×
20.05.2015
216.013.4d69

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ГРАДИЕНТНОГО ПОКРЫТИЯ МЕТОДОМ МАГНЕТРОННОГО НАПЫЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу нанесения градиентных покрытий магнетронным напылением, в частности к нанесению покрытий на основе тугоплавких металлов, и может быть использовано для получения покрытий с высокими адгезивными и когезивными характеристиками, а также с оптимальным сочетанием прочности и пластичности. На предварительно очищенную поверхность металлической подложки наносят адгезионный слой тугоплавких металлов в среде инертного газа и слой нитридов тугоплавких металлов в газовой смеси инертного и реакционного газа. Содержание нитридов тугоплавких металлов изменяют от 0% до 100%, выдерживают до получения требуемой толщины нитридного слоя, затем уменьшают в обратном порядке, выдерживают до получения требуемой толщины слоя тугоплавких металлов и вновь увеличивают в направлении толщины напыляемого слоя. Для увеличения и уменьшения содержания нитридов тугоплавких металлов давление реакционного газа изменяют по линейной зависимости соответственно от 0 до 8´10 Па, а затем в обратном порядке. Способ позволяет получать материалы с высокими прочностными характеристиками и оптимальным сочетанием твердости (H>40 ГПа) и пластичности (W>70%). 1 з.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к области нанесения градиентных покрытий, в частности к нанесению покрытий на основе титана или циркония, обладающих специальными защитными свойствами, и может быть использовано для получения покрытий с высокими адгезивными и когезивными характеристиками и с оптимальным сочетанием прочности и пластичности.

Известен способ нанесения многослойного износостойкого покрытия (RU №2346078, кл. C23C 14/24, опубл. 10.02.2009), при котором первым наносят микрослой TiZr, затем осуществляют термомеханическую активацию поверхности слоев путем ее ионной бомбардировки, после чего наносят слой на основе нитрида титана и циркония (Ti, Zr)N. Осаждение слоев TiZr, (Ti, Zr)N и ионную бомбардировку повторяют по крайней мере три раза, причем последним наносят слой (Ti, Zr)N. Нанесение слоев покрытия осуществляют испарением двух титановых и одного циркониевого катода. Недостатком этого известного способа нанесения покрытий является значительная разность коэффициентов расширения между металлом подложки и наносимым покрытием, что приводит к возникновению коэффициентных напряжений и, как правило, к возможному отслоению покрытия.

Наиболее близким по технической сущности и достигаемому эффекту является способ нанесения покрытия по патенту №2433209 (кл. C23C 14/06, опубл. 10.11.2011), взятый за прототип. Сущность способа получения многослойного покрытия заключается в том, что на предварительно очищенную поверхность подложки сначала наносят адгезионный слой титана магнетронным распылением титановой мишени в среде инертного газа, затем наносят слой нитрида титана TiN распылением титановой мишени в газовой смеси инертного и реакционного газов, затем наносят чередующиеся слои двухкомпонентного нитрида циркония ZrN распылением циркониевой мишени в газовой смеси инертного и реакционного газов и циркония распылением циркониевой мишени в инертном газе, после чего наносят чередующиеся слои трехкомпонентного нитрида титана и циркония TiZrN одновременным распылением титановой и циркониевой мишеней в газовой смеси инертного и реакционного газов и циркония распылением циркониевой мишени в инертном газе.

Недостатки прототипа заключаются в том, что в покрытии имеются резкие межфазные границы между металлическими и неметаллическими слоями, имеющими значительную разницу в коэффициентах термического расширения. Это создает существенные механические напряжения при термоциклических нагрузках, приводящих часто к разрушению покрытия и выводу из строя готового изделия. Наличие таких границ также влияет на интегральную когезионную прочность и снижает срок службы изделия.

Кроме этого, по схеме прототипа наличие коэффициентных напряжений не позволяет получать покрытия с толщиной, превышающей 12-15 мкм, что явно недостаточно для изделий, эксплуатирующихся при жестком воздействии вторичных факторов.

Для устранения указанных негативных факторов необходимо создать структуру с одномерными границами раздела фаз (порошковые армированные компоненты), то есть наноструктурную составляющую покрытия, которая обеспечит высокую объемную долю границ раздела фаз по всему сечению покрытия.

