×
20.01.2015
216.013.1fb0

Результат интеллектуальной деятельности: КОМПОЗИЦИОННЫЙ СПЛАВ НА ОСНОВЕ Co-TiB-BN

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к прецизионным сплавам на основе кобальта для нанесения функциональных покрытий с высокими физико-механическими свойствами методом гетерофазного переноса. Сплав на основе кобальта содержит, мас.%: хром - 17,4-21,1; кремний - 2,6-4,9; рений - 3,0-5,0; цирконий - 4,0-6,0; церий - 0,2-0,6; лантан - 0,1-0,5; иттрий - 0,3-0,7; алюминий - 2,0-4,0; борид титана - 10,0-12,5; нитрид бора - 10,0-12,5; Co - остальное. Изобретение позволяет увеличить микротвердость, адгезионную прочность и коррозионную стойкость покрытий. 1 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к прецизионным сплавам, предназначенным для реализации микрометаллургических процессов, конкретно к сплавам на основе кобальта для нанесения функциональных покрытий с высокими физико-механическими свойствами методом гетерофазного переноса.

Сплавы на основе кобальта, в силу своих широких эксплуатационных возможностей, весьма популярны в микрометаллургии для получения порошковых материалов, защитных пленок и покрытий.

Прежде всего, кобальтовые сплавы, особенно в тонких сечениях, имеют преимущества в части высоких физико-механических свойств, в т.ч. по одной из важнейших характеристик - микротвердости.

В частности, известны сплавы для получения порошков, а также перспективные кобальтовые сплавы для получения быстрозакаленных сплавов и покрытий методами распыления расплава и газотермического напыления, в частности, составы которых приведены в Таблице 1. Следует особо отметить, что каждая из перечисленных групп сплавов разрабатывалась с учетом специфических особенностей их технологического использования.

В связи с существенным ужесточением условий эксплуатации элементов конструкций в направлении увеличения механических нагрузок (циклическое, динамическое и эрозионное воздействие), расширением интервала рабочих температур в области положительных и отрицательных значений и необходимостью увеличения коррозионной стойкости при воздействии агрессивных химических реагентов, современные функциональные покрытия должны иметь следующие основные технические характеристики:

- адгезионная прочность покрытия с подложкой не менее 30 МПа;

- микротвердость покрытия не менее 3 ГПа;

- диапазон рабочих температур от -60 до +500°C;

- коррозионная стойкость не ниже 3-4 балла (класс стойкости 2; 3).

Ни один из известных сплавов не позволяет получать функциональные покрытия с такими характеристиками. Экспериментально установлено, что наилучшими характеристиками обладают покрытия, полученные из кобальтовых сплавов, химический состав которых приведен в патентах [1-2], микротвердость этих покрытий достигает 1,7 ГПа. Поэтому для удовлетворения современных требований к функциональным покрытиям необходимо разработать новые составы сплава, адаптированные к условиям получения покрытий методами гетерофазного переноса.

В качестве прототипа выбран прецизионный сплав на основе кобальта для изготовления высокопрочных аморфных материалов в виде лент методом высокоскоростной закалки расплава [3].

Сплав имеет следующий состав (масс. %): железо 1,8-4, никель 6,2-8, бор 8-10, кремний 10-12, церий 0,6-1,2, иттрий 0,2-0,8, хром 2-3,5, цирконий 0,5-1,5, кобальт - остальное.

Недостатками покрытия, полученного с использованием данного сплава, являются: низкая микротвердость покрытий (менее 3 ГПа), недостаточная адгезионная прочность покрытия с подложкой (менее 30 МПа), низкая коррозионная стойкость, не превышающая 3-4 балла, и не достигается требуемого интервала рабочих температур от -60 до +500°C.

Техническим результатом изобретения является повышение микротвердости получаемых покрытий, адгезионной прочности и коррозионной стойкости до требуемых значений, а также увеличение диапазона рабочих температур.

