях 30,8 мас. %.

Пример 5

Аналогичен примеру 2. Отличие состоит в том, что 80,0 г суспензии гидроксида алюминия псевдобемитной модификации с концентрацией 5,0 мас. % в пересчете на Al2O3 обрабатывают концентрированной ортофосфорной кислотой в течение 2 часов из расчета содержания фосфора на оксиде алюминия 14 мас. %. Выход олефинов C3-C4 составляет при указанных выше условиях 28,2 мас. %.

Примеры 6-9. По заявляемому способу приготовления при низком содержании цеолита ZSM-5

Примеры 6

Аналогичен примеру 2. Отличие состоит в том, что в результате полученный катализатор содержит 20,0 мас. % бентонитовой глины, 20,0 мас. % гидроксида алюминия (совместно с фосфором), 38,0 мас. % аморфного алюмосиликата, 20,0 мас. % цеолита Y и 2,0 мас. % цеолита ZSM-5. Выход олефинов C3-C4 составляет при указанных выше условиях 18,9 мас. %.

Пример 7

Аналогичен примеру 3. Отличие состоит в том, что в результате полученный катализатор содержит 20,0 мас. % бентонитовой глины, 20,0 мас. % гидроксида алюминия (совместно с фосфором), 38,0 мас. % аморфного алюмосиликата, 20,0 мас. % цеолита Y и 2,0 мас. % цеолита ZSM-5. Выход олефинов C3-C4 составляет при указанных выше условиях 20,9 мас. %.

Пример 8

Аналогичен примеру 4. Отличие состоит в том, что в результате полученный катализатор содержит 20,0 мас. % бентонитовой глины, 20,0 мас. % гидроксида алюминия (совместно с фосфором), 38,0 мас. % аморфного алюмосиликата, 20,0 мас. % цеолита Y и 2,0 мас. % цеолита ZSM-5. Выход олефинов C3-C4 составляет при указанных выше условиях 21,6 мас. %.

Пример 9

Аналогичен примеру 5. Отличие состоит в том, что в результате полученный катализатор содержит 20,0 мас. % бентонитовой глины, 20,0 мас. % гидроксида алюминия (совместно с фосфором), 38,0 мас. % аморфного алюмосиликата, 20,0 мас. % цеолита Y и 2,0 мас. % цеолита ZSM-5. Выход олефинов C3-C4 составляет при указанных выше условиях 20,3 мас. %.

Таким образом, как при высоком, так и при низком содержании цеолита ZSM-5 оптимальное содержание фосфора на оксиде алюминия составляет 10 мас. %.

Как следует из примеров и таблицы, заявляемый способ обеспечивает возможность получения высокоактивного катализатора крекинга вакуумного газойля, варьирование состава которого позволяет регулировать выход олефинов C3 и C4.

Таблица 2
Компонентный состав катализатора и выход олефинов C3-C4 (мас. %)
№ примера Содержание цеолита НРЗЭY Содержание цеолита HZSM-5 Содержание бентонитовой глины Содержание аморфного алюмосиликата Содержание гидроксида алюминия (обработанного фосфорной кислотой или совместно с фосфором?) Содержание фосфора в пересчете на оксид алюминия Выход олефинов C3-C4
1 20 20 20 20 20 0 27,3
2 20 20 20 20 20 1 28,7
3 20 20 20 20 20 5 30,4
4 20 20 20 20 20 10 30,8
5 20 20 20 20 20 14 28,2
6 20 2 20 38 20 1 18,9
7 20 2 20 38 20 5 20,9
8 20 2 20 38 20 10 21,6
9 20 2 20 38 20 14 20,3

Способ приготовления катализатора крекинга вакуумного газойля с регулируемым выходом олефинов C и C, включающий смешение ультрастабильного цеолита Y в катион-декатионированной форме и цеолита HZSM-5 с компонентами матрицы, в качестве которых используют аморфный алюмосиликат, гидроксид алюминия и бентонитовую глину, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора, отличающийся тем, что гидроксид алюминия перед смешением с компонентами катализатора подвергают обработке ортофосфорной кислотой до содержания фосфора в пересчете на оксид алюминия от 1 до 10 мас. %, при следующем содержании компонентов, мас. %: цеолит НРЗЭУ 10-20, цеолит HZSM-5 2-20, гидроксид алюминия, обработанный ортофосфорной кислотой, 10-20, аморфный алюмосиликат 28-38, бентонитовая глина 15-25.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 20.
13.01.2017
№217.015.7702