Наличие большой площади раздела фаз (объемная доля которых может достигать <50%) в наноструктурированных покрытиях и пленках позволяет существенно изменять их свойства как путем модификации структуры и электронного строения, так и за счет легирования различными элементами. Прочность границ раздела способствует увеличению стойкости наноструктурированных покрытий к деформации. Отсутствие дислокаций внутри кристаллитов увеличивает упругость покрытий. Эти свойства позволяют получать материалы с улучшенными физико-химическими и физико-механическими свойствами, такими как высокая твердость (H>40 ГПа), упругое восстановление (We>70%), прочность, жаростойкость и износостойкость.

Таким образом, техническим результатом настоящего изобретения является разработка способа получения многослойного градиентного износостойкого покрытия с более высокой прочностью сцепления с подложкой, повышенной прочностью покрытия за счет существенно меньшего влияния разницы коэффициентов термического расширения, а значит с меньшими механическими напряжениями в покрытии при термоциклических нагрузках, а также с более высокой вязкостью покрытия за счет отсутствия двухмерных границ слоев с разной твердостью, что обеспечивает демпфирование для релаксации напряжений и остановку роста трещин.

Технический результат достигается за счет того, что при магнетронном напылении многослойного градиентного покрытия напыление производится при регулируемом поступлении реакционного газа азота в вакуумную камеру по линейному закону от 0 до давления 8×10-2 Па, затем это значение давления удерживается до получения нитридного слоя требуемой толщины, после чего уменьшается по тому же линейному закону от 8×10-2 Па до 0, и нулевое значение давления выдерживают до получения требуемой толщины слоя тугоплавких металлов, затем процесс напыления при регулируемом увеличении и уменьшении давления реакционного газа азота по указанному линейному закону повторяют до получения необходимого количества слоев. При этом поверхностным слоем должен быть упомянутый нитридный слой.

Указанное максимальное значение давления азота является оптимальным, так как обеспечивает напыление нитридов с оптимальным стехиометрическим составом TiN. При дальнейшем увеличении давления азота в камере происходит образование хрупкой фазы TiN2. При меньших давлениях помимо нитридов присутствует металлическая фаза в количестве, превышающем оптимальное, что значительно снижает свойства покрытия.

Реализация многослойной структуры покрытия с градиентными переходами между слоями позволяет обеспечить более высокую вязкость покрытия по сравнению с монослойным покрытием и таким образом способность материалов поглощать энергию в процессе деформации без разрушения. Повышение износостойкости покрытия происходит за счет того, что слои с высокой твердостью градиентно переходят в более мягкие слои, что обеспечивает демпфирование для релаксации напряжений и остановку роста трещин, которые могут зародиться в более твердом слое под влиянием упругих и термоупругих напряжений.

Сущность способа заключается в том, что подготовленную подложку, помещенную в вакуумную камеру установки магнетронного напыления, предварительно нагревают в вакууме до температуры 400-450°C, затем осуществляют напыление первого слоя титана или циркония в среде плазмообразующего газа аргона, затем в камеру напускают реакционный газ азот, причем давление аргона поддерживают постоянным, а давление азота изменяют по линейному закону от 0 до 8×10-2 Па. По достижению максимального значения выдерживают указанное давление до получения требуемой толщины нитридного слоя, затем уменьшают по тому же линейному закону (фиг. 1). В результате содержание нитридов в покрытии изменяется от 0 до 100%, а затем снова падает до 0% от адгезионного слоя к поверхности. Такое постоянное увеличение и уменьшение давления азота обеспечивает чередование в покрытии металлических пластичных слоев и твердых нитридных, что значительно повышает износостойкость покрытия за счет высоких адгезионных и когезионных свойств.

Примеры осуществления способа:

Предложенный способ опробован на научном нанотехнологическом комплексе ФГУП «ЦНИИ КМ «Прометей».

Пример 1.

На установке магнетронного напыления с использованием металлической мишени Ti (марки ВТ 1-0) производили нанесение многослойного градиентного покрытия на металлические пластины из титана марки ВТ 1-0 размером 100×150×2.

Подготовка поверхности деталей перед загрузкой в вакуумную камеру заключалась в удалении различных видов загрязнений и проводилась по схеме: химическая очистка, сушка.

Для химической очистки деталь укладывали в емкость с растворителем так, чтобы она была полностью погружена в него. Емкость с деталью помещали в ультразвуковую ванну УЗУ-0,25 и производили очистку ультразвуком не менее 10 минут. После чего пластины извлекали из емкости с растворителем и протирали мягкой тканью.