Технический результат достигается за счет того, что сплав на основе кобальта, содержащий хром, кремний, цирконий, иттрий, церий, в соответствии с изобретением, с целью увеличения микротвердости, адгезионной прочности покрытий, коррозионной стойкости и расширения интервала температурной стабильности в области положительных и отрицательных температур, дополнительно содержит рений, лантан, алюминий, борид титана и нитрид бора. Причем хром и кремний вводят в сплав в виде устойчивого интерметаллического соединения Cr3Si, а вводимые в сплав частицы TiB2 и BN имеют размер 30-80 нм. Соотношение компонентов в сплаве следующее (масс.%):

Cr - 17,4-21,1; Si - 2,6-4,9; Re - 3,0-5,0; Zr - 4,0-6,0; Ce - 0,2-0,6; La - 0,1-0,5; Y - 0,3-0,7; Al - 2,0-4,0; TiB2 - 10,0-12,5; BN - 10,0-12,5; Co - основа.

В соответствии с изобретением, оптимальное соотношение между TiB2 и BN в сплаве составляет 1:1.

В качестве базовой композиции выбрана тройная система Co-Cr-Si. Причем наибольший эффект повышения микротвердости, как показали эксперименты, достигается при введении в основу (кобальт) 20-26% устойчивого интерметаллида Cr3Si, что соответствует содержанию в сплаве 17,4-21,1% Cr и 2,6-4,9% Si. В зависимости от вида термомеханической обработки микротвердость чистого кобальта достигает 1,6-2,1 ГПа, для покрытий эта величина, как правило, не превышает 1,8 ГПа. При введении устойчивого интерметаллида Cr3Si наблюдается существенное повышение микротвердости сплава до 3,6 ГПа.

Содержание интерметаллида Cr3Si в количестве 20-26% является оптимальным, т.к. при меньшем, чем 20%, требуемого эффекта повышения микротвердости не наблюдается, а при большем, чем 26%, сплав становится хрупким и при получении покрытия отслаивается от подложки.

Для достижения требуемого высокого уровня функциональных свойств, в тройной сплав системы Co-Cr-Si последовательно вводится рений, цирконий и алюминий.

Введение рения в количестве 3-5% обеспечивает повышения температурной стабильности до 520-550°C по сравнению с 340-360°C для тройного сплава Co-Cr-Si. Этот эффект наблюдается, начиная с 3% Re, а при содержании Re более 5%, так же как и при введении интерметаллида Cr3Si более 26%, наблюдается охрупчивание сплава и покрытий на его основе.

Указанный четырехкомпонентный сплав Co-Cr-Si-Re устойчив в области отрицательных температур только до -40°C. При более низких температурах происходит отслаивание покрытий из этого сплава от подложки. Для повышения хладостойкости до требуемых -60°C (обеспечивающих эксплуатацию элементов конструкций в условиях крайнего Севера и Арктики), в сплав дополнительно вводится цирконий (в количестве 4-6%), эффективно способствующий измельчению зерна и тем самым повышающий хладостойкость. Этот эффект наблюдается, начиная с 4% Zr, и реализуется до 6% Zr, при этом в сплаве снижается эффект, достигнутый за счет введения Re, т.е снижается до 420-430°C температурная стабильность сплава при положительных температурах.

Однако коррозионная стойкость сплава системы Co-Cr-Si-Re-Zr не превышает 3-4 балла (класс стойкости 2; 3). Практика показывает, что в сплав в этом случае необходимо ввести элемент, образующий на поверхности функционального покрытия пассивирующие пленки. Наиболее эффективно это достигается за счет введения алюминия, образующего на поверхности сплава пассивирующие пленки сложного состава Cr2O3-Al2O3. Это достигается при оптимальном количестве алюминия в сплаве от 2,0 до 4,0%.

Прецизионность любого микрометаллургического процесса эффективно обеспечивается за счет комплексного введения эффективных модификаторов в виде малых добавок редкоземельных элементов, имеющих наибольшее сродство к кислороду, водороду и азоту - соответственно церия, лантана и иттрия.