Способ каталитического облагораживания бензинов термических процессов

Изобретение относится к способу облагораживания бензинов термических процессов, включающий смешение их с нефтяными фракциями - донорами водорода при температуре менее 100°C с последующей переработкой в условиях каталитического крекинга при температуре 420-480°С в системе реактор-регенератор, на...
Тип: Изобретение
Номер охранного документа: 0002599721
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7765

Катализатор для осуществления реакций межмолекулярного переноса водорода и способ его приготовления

Настоящее изобретение относится к нефтеперерабатывающей промышленности, а именно к катализатору и способу его приготовления для осуществления реакций межмолекулярного переноса водорода. Предлагаемый катализатор включает цеолит Y в редкоземельной форме, цеолит HZSM-5, матрицу, содержащую...
Тип: Изобретение
Номер охранного документа: 0002599720
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7b3a

Топливная композиция авиационного неэтилированного бензина

Изобретение относится к топливной композиции авиационного неэтилированного бензина с октановым числом не менее 93,0 ед., определенным по моторному методу, которая содержит алкилбензин, ароматические углеводороды и монометиланилин, при этом в качестве алкилбензина используется алкилбензин,...
Тип: Изобретение
Номер охранного документа: 0002600112
Дата охранного документа: 20.10.2016
25.08.2017
№217.015.b202

Способ получения неэтилированного авиабензина б-92/115

Изобретение раскрывает способ получения неэтилированного авиационного бензина, включающий компаундирование алкилата, изомеризата, ароматических углеводородов каталитического риформинга и монометиланилина, характеризующийся тем, что в качестве основы используют фракцию алкилата 40-135°C, которую...
Тип: Изобретение
Номер охранного документа: 0002613087
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b6a8

Способ получения неэтилированного авиабензина

Изобретение раскрывает способ получения неэтилированного авиационного бензина, который включает компаундирование алкилата, изомеризата, ароматических углеводородов каталитического риформинга и монометиланилина, при этом в качестве основы используют дебутанизированную фракцию алкилата 45-135°C,...
Тип: Изобретение
Номер охранного документа: 0002614764
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.c4bd

Способ получения дорожного битума

Изобретение относится к области приготовления дорожных битумов путем окисления, может быть использовано в нефтеперерабатывающей промышленности и в промышленности строительных материалов. Способ получения битума осуществляют путем окисления части гудрона без предварительного его разбавления с...
Тип: Изобретение
Номер охранного документа: 0002618266
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.cec9

Катализатор для гидроизомеризации дизельного топлива

Изобретение относится к катализатору для гидроизомеризации дизельного топлива, который может быть использован для получения низкозастывающего дизельного топлива с высокими выходом целевого продукта. Катализатор получен на основе наночастиц металлов платиновой группы, нанесенных на твердый...
Тип: Изобретение
Номер охранного документа: 0002620813
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.d0d3

Способ приготовления катализатора крекинга с щелочноземельными элементами

Изобретение относится к области нефтеперерабатывающей и нефтехимической промышленности, а именно к способам приготовления катализаторов каталитического крекинга нефтяных фракций. Способ приготовления катализатора крекинга включает проведение ионных обменов на катионы редкоземельных элементов и...
Тип: Изобретение
Номер охранного документа: 0002621345
Дата охранного документа: 02.06.2017
25.08.2017
№217.015.d0e5

Катализатор для процессов высокотемпературного окисления со

Изобретение относится к катализатору для процессов высокотемпературного окисления СО и может быть использован для удаления СО, образующегося в процессах регенерации катализаторов каталитического крекинга, протекающих при температурах 600÷700°С. Катализатор получен на основе наночастиц металлов...
Тип: Изобретение
Номер охранного документа: 0002621350
Дата охранного документа: 02.06.2017
26.08.2017
№217.015.dc0f

Способ приготовления ультрастабильного цеолита y

Изобретение относится к приготовлению цеолита типа Y. Способ получения ультрастабильного цеолита типа Y включает проведение четырех ионных обменов катионов натрия на катионы редкоземельных элементов и аммония в цеолите NaY и две стадии ультрастабилизации цеолита в среде водяного пара. При...
Тип: Изобретение
Номер охранного документа: 0002624307
Дата охранного документа: 03.07.2017
Показаны записи 21-30 из 38.
02.08.2018
№218.016.77eb

Катализатор изодепарафинизации и способ получения низкозастывающих дизельных топлив с его использованием

Изобретение относится к области нефтепереработки, а именно к разработке катализатора изодепарафинизации и способа получения низкозастывающих дизельных топлив зимних и арктического сортов с использованием разработанного катализатора. Заявлен катализатор изодепарафинизации дизельных дистиллятов,...
Тип: Изобретение
Номер охранного документа: 0002662934
Дата охранного документа: 31.07.2018
09.06.2019
№219.017.7646