Сушка деталей производится в сушильном шкафу при температуре 100°C не менее 15 мин.

После помещения пластин в шлюз загрузки магнетронной установки вакуумную камеру откачивали до остаточного давления не выше 3×10-3 Па. Далее включали кварцевые нагреватели, расположенные в шлюзе загрузки. Время выдержки пластин при температуре 400C°±30°C составляло 5 мин. Далее, пластины из шлюза загрузки с помощью специального поворотного механизма «карусельного» типа переводились в позицию ионного источника. После этого в вакуумную камеру подавали плазмообразующий газ аргон до давления 5×10-1 Па и поддерживали на заданном уровне в течение всего процесса ионной очистки. С помощью того же поворотного механизма пластины помещали в позицию магнетронного напыления. Повторно откачивали камеру до достижения остаточного давления не выше 2×10-3 Па и подавали плазмообразующий газ аргон до давления 3×10-1 Па. На металлическую мишень титана подавали напряжение и возбуждали плазменный разряд с плотностью тока 0,3 А/см2 при диаметре мишени 100 мм. В течение 5 минут производилось напыление чистого титана на поверхности пластин. После чего в вакуумную камеру включали подачу реакционного газа азота, увеличивая парциальное давление азота по линейному закону от 0 до 8×10-2 Па в течение 5 минут, затем производили напыление при указанном давлении в течение 5 минут. Далее по обратной линейной зависимости в течение 5 минут уменьшали парциальное давление азота от 8×10-2 Па до 0. Вышеописанный цикл напыления повторялся до получения требуемого количества слоев с образованием на поверхности покрытия нитридного слоя.

Пример 2.

На установке магнетронного напыления с использованием металлической мишени Zr (цирконий иодидный) производили нанесение многослойного градиентного покрытия на металлические пластины из стали марки Ст35 размером 100×150×2.

Подготовка поверхности деталей перед загрузкой в вакуумную камеру заключалась в удалении различных видов загрязнений и проводилась по схеме: химическая очистка, затем сушка.

Для химической очистки деталь укладывали в емкость с растворителем так, чтобы она была полностью погружена в него. Емкость с деталью помещали в ультразвуковую ванну УЗУ-0,25 и производили очистку ультразвуком не менее 10 минут. После чего пластины извлекали из емкости с растворителем и протирали мягкой тканью.

Сушка деталей производится в сушильном шкафу при температуре 100°C не менее 15 мин.

После помещения пластин в шлюз загрузки магнетронной установки вакуумную камеру откачивали до остаточного давления не выше 3×10-3 Па. Далее включали кварцевые нагреватели, расположенные в шлюзе загрузки. Время выдержки пластин при температуре 400C°±30°C составляло 5 мин. Далее, пластины из шлюза загрузки с помощью специального поворотного механизма «карусельного» типа переводились в позицию ионного источника. После этого в вакуумную камеру подавали плазмообразующий газ аргон до давления 5×10-1 Па и поддерживали на заданном уровне в течение всего процесса ионной очистки. С помощью того же поворотного механизма пластины помещали в позицию магнетронного напыления. Повторно откачивали камеру до достижения остаточного давления не выше 2×10-3 Па и подавали плазмообразующий газ аргон до давления 5×10-1 Па. На металлическую мишень циркония подавали напряжение и возбуждали плазменный разряд с плотностью тока 0,25 А/см2 при диаметре мишени 100 мм. В течение 5 минут производилось напыление чистого циркония на поверхности пластин. После чего в вакуумную камеру включали подачу реакционного газа - азота, увеличивая парциальное давление азота по линейному закону от 0 до 8×10-2 Па в течение 5 минут, затем производили напыление при указанном давлении в течение 5 минут. Далее по обратной линейной зависимости в течение 5 минут уменьшали парциальное давление азота от 8×10-2 Па до 0. Вышеописанный цикл напыления повторялся до получения требуемого количества слоев с образованием на поверхности покрытия нитридного слоя.


СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ГРАДИЕНТНОГО ПОКРЫТИЯ МЕТОДОМ МАГНЕТРОННОГО НАПЫЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 171-180 из 255.
20.01.2018
№218.016.1183

Образец для испытаний сотового заполнителя

Изобретение относится к исследованию прочностных свойств материалов и может применяться при аттестации сотовых структур при изготовлении трехслойных конструкций кораблестроения, авиастроения и космической техники. Образец включает два одинаковых блока сотового заполнителя с приклеенными к их...
Тип: Изобретение
Номер охранного документа: 0002634020
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1530

Направляющая насадка воздушного винта

Изобретение относится к движителям транспортных средств, преимущественно амфибийных судов на воздушной подушке и глиссеров. Направляющая насадка воздушного винта содержит предвинтовую и винтовую насадки, которые установлены коаксиально с образованием кольцевого канала. Предвинтовая насадка в...
Тип: Изобретение
Номер охранного документа: 0002634856
Дата охранного документа: 07.11.2017
13.02.2018
№218.016.2013

Установка для промывки топливного бака летательного аппарата газонасыщенной жидкостью (варианты)

Изобретение относится к техническому обслуживанию летательных аппаратов. Установка для промывки топливного бака включает в себя узел промывки, который размещается внутри топливного бака (2), магистраль (4) нагнетания газонасыщенной моющей жидкости в узел промывки и магистраль (5) слива из...
Тип: Изобретение
Номер охранного документа: 0002641408
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.224e

Высотный активно-реактивный снаряд и способ его функционирования

Группа изобретений относится к военной технике, а именно к активно-реактивным снарядам. Технический результат - увеличение высоты и вероятности поражения быстролетящей цели средствами противовоздушной и противоракетной обороны за счет улучшения полноты сгорания топлива, топливной эффективности...
Тип: Изобретение
Номер охранного документа: 0002642197
Дата охранного документа: 24.01.2018
04.04.2018
№218.016.2f02

Композиционный радиопоглощающий материал и способ его изготовления

Изобретение относится к средствам для защиты от электромагнитных полей: электротехнических и электронных. Композиционный материал для защиты от электромагнитного излучения, состоящий из полимерной основы с распределенными в ней частицами сплава системы Fe-Cu-Nb-Si-B, представляющий собой...
Тип: Изобретение
Номер охранного документа: 0002644399
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.3261

Способ калибровки видеограмметрических систем и контрольное приспособление для его осуществления

Изобретение относится к области оптических бесконтактных измерений геометрических параметров формы, положения, движения и деформации объектов в пространстве, в частности к ближней цифровой фотограмметрии и видеограмметрии, и может применяться для прецизионной калибровки видеограмметрических...
Тип: Изобретение
Номер охранного документа: 0002645432
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.376b

Способ синхронизации и обеспечения симметрии тяги воздушных винтов силовой установки летательного аппарата и электрическая синхронизирующая трансмиссия для его реализации

Изобретение относится к силовым установкам летательных аппаратов. Способ синхронизации и обеспечения симметрии тяги воздушных винтов (1) силовой установки летательных аппаратов заключается в том, что в случае отказа одного из двигателей внутреннего сгорания (2) муфта свободного хода (4)...
Тип: Изобретение
Номер охранного документа: 0002646696
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.3aaa

Система управления судовым движителем

Система управления судовым движителем содержит задающее устройство, блок сравнения, два усилителя, два электромагнита золотника, золотник, устройство ввода скорости изменения управляемого параметра, устройство изменения скорости подачи рабочей жидкости, исполнительный механизм, судовой...
Тип: Изобретение
Номер охранного документа: 0002647335
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.47db

Антенный обтекатель и способ его изготовления

Изобретение относится к области ракетной техники, в частности к головным радиопрозрачным обтекателям пеленгационных сверхширокополосных антенн, работающих в диапазоне ультравысоких (УВЧ) и сверхвысоких (СВЧ) частот, и может быть использовано при проектировании и изготовлении радиопрозрачных...
Тип: Изобретение
Номер охранного документа: 0002650725
Дата охранного документа: 17.04.2018
09.06.2018
№218.016.5e45

Способ изготовления деталей из волокнистого полимерного композиционного материала

Изобретение относится к технологии формования деталей, состоящих из композиционного материала на основе термоактивной матрицы, а именно к способу изготовления деталей из волокнистого полимерного композиционного материала. Способ изобретения включает операции: на одной из рабочих поверхностей...
Тип: Изобретение
Номер охранного документа: 0002656317
Дата охранного документа: 04.06.2018
Показаны записи 171-180 из 201.
13.01.2017
№217.015.8929