Введение указанных малых добавок очищает сплав от неметаллических включений и обеспечивает протекание устойчивых процессов нанесения покрытий. Это возможно при комплексном введении указанных редкоземельных элементов (РЗЭ) в количестве, не превышающем в сумме 1,8%. Экспериментально установлено, что поэлементное содержание церия должно быть (0,2-0,6)%, лантана (0,1-0,5)%, иттрия (0,3-0,7)%, при большем количестве каждого из указанных РЗЭ и их суммарном содержании более 1,8% образуются фазы, негативно влияющие на стабильность протекания микрометаллургических процессов. Образование неметаллических фаз приводит к неоднородности структуры, прежде всего к появлению многочисленных границ раздела, это приводит к возможности питтинговой коррозии и уменьшению микротвердости на межфазных границах. Экспериментально установлено, что эти явления приводят к возникновению микротрещин, которые, в свою очередь, могут приводить к разрушению покрытия в целом в ходе эксплуатации. Поэтому указанное выше комплексное введение РЗЭ и их суммарное содержание не более 1,8% является оптимальным, так как метастабильные фазы не образуются и, соответственно, удается достичь требуемых характеристик с точки зрения коррозионной стойкости, микротвердости и, как следствие, адгезионной прочности и интервала температурной стабильности.

Однако, как показали испытания, получить указанные выше требуемые свойства из сплава системы Co-Cr-Si-Re-Zr-Ce-La-Y-Al не удается. Имеет место низкая адгезия (адгезионная прочность покрытия с подложкой на отрыв штифтовым методом не превышает 20,6 МПа) и относительно низкое значение микротвердости (не более 3,6 ГПа). Практика и проводимые исследования [4] показывают, что наиболее эффективным для повышения указанных характеристик является введение в металлическую матрицу наноразмерных (фракция 30-80 нм) частиц из тугоплавких химических соединений.

Практика показывает, что наибольшего упрочняющего эффекта при создании функциональных покрытий можно достичь при комплексном введении наноматериалов разных классов, имеющих различную кристаллографическую структуру (например, бориды и нитриды, оксиды и нитриды, нитриды и карбиды и т.д.). Это приводит к существенной фрагментации матричной структуры, возникновению остаточных сжимающих напряжений на межфазных границах и, как следствие, значительному увеличению микротвердости сплава.

Исходя из этого установлено, что оптимальным для сплава системы Co-Cr-Si является введение боридов в сочетании с нитридами. Конкретно оптимальный эффект увеличения микротвердости достигается при введении 20-25% (TiB2+BN) при соотношении между ними 1:1. При этом адгезионная прочность покрытия с подложкой достигает 30-35 МПа, а микротвердость повышается до 4,6 ГПа.

При меньшем количестве вводимых дисперсных частиц и другом фракционном составе эффект увеличения микротвердости незначителен. При большем количестве вводимых дисперсных частиц сплав существенно охрупчивается.

Пример 1

Выплавка сплава осуществляется с помощью высококачественной установки типа УИП16-10-003 в алундовых тиглях N4. Последовательность введения компонентов следующая: (Co+Cr+Si)→Zr→Al→Re→(Ce-La-Y)→(TiB2+BN). Состав сплава (масс.%): Cr - 17,4; Si - 2,6; Re - 3,0; Zr - 4,0; Ce - 0,2; La - 0,1; Y - 0,3; Al - 2,0; TiB2 - 10,0; BN - 10,0; Co - остальное.

После получения слитка производилось его дробление до фракции 5-7 мм с помощью щековой дробилки типа ДЩ-4. Оптимальной фракцией для получения покрытий методом гетерофазного переноса с помощью установки микроплазменного напыления типа УГНП-3/3350 является фракция исходного материала 50-80 мкм. Дробление до указанной фракции производилось на дезентиграторной установке типа Дези-1А при скоростях вращения роторов 7200 об/мин. Из полученного порошка с помощью метода микроплазменного напыления на подложку пластины из стали Х18Н10Т толщиной 5 мм было нанесено функциональное покрытие толщиной 150±20 мкм.

