×
10.02.2015
216.013.25f6

Результат интеллектуальной деятельности: БИОСОВМЕСТИМЫЙ ПОРИСТЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к области медицины. Описан биосовместимый пористый материал, содержащий никелид титана с пористостью 90-95% и открытой пористостью 70-80% со средним размером пор 400 мкм, который пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана. Описан также способ получения биосовместимого пористого материала, включающий предварительную ионную обработку поверхности высокопористого ячеистого никеля, помещенного на планетарный механизм поворотного стола установки ионно-плазменного напыления, в низкотемпературной плазме в атмосфере аргона при токе разряда 40-45 А при постепенном увеличении отрицательного потенциала на поворотном столе от 100 до 1000 B в течение 80-90 мин, последующее электродуговое напыление путем осаждения ионов титана на поверхность никеля с использованием расходуемого катода, выполненного из титана, при отрицательном потенциале 0,9-1,2 кВ между планетарным механизмом и корпусом рабочей камеры при токе катода 75-80 А, с последующим установлением при достижении температуры 700°C потенциала на планетарном механизме 300-350 B и выдержкой 20-60 мин, охлаждение полученного продукта при давлении (5-7)·10 мм рт.ст. в течение 100-120 мин, а затем введение в него гидроксиапатита путем 3-9-кратной вакуумной пропитки 10-12%-ной суспензией гидроксиапатита с размером частиц менее 1 мкм при давлении 1·10÷8·10 с последующей сушкой на воздухе. Биосовместимый пористый материал обладает наряду с высокой пористостью также высокой биологической активностью за счет наличия в его составе гидроксиапатита, имеющего высокие остеозамещающие свойства. 2 н.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к области медицины, в частности к новым пористым биомедицинским материалам на основе никелида титана, которые могут быть использованы для изготовления костных имплантатов.

Известен биомедицинский материал, представляющий собой пористый сплав, соответствующий формуле TiCo, с общей пористостью 55-70% при доле открытой пористости 90-98%, с размерами пор 200-800 мкм, при этом поверхность порового пространства сплава покрыта соединениями кальция, фосфора и кислорода, являющимися продуктами разложения гидроксиапатита кальция (патент RU №2341293, МПК A61L 27/04; A61L 27/06; A61L 27/24; A61F 2/28, 2008 год).

Недостатком известного материала является пониженная биологическая активность соединений, покрывающих поровое пространство, по сравнению с гидроксиапатитом. Исследования, проведенные авторами предлагаемого технического решения, показали, что изменение фазового состава гидроксиапатита при его высокотемпературной обработке, характерной для керамических технологий, ведет к снижению биологической активности, поскольку растворимость образующихся соединений меньше, чем растворимость минеральной составляющей кости.

Известен пористый биосовместимый материал на основе никелида титана, содержащий в качестве добавки нестехиометрический карбид титана TiC0,5 (патент RU №2459686, МПК B22F 3/23; C22C 1/08; A61L 27/00, 2012 год) (прототип).

Известен также способ получения пористого биосовместимого материала на основе никелида титана, включающий приготовление экзотермической смеси из порошков никеля и титана в соотношении 47-53 ат.% никель, остальное - титан, и порошковых добавок, прессование из смеси заготовки, размещение ее в реакторе СВС и воспламенение поджигающим составом, при этом в качестве порошковых добавок вводят экзотермическую смесь порошковых компонентов, образующих биосовместимые тугоплавкие соединения с более высокой температурой плавления, чем у никелида титана (патент RU №2459686, МПК B22F 3/23; C22C 1/08; A61L 27/00, 2012 год) (прототип).

Недостатком известного материала является отсутствие в его составе компонента, обладающего остеоиндуктивным действием, вследствие которого появляется способность участвовать в остеогенезе. Именно это свойство обеспечивает прочность взаимодействия материала с костной тканью.

Таким образом, перед авторами стояла задача разработать состав биосовместимого пористого материала, обладающего высокой биологической активностью за счет способности участвовать в остеогенезе костных тканей.

Поставленная задача решена в предлагаемом составе биосовместимого пористого материала на основе никелида титана, в котором никелид титана с пористостью 90-95% при доле открытой пористости 70-80% и средним размером пор 400 мкм пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана.