Способ восстановления активности цеолитсодержащего катализатора

Изобретение относится к способу восстановления активности цеолитсодержащего катализатора процесса изодепарафинизации дизельного топлива в присутствии водородсодержащего газа и может быть использовано в нефтепереработке. Предлагается способ восстановления активности цеолитсодержащего...
Тип: Изобретение
Номер охранного документа: 0002690947
Дата охранного документа: 07.06.2019
02.10.2019
№219.017.cf0f

Способ очистки нефтесодержащих донных отложений

Изобретение относится к способам микробиологической очистки донных отложений от нефти и нефтепродуктов и может быть использовано для очистки на обводненных территориях и зонах с низкой устойчивостью обрабатываемого сырья, например, на гидротехнических сооружениях. Способ очистки нефтесодержащих...
Тип: Изобретение
Номер охранного документа: 0002700445
Дата охранного документа: 17.09.2019
21.12.2019
№219.017.f003

Катализатор совместного крекинга нефтяных фракций

Предложен катализатор совместного крекинга нефтяных фракций, включающий цеолит ZSM-5, ультрастабильный цеолит НРЗЭY и матрицу, состоящую из аморфного алюмосиликата, оксида алюминия и бентонитовой глины, где цеолит ZSM-5 имеет отношение Si/Al от 30 до 80, содержит от 2,0 до 4,0 мас. % фосфора,...
Тип: Изобретение
Номер охранного документа: 0002709522
Дата охранного документа: 18.12.2019
21.12.2019
№219.017.f06d

Катализатор крекинга нефтяных фракций

Изобретение относится к области нефтеперерабатывающей промышленности, а именно к катализаторам для получения легких олефинов. Предлагаемый катализатор крекинга нефтяных фракций включает модифицированный фосфором цеолит ZSM-5 и матрицу и отличается тем, что цеолит ZSM-5 имеет отношение Si/Al от...
Тип: Изобретение
Номер охранного документа: 0002709521
Дата охранного документа: 18.12.2019
16.01.2020
№220.017.f589

Способ совместного крекинга нефтяных фракций

Изобретение относится к области нефтеперерабатывающей промышленности, а именно к способу получения легких олефинов. Предлагаемый способ совместного крекинга нефтяных фракций включает подачу нефтяных фракций в реактор с псевдоожиженным слоем катализатора при температуре 520-560°С, причем...
Тип: Изобретение
Номер охранного документа: 0002710856
Дата охранного документа: 14.01.2020
16.01.2020
№220.017.f600

Способ крекинга нефтяных фракций

Изобретение относится к области нефтеперерабатывающей промышленности, а именно к способам получения легких олефинов. Предлагаемый способ крекинга нефтяных фракций включает подачу нефтяных фракций в реактор с псевдоожиженным слоем катализатора при температуре 540-640°С и причем используемый...
Тип: Изобретение
Номер охранного документа: 0002710855
Дата охранного документа: 14.01.2020
23.02.2020
№220.018.0572

Способ восстановления активности цеолитсодержащего катализатора

Изобретение относится к нефтеперерабатывающей промышленности, в частности к восстановлению активности цеолитсодержащих катализаторов изодепарафинизации дизельных фракций. Изобретение касается способа восстановления активности дезактивированного катализатора процесса гидропереработки,...
Тип: Изобретение
Номер охранного документа: 0002714677
Дата охранного документа: 19.02.2020
02.03.2020
№220.018.07d9

Способ очистки сточных вод от ионов аммония

Изобретение может быть использовано для очистки сточных вод на предприятиях химической, нефтехимической, металлургической, коксохимической промышленности. Очистка сточных вод от ионов аммония включает добавку в сточные воды растворов, содержащих фосфат-ионы и ионы магния, и осаждение...
Тип: Изобретение
Номер охранного документа: 0002715529
Дата охранного документа: 28.02.2020
07.03.2020
№220.018.09f1

Способ переработки отходов солевых растворов, содержащих смесь сульфатов и нитратов аммония и натрия

Изобретение относится к химической технологии переработки отходов солевых растворов для получения минеральных удобрений и хлорида натрия. Способ переработки отходов солевых растворов, содержащих смесь сульфатов и нитратов аммония и натрия, включает конверсию солевых растворов хлоридом калия,...
Тип: Изобретение
Номер охранного документа: 0002716048
Дата охранного документа: 05.03.2020
+ добавить свой РИД