Микротвердость покрытия, измеренная на установке Nanoscan, составила 4,2 ГПа при комнатной температуре, при воздействии температур -196°C и +400°C - 3,6 и 4,0 ГПа соответственно. Коррозионная стойкость сплава при воздействии 12% раствора HCl соответствует 2-3 классу стойкости. Адгезионная прочность покрытия с подложкой составляет 35 МПа.

Пример 2

Выплавка сплава производилась так же как в примере 1. Состав сплава (масс.%): Cr - 21,1; Si - 4,9; Re - 5,0; Zr - 6,0; Ce - 0,6; La - 0,5; Y - 0,3; Al - 2,0; TiB2 - 12,5; BN - 12,5; Co - остальное.

После получения слитка производилось дробление слитка до фракции 40-60 мкм на дезинтеграторе типа Дези-15 при скоростях вращения роторов 12000 об/мин.

Из полученного порошка с помощью метода сверхзвукового холодного газодинамического напыления на установке типа ДИМЕТ-3 на подложку пластины из стали Х15Ю5 шириной 100 мм и толщиной 3 мм было нанесено функциональное покрытие толщиной 100±10 мкм.

Микротвердость покрытия, измеренная, как в примере 1, составляет 4,6 ГПа при комнатной температуре, при воздействии температур -196°C и +400°C 3,0 и 4,2 ГПа соответственно. Коррозионная стойкость сплава при воздействии 12% раствора HCl соответствует 2-3 классу стойкости. Адгезионная прочность покрытия с подложкой составляет 32 МПа.

Источники информации

1. RU 2352663, МПК C22C 19/07, опубликовано 20.04.2009.

2. RU 2333990, МПК С22С 19/07, С22С 30/00, опубликовано 20.09.2008.

3. RU 2273680, МПК С22С 19/07, опубликовано 10.04.2006 - прототип.

4. Горынин И.В., Бурханов Г.С., Фармаковский Б.В. Перспективы разработок конструкционных материалов на основе тугоплавких металлов и соединений. // Вопросы материаловедения. - 2012. - СПб. №2. - 5 с.

Источник поступления информации: Роспатент

Показаны записи 181-190 из 265.
20.01.2018
№218.016.1530

Направляющая насадка воздушного винта

Изобретение относится к движителям транспортных средств, преимущественно амфибийных судов на воздушной подушке и глиссеров. Направляющая насадка воздушного винта содержит предвинтовую и винтовую насадки, которые установлены коаксиально с образованием кольцевого канала. Предвинтовая насадка в...
Тип: Изобретение
Номер охранного документа: 0002634856
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.18bd

Способ получения магнитного и электромагнитного экрана

Использование: для создания композиционных материалов на основе аморфных и нанокристаллических сплавов. Сущность изобретения заключается в том, что ленты укладывают между двух полимерных диэлектрических пленок, разогретых до температуры, достаточной для двухстороннего склеивания полимерной...
Тип: Изобретение
Номер охранного документа: 0002636269
Дата охранного документа: 21.11.2017
13.02.2018
№218.016.2013

Установка для промывки топливного бака летательного аппарата газонасыщенной жидкостью (варианты)

Изобретение относится к техническому обслуживанию летательных аппаратов. Установка для промывки топливного бака включает в себя узел промывки, который размещается внутри топливного бака (2), магистраль (4) нагнетания газонасыщенной моющей жидкости в узел промывки и магистраль (5) слива из...
Тип: Изобретение
Номер охранного документа: 0002641408
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.224e

Высотный активно-реактивный снаряд и способ его функционирования

Группа изобретений относится к военной технике, а именно к активно-реактивным снарядам. Технический результат - увеличение высоты и вероятности поражения быстролетящей цели средствами противовоздушной и противоракетной обороны за счет улучшения полноты сгорания топлива, топливной эффективности...
Тип: Изобретение
Номер охранного документа: 0002642197
Дата охранного документа: 24.01.2018
04.04.2018
№218.016.2f02

Композиционный радиопоглощающий материал и способ его изготовления

Изобретение относится к средствам для защиты от электромагнитных полей: электротехнических и электронных. Композиционный материал для защиты от электромагнитного излучения, состоящий из полимерной основы с распределенными в ней частицами сплава системы Fe-Cu-Nb-Si-B, представляющий собой...
Тип: Изобретение
Номер охранного документа: 0002644399
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.3261