Поставленная задача также решена в способе получения биосовместимого пористого материала на основе никелида титана, включающем предварительную ионную обработку поверхности высокопористого ячеистого никеля, помещенного на планетарный механизм поворотного стола установки ионно-плазменного напыления, в низкотемпературной плазме в атмосфере аргона при токе разряда 40-45 А при постепенном увеличении отрицательного потенциала на поворотном столе от 100 до 1000 B в течение 80-90 мин, последующее электродуговое напыление путем осаждения ионов титана на поверхность никеля с использованием расходуемого катода, выполненного из титана, при отрицательном потенциале 0,9-1,2 кВ между планетарным механизмом и корпусом рабочей камеры при токе катода 75-80 А с последующим установлением при достижении температуры 700°C потенциала на планетарном механизме 300-350 B и выдержкой 20-60 мин, охлаждение полученного продукта при давлении (5-7)·10-5 мм рт.ст. в течение 100-120 мин, а затем введение в него гидроксиапатита путем 3-9-кратной вакуумной пропитки 10-12%-ной суспензией, содержащей гидроксиапатит с размером частиц менее 1 мкм, при давлении 1·10-1÷8·10-1 с последующей сушкой на воздухе при н.у.

В настоящее время из патентной и научно-технической литературы не известен биосовместимый пористый материал на основе никелида титана, пропитанный гидроксиапатитом, взятым в количестве 26-46 мас.% от массы никелида титана. Также не известен способ его получения, включающий электродуговое напыление титана на поверхность высокопористого ячеистого никеля с последующей пропиткой полученного продукта суспензией гидроксиапатита с соблюдением предлагаемых рабочих параметров процесса.

В настоящее время известна способность гидроксиапатита заживлять и восстанавливать костную ткань, что позволяет широко использовать его в качестве костного имплантата. Общая формула гидроксиапатита Ca(PO4)2(OH)2. Гидроксиапатит имеет пористую молекулярную структуру и обладает свойством формировать и сохранять минерализованные ткани. Однако также известно, что спеченная керамика из гидроксиапатита обладает недостаточно высокими прочностными свойствами. Причем существующие способы упрочнения керамики из гидроксиапатита не позволяют коренным образом решить эту проблему (С.М. Баринов, B.C. Комлев. Биокерамика на основе фосфатов кальция. М.: Наука, 2005, 202 с.).

Таким образом, исследования, проведенные авторами предлагаемого технического решения, были направлены на разработку композиционного материала, имеющего прочную высокопористую биосовместимую основу, заполненную биоактивным гидроксиапатитом, при этом композиционный материал такой структуры должен обладать развитой системой открытых взаимосвязанных пор, обеспечивающих беспрепятственное протекание биологических жидкостей по объему имплантата и постоянный контакт этих жидкостей с гидроксиапатитом, тем самым положительно влияя на процесс остеоинтеграции.

В качестве биосовместимого высокопористого каркаса авторы предлагают использовать никелид титана как обладающий высокими прочностными, антикоррозионными свойствами, биоинертностью к биологическим тканям. Важным моментом исследования был выбор способа получения никелида титана, обеспечивающий наряду с достаточно высокой прочностью высокую пористость. В предлагаемом техническом решении использован способ ионно-плазменного напыления, позволяющий, в частности, использовать в качестве исходного компонента высокопористый никель со следующими характеристиками: общая пористость 90±1%; открытая пористость 65±1% (доля - 71%); закрытая пористость 24±1% (доля - 29%), средний размер пор 400 мкм. Существенным является интервал значений рабочих параметров способа. Так, при снижении значений параметров ионно-плазменного напыления, а именно снижение тока разряда в низкотемпературной плазме ниже 40 А, снижение отрицательного потенциале между планетарным механизмом и корпусом рабочей камеры ниже 0,9 кВ при токе катода ниже 75 А с последующим установлением при достижении температуры 700°C потенциала на планетарном механизме ниже 300 B и выдержкой менее 20 мин, не наблюдается образования никелида титана и титановое покрытие не имеет сплошного характера. При повышении значений параметров ионно-плазменного напыления, а именно повышение тока разряда в низкотемпературной плазме выше 45 А, повышение отрицательного потенциале между планетарным механизмом и корпусом рабочей камеры выше 1,2 кВ при токе катода выше 80 А с последующим установлением при достижении температуры 700°C потенциала на планетарном механизме выше 350 B и выдержкой более 60 мин, наблюдается значительное уменьшение величины открытой пористости. Как было упомянуто выше, биологическая активность гидроксиапатита снижается при высокотемпературной обработке. Например, обработанный при 900°C гидроксиапатит имеет кристаллическую структуру и менее растворим, чем минеральная составляющая кости. Поэтому авторами предлагается нанесение покрытия из гидроксиапатита на биосовместимый каркас из никелида титана путем осаждения частиц гидроксиапатита из водной суспензии, в процессе которого не происходит изменения фазового состава. Осаждение осуществляют вакуумной пропиткой при определенных условиях проведения процесса. Так, при снижении давления ниже 1·10-1 наблюдается неравномерность в заполнении пор никелида титана гидроксиапатитом, обусловленная неконтролируемым проскоком водной суспензии в объеме никелида. Повышение давления выше 8·10-1 не позволяет прокачать водную суспензию через весь объем никелида титана, что также приводит к неравномерности заполнения пор. Содержание гидроксиапатита в суспензии варьируется в пределах 26-46 мас.% от массы никелида титана. 3-9-кратный способ вакуумной пропитки позволяет, дозированно заполняя поры никелида титана, направленно формировать структуру конечного продукта. При этом при уменьшении массы гидроксиапатита менее 26 мас.% приводит к неравномерному распределению гидроксиапатита внутри никелида титана, а увеличение массы более 46 мас.% ведет к уменьшению среднего размера пор материала до 50-70 мкм, что уменьшает контакт биологически активных жидкостей с гидроксиапатитом.