Необрастающая эмаль прогидроф

Изобретение относится к лакокрасочным материалам и предназначено для получения гидрофобных необрастающих покрытий, используется в судостроении и для защиты металлических изделий и конструкций, эксплуатируемых в атмосферных условиях. Описана необрастающая эмаль, состоящая из отвердителя...
Тип: Изобретение
Номер охранного документа: 0002602553
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8b5a

Способ определения прочности при отрыве клеевого соединения сотового заполнителя с обшивкой в трехслойной панели и устройство для его осуществления

Изобретение относится к области механических испытаний трехслойных панелей авиационно-космического назначения с обшивками из полимерного композиционного материала (ПКМ) и сотовым заполнителем из металлического или неметаллического материала. Сущность:осуществляют растяжение образца клеевого...
Тип: Изобретение
Номер охранного документа: 0002604114
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.91e3

Пассивная инфракрасная штриховая мира

Изобретение относится к области фотометрии, и касается пассивной инфракрасной штриховой миры. Мира включает в себя штриховые элементы различных типоразмеров. Штриховые элементы выполнены в виде прямоугольных рам с установленными в них поворотными экранирующими пластинами. Экранирующие пластины...
Тип: Изобретение
Номер охранного документа: 0002605818
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.ae1e

Устройство для прекращения неуправляемого движения модели летательного аппарата при ее динамических испытаниях на устойчивость и управляемость

Изобретение относится к области экспериментальных исследований летательных аппаратов в аэродинамических трубах и может быть использовано при динамических испытаниях моделей летательных аппаратов в аэродинамических трубах. Устройство состоит из модели, установленной на стойке в потоке АДТ при...
Тип: Изобретение
Номер охранного документа: 0002612848
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.ba2c

Самолет с адаптивным цельноповоротным стабилизатором

Изобретение относится к области аэродинамики маневренных самолетов. Адаптивный стабилизатор самолета установлен на продольной хвостовой балке, которая позволяет одновременно изменять в полете углы отклонения стабилизатора в двух взаимно перпендикулярных направлениях: относительно оси,...
Тип: Изобретение
Номер охранного документа: 0002615605
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.cc3f

Комбинированный ножевой вал устройства для мерной резки углеродного и стеклянного волокна

Комбинированный ножевой вал содержат расположенный на оси вращения с подшипниками цилиндр и пластинчатые ножи. Он выполнен двухслойным с внутренним металлическим слоем с кольцевой проточкой на его внешней поверхности шириной 30-40 мм и глубиной 12-15 мм и наружным кольцевым слоем из полиуретана...
Тип: Изобретение
Номер охранного документа: 0002620525
Дата охранного документа: 26.05.2017
26.08.2017
№217.015.dd35

Устройство для контроля герметичности топливного бака самолета

Изобретение относится к испытательной технике и может быть использовано при контроле герметичности самолетных топливных баков сложной конфигурации. Контроль герметичности осуществляется с использованием рабочей газовой смеси воздуха с контрольным газом (элегазом или гелием). За пределами...
Тип: Изобретение
Номер охранного документа: 0002624618
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.e424

Способ изготовления пропитанных смолой деталей из композиционного материала

Изобретение относится к способу изготовления пропитанных смолой деталей из композиционного материала и может применяться в различных областях (авиационной, космической, судостроительной, автомобильной и других). Согласно способу изготовления пропитанных смолой деталей из композиционного...
Тип: Изобретение
Номер охранного документа: 0002626413
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e66b

Способ контроля герметичности топливного бака самолета

Изобретение относится к области контроля герметичности полых изделий и может быть использовано для контроля герметичности самолетных топливных баков преимущественно сложной конфигурации. Сущность: контроль герметичности осуществляют с использованием рабочей газовой смеси воздуха с контрольным...
Тип: Изобретение
Номер охранного документа: 0002626976
Дата охранного документа: 02.08.2017
19.01.2018
№218.016.051c

Способ снижения лобового сопротивления аппаратов на статической воздушной подушке

Изобретение относится к способам снижения лобового сопротивления аппаратов на статической воздушной подушке и касается транспортных средств с малым отношением длины к ширине. Для снижения скорости и изменения направления набегающего воздуха из отверстий в носовой части корпуса аппарата...
Тип: Изобретение
Номер охранного документа: 0002630875
Дата охранного документа: 13.09.2017
+ добавить свой РИД