Предлагаемый способ может быть осуществлен следующим образом.

В рабочую камеру установки ионно-плазменного напыления с установленным в ней расходуемым катодом, выполненным из титана, на планетарном механизме поворотного стола размещают пластину из никеля со следующими характеристиками: общая пористость 90±1%; открытая пористость 65±1% (доля - 71%); закрытая пористость 24±1% (доля - 29%), средний размер пор 400 мкм. Рабочую камеру откачивают до давления (5-7)·10-5 мм рт.ст., затем включают вращение планетарного механизма поворотного стола и облучают пластину потоком ионов аргона при токе разряда 40-45 А при постепенном увеличении отрицательного потенциала на поворотном столе от 100 до 1000 B в течение 80-90 мин. Облучение в вакууме высокопористого никеля потоком низкоэнергетических ионов аргона в предлагаемом способе не только обеспечивает эффективную очистку поверхности никеля, но и активирует его поверхность, способствуя образованию никелида титана. При этом по мере обезгаживания рабочей камеры давление сначала возрастает за счет десорбированных газов, а затем падает до первоначального, равного (5-7)·10-5 мм рт.ст. После того как давление в камере устанавливается равным первоначальному, зажигают дугу на расходуемом катоде, выполненном из титана. Процесс ведут при отрицательном потенциале 0,9-1,2 кВ между планетарным механизмом и корпусом рабочей камеры при токе титанового катода, равном 75-80 А. При появлении красного свечения пластины (температура 700°C) устанавливают потенциал на планетарном механизме 300-350 B и дают выдержку 20-60 мин, в течение которой происходит осаждение ионов титана на никель с образованием никелида титана. После чего процесс прерывают гашением дуги, а полученный продукт охлаждают в рабочей камере при давлении (5-7)·10-5 мм рт.ст. в течение 100-120 мин. Полученный продукт подвергают рентгенофазовому анализу. Пористость определяют по известной методике (Черемской П.Г. ″Методы исследования пористости твердых тел/ под ред. Л.С. Палатника″. М.: Энергоатомиздат, 1985, 112 с.). Затем полученный продукт помещают в 10-12%-ную водную суспензию гидроксиапатита состава Са(PO4)2(ОН)2 с размером частиц менее 1 мкм, полученную в соответствии с патентом RU 2406693, и осуществляют 3-9-кратную вакуумную пропитку при давлении 1·10-1÷8·10-1 в течение 2-5 с с последующей сушкой на воздухе при н.у. Получают пористый материал со средним размером пор 100-300 мкм на основе никелида титана, пропитанного гидроксиапатитом.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. В рабочую камеру установки ионно-плазменного напыления с установленным в ней расходуемым катодом, выполненным из титана, на планетарном механизме поворотного стола размещают пластину размером 50×18×2 мм и массой 1,76 г из никеля со следующими характеристиками: общая пористость 90±1%; открытая пористость 65±1% (доля - 71%); закрытая пористость 24±1% (доля - 29%), средний размер пор 400 мкм. Рабочую камеру откачивают до давления 5·10-5 мм рт.ст., затем включают вращение планетарного механизма поворотного стола и облучают пластину потоком ионов аргона при токе разряда 40 А при постепенном увеличении отрицательного потенциала на поворотном столе от 100 до 1000 B в течение 80 мин. При этом по мере обезгаживания рабочей камеры давление сначала возрастает за счет десорбированных газов, а затем падает до первоначального, равного 5·10-5 мм рт.ст. После того как давление в камере устанавливается равным первоначальному, зажигают дугу на расходуемом катоде, выполненном из титана. Процесс ведут при отрицательном потенциале 0,9 кВ между планетарным механизмом и корпусом рабочей камеры при токе титанового катода, равном 75 А. При появлении красного свечения пластины (температура 700°C) устанавливают потенциал на планетарном механизме 300 B и дают выдержку 60 мин, в течение которой происходит осаждение ионов титана на никель с образованием никелида титана. После чего процесс прерывают гашением дуги, а полученный продукт охлаждают в рабочей камере при давлении 5·10-5 мм рт.ст. в течение 120 мин. По данным рентгенофазового анализа полученный продукт имеет состав NiTi и микроструктуру, изображенную на фиг.1, с общей пористостью 90% и долей открытой пористости 70% со средним размером пор 400 мкм. Затем полученный продукт помещают в 10%-ную водную суспензию гидроксиапатита состава Са(PO4)2(ОН)2 с размером частиц менее 1 мк, полученную в соответствии с патентом RU 2406693, и осуществляют 9-кратную вакуумную пропитку в течение 10 часов, каждую стадию которой осуществляют при давлении 1·10-1 в течение 5 с с последующей сушкой на воздухе при н.у. Получают пористый материал на основе никелида титана, в порах которого содержится гидроксиапатит в количестве 46 мас.% от массы никелида титана. Средняя величина пор равна 200 мкм (см. фиг.2).

Пример 2. В рабочую камеру установки ионно-плазменного напыления с установленным в ней расходуемым катодом, выполненным из титана, на планетарном механизме поворотного стола размещают пластину размером 50×18×2 мм и массой 1,76 г из никеля со следующими характеристиками: общая пористость 90±1%; открытая пористость 65±1% (доля - 71%); закрытая пористость 24±1% (доля - 29%), средний размер пор 400 мкм. Рабочую камеру откачивают до давления 7·10-5 мм рт.ст., затем включают вращение планетарного механизма поворотного стола и облучают пластину потоком ионов аргона при токе разряда 45 А при постепенном увеличении отрицательного потенциала на поворотном столе от 100 до 1000 B в течение 90 мин. При этом по мере обезгаживания рабочей камеры давление сначала возрастает за счет десорбированных газов, а затем падает до первоначального, равного 7·10-5 мм рт.ст. После того как давление в камере устанавливается равным первоначальному, зажигают дугу на расходуемом катоде, выполненном из титана. Процесс ведут при отрицательном потенциале 1,2 кВ между планетарным механизмом и корпусом рабочей камеры при токе титанового катода равным 80 А. При появлении красного свечения пластины (температура 700°C) устанавливают потенциал на планетарном механизме 350 B и дают выдержку 20 мин, в течение которой происходит осаждение ионов титана на никель с образованием никелида титана. После чего процесс прерывают гашением дуги, а полученный продукт охлаждают в рабочей камере при давлении 7·10-5 мм рт.ст. в течение 100 мин. По данным рентгенофазового анализа полученный продукт имеет состав NiTi с общей пористостью 95% и долей открытой пористости 80% со средним размером пор 400 мкм. Затем полученный продукт помещают в 12%-ную водную суспензию гидроксиапатита состава Са(PO4)2(ОН)2 с размером частиц менее 1 мкм, полученную в соответствии с патентом RU 2406693, и осуществляют 3-х кратную вакуумную пропитку в течение 10 часов, каждую стадию которой осуществляют при давлении 8·10-1 в течение 3 с с последующей сушкой на воздухе при н.у. Получают пористый материал на основе никелида титана, в порах которого содержится гидроксиапатит в количестве 26,7 мас.% от массы никелида титана. Средняя величина пор равна 300 мкм.

Таким образом, авторами предлагается биосовместимый пористый материал, обладающий наряду с высокой пористостью высокой биологической активностью за счет наличия в его составе гидроксиапатита, имеющего высокие остеозамещающие свойства, и способ получения такого материала.


БИОСОВМЕСТИМЫЙ ПОРИСТЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
БИОСОВМЕСТИМЫЙ ПОРИСТЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 114.
19.01.2018
№218.016.0ce5

Способ получения полидивинилфосфиновой кислоты из красного фосфора и ацетилена

Настоящее изобретение относится к способу получения полидивинилфосфиновой кислоты из красного фосфора и ацетилена и может быть использовано в химической промышленности. Предложенный способ получения полидивинилфосфиновой кислоты из красного фосфора и ацетилена в системе гидроксид калия/ДМСО при...
Тип: Изобретение
Номер охранного документа: 0002632816
Дата охранного документа: 10.10.2017
13.02.2018
№218.016.219e

Способ получения нанокристаллического порошка оксикарбида молибдена

Изобретение относится к химической технологии получения оксикарбида молибдена и может быть использовано в углекислотной конверсии природного газа в качестве катализатора. Способ получения нанокристаллического порошка оксикарбида молибдена включает испарение кислородсодержащего соединения...
Тип: Изобретение
Номер охранного документа: 0002641737
Дата охранного документа: 22.01.2018
10.05.2018
№218.016.4cf5

Способ получения суспензии апатита

Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов, которые могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани. Способ получения суспензии апатита включает взаимодействие гидроксида...
Тип: Изобретение
Номер охранного документа: 0002652193
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4d86

Биорезорбируемый материал и способ его получения

Группа изобретений относится к медицине. Описан биорезорбируемый материал, включающий гидроксиапатит и монооксид титана состава TiOx, где х = 0.99, 1.09, 1.23, в количестве 10 – 20 мас.% от общего. Описан способ получения биорезорбируемого материала, включающий получение исходной смеси...
Тип: Изобретение
Номер охранного документа: 0002652429
Дата охранного документа: 26.04.2018
18.05.2018
№218.016.5071

Способ получения композита триоксид ванадия/углерод

Изобретение может быть использовано для получения электродного материала литиевых источников тока. Способ получения композита триоксид ванадия/углерод VO/C включает растворение в воде карбоновой кислоты, добавление оксидного соединения ванадия, сушку и последующий отжиг. В качестве карбоновой...
Тип: Изобретение
Номер охранного документа: 0002653020
Дата охранного документа: 04.05.2018
29.05.2018
№218.016.53d3

Способ получения наноструктурированных порошков ферритов и установка для его осуществления

Изобретение может быть использовано в химической промышленности. Способ получения наноструктурированных порошков ферритов включает получение смеси соли азотной кислоты и по крайней мере одного оксидного соединения металла, ультразвуковую обработку, термообработку и фильтрацию. Получают смесь...
Тип: Изобретение
Номер охранного документа: 0002653824
Дата охранного документа: 14.05.2018
09.06.2018
№218.016.5e01

Способ получения композита диоксид молибдена/углерод

Изобретение относится к способу получения композитов в мелкодисперсном состоянии, в частности композита диоксид молибдена/углерод MoO/C, который может быть использован в качестве эффективного анодного материала литиевых источников тока. Способ включает растворение порошка металлического...
Тип: Изобретение
Номер охранного документа: 0002656466
Дата охранного документа: 05.06.2018
20.06.2018
№218.016.6538

Способ получения наноструктурированного углерода

Изобретение относится к химической технологии и может быть использовано при изготовлении сорбентов, катализаторов и носителей для катализаторов, сенсоров, газовых накопителей, конструкционных, футеровочных, оптических материалов и электродов для высокоёмких источников тока и энергетических...
Тип: Изобретение
Номер охранного документа: 0002658036
Дата охранного документа: 19.06.2018
25.06.2018
№218.016.66b0

Способ разделения скандия и сопутствующих металлов

Изобретение относится к технологии неорганических веществ, а именно к гидрометаллургии скандия. Способ разделения скандия и сопутствующих металлов заключается в обработке скандийсодержащего раствора серной кислотой в присутствии соли, содержащей ионы аммония, при нагревании с последующими...
Тип: Изобретение
Номер охранного документа: 0002658399
Дата охранного документа: 21.06.2018
01.07.2018
№218.016.697d

Способ получения серебросодержащей ткани растительного происхождения

Изобретение относится к способу получения серебросодержащих тканей, обладающих антибактериальными свойствами. Способ получения серебросодержащей ткани растительного происхождения включает обработку ткани водным раствором смеси нитрата серебра, восстановителя и соединения, содержащего группу NH,...
Тип: Изобретение
Номер охранного документа: 0002659267
Дата охранного документа: 29.06.2018
Показаны записи 51-60 из 62.
10.05.2018
№218.016.4cf5

Способ получения суспензии апатита

Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов, которые могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани. Способ получения суспензии апатита включает взаимодействие гидроксида...
Тип: Изобретение
Номер охранного документа: 0002652193
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4d86

Биорезорбируемый материал и способ его получения

Группа изобретений относится к медицине. Описан биорезорбируемый материал, включающий гидроксиапатит и монооксид титана состава TiOx, где х = 0.99, 1.09, 1.23, в количестве 10 – 20 мас.% от общего. Описан способ получения биорезорбируемого материала, включающий получение исходной смеси...
Тип: Изобретение
Номер охранного документа: 0002652429
Дата охранного документа: 26.04.2018
15.11.2018
№218.016.9da3

Способ получения нанокристаллического порошка титан-молибденового карбида

Изобретение может быть использовано в металлургии при получении тугоплавкой основы безвольфрамовых твердых сплавов. Способ получения нанокристаллического порошка титан-молибденового карбида включает высокотемпературную обработку исходной смеси порошков соединения титана и молибдена с...
Тип: Изобретение
Номер охранного документа: 0002672422
Дата охранного документа: 14.11.2018
18.01.2019
№219.016.b0ee

Стоматологический гель для реминерализации твердых тканей зубов и способ реминерализации твердых тканей зубов

Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для реминерализации твердых тканей зубов с целью профилактики и лечения кариеса в стадии пятна, гиперестезии твердых тканей зуба. Предлагаемый стоматологический гель содержит в качестве гидрофильной основы...
Тип: Изобретение
Номер охранного документа: 0002677231
Дата охранного документа: 16.01.2019
30.03.2019
№219.016.f909

Биоактивный композиционный материал для замещения костных дефектов и способ его получения

Изобретение относится к области биологически активных фармацевтических и медицинских материалов с повышенной механической прочностью, такие материалы могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани, а также в качестве носителя...
Тип: Изобретение
Номер охранного документа: 0002683255
Дата охранного документа: 27.03.2019
18.05.2019
№219.017.53bf

Способ получения биомедицинского материала

Изобретение относится к области медицины, в частности к способу получения биомедицинского материала. Способ получения биомедицинского материала, включающий нанесение на металлическую основу гидроксиапатита и последующую обработку ультразвуковым излучением, при этом основу помещают в 35-45%-ную...
Тип: Изобретение
Номер охранного документа: 0002687737
Дата охранного документа: 16.05.2019
06.12.2019
№219.017.ea03

Способ формирования изображения поверхности объекта

Использование: для формирования в цифровом виде изображения микроструктуры фазового состава на поверхности реального физического объекта, исследуемого путем использования сканирующей микроскопии. Сущность изобретения заключается в том, что осуществляют эмиссию электронов с поверхности...
Тип: Изобретение
Номер охранного документа: 0002707980
Дата охранного документа: 03.12.2019
27.03.2020
№220.018.1087

Биоактивное покрытие для восстановления костной ткани

Изобретение относится к фармацевтической промышленности, а именно к биоактивному покрытию для восстановления костных тканей. Биоактивное покрытие для восстановления костных тканей, содержащее гидроксиапатит или фторапатит с размером частиц не более 10 мкм и 5-10 масс.% водный раствор желатина,...
Тип: Изобретение
Номер охранного документа: 0002717676
Дата охранного документа: 25.03.2020
11.07.2020
№220.018.3181

Композиция для получения жесткого пенополиуретана пониженной горючести

Настоящее изобретение относится к композиции для получения жесткого пенополиуретана пониженной горючести. Композиция включает 50,0-55,0 мас.ч. простого полиэфирполиола с молекулярной массой 4000, 80,0-100,0 мас.ч. оксипропилированного пентаэритритового эфира метилфосфоновой кислоты, 5,0-15,0...
Тип: Изобретение
Номер охранного документа: 0002726212
Дата охранного документа: 09.07.2020
08.08.2020
№220.018.3e11

Средство для лечения пародонтита и способ лечения пародонтита

Изобретение относится к области медицины, в частности к стоматологии, и может быть использовано в терапии при лечении воспалительных заболеваний пародонта. Предлагаемое средство для лечения пародонтита содержит кремнийорганический глицерогидрогель, гидроксиапатит и активную добавку, причем в...
Тип: Изобретение
Номер охранного документа: 0002729428
Дата охранного документа: 06.08.2020
+ добавить свой РИД