Способ калибровки видеограмметрических систем и контрольное приспособление для его осуществления

Изобретение относится к области оптических бесконтактных измерений геометрических параметров формы, положения, движения и деформации объектов в пространстве, в частности к ближней цифровой фотограмметрии и видеограмметрии, и может применяться для прецизионной калибровки видеограмметрических...
Тип: Изобретение
Номер охранного документа: 0002645432
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.376b

Способ синхронизации и обеспечения симметрии тяги воздушных винтов силовой установки летательного аппарата и электрическая синхронизирующая трансмиссия для его реализации

Изобретение относится к силовым установкам летательных аппаратов. Способ синхронизации и обеспечения симметрии тяги воздушных винтов (1) силовой установки летательных аппаратов заключается в том, что в случае отказа одного из двигателей внутреннего сгорания (2) муфта свободного хода (4)...
Тип: Изобретение
Номер охранного документа: 0002646696
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.3aaa

Система управления судовым движителем

Система управления судовым движителем содержит задающее устройство, блок сравнения, два усилителя, два электромагнита золотника, золотник, устройство ввода скорости изменения управляемого параметра, устройство изменения скорости подачи рабочей жидкости, исполнительный механизм, судовой...
Тип: Изобретение
Номер охранного документа: 0002647335
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.47db

Антенный обтекатель и способ его изготовления

Изобретение относится к области ракетной техники, в частности к головным радиопрозрачным обтекателям пеленгационных сверхширокополосных антенн, работающих в диапазоне ультравысоких (УВЧ) и сверхвысоких (СВЧ) частот, и может быть использовано при проектировании и изготовлении радиопрозрачных...
Тип: Изобретение
Номер охранного документа: 0002650725
Дата охранного документа: 17.04.2018
09.06.2018
№218.016.5e45

Способ изготовления деталей из волокнистого полимерного композиционного материала

Изобретение относится к технологии формования деталей, состоящих из композиционного материала на основе термоактивной матрицы, а именно к способу изготовления деталей из волокнистого полимерного композиционного материала. Способ изобретения включает операции: на одной из рабочих поверхностей...
Тип: Изобретение
Номер охранного документа: 0002656317
Дата охранного документа: 04.06.2018
Показаны записи 181-190 из 217.
25.08.2017
№217.015.ae1e

Устройство для прекращения неуправляемого движения модели летательного аппарата при ее динамических испытаниях на устойчивость и управляемость

Изобретение относится к области экспериментальных исследований летательных аппаратов в аэродинамических трубах и может быть использовано при динамических испытаниях моделей летательных аппаратов в аэродинамических трубах. Устройство состоит из модели, установленной на стойке в потоке АДТ при...
Тип: Изобретение
Номер охранного документа: 0002612848
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b56e

Сплав на основе ниобия для формирования 3d-изделий сложной формы и покрытий

Изобретение относится к металлургии, а именно к прецизионным сплавам для получения 3d-изделий сложной формы и функциональных покрытий методом гетерофазного переноса. Композиционный сплав на основе ниобия, используемый для формирования 3d-изделий сложной формы и термобарьерных покрытий,...
Тип: Изобретение
Номер охранного документа: 0002614230
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.ba2c

Самолет с адаптивным цельноповоротным стабилизатором

Изобретение относится к области аэродинамики маневренных самолетов. Адаптивный стабилизатор самолета установлен на продольной хвостовой балке, которая позволяет одновременно изменять в полете углы отклонения стабилизатора в двух взаимно перпендикулярных направлениях: относительно оси,...
Тип: Изобретение
Номер охранного документа: 0002615605
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.cc3f

Комбинированный ножевой вал устройства для мерной резки углеродного и стеклянного волокна

Комбинированный ножевой вал содержат расположенный на оси вращения с подшипниками цилиндр и пластинчатые ножи. Он выполнен двухслойным с внутренним металлическим слоем с кольцевой проточкой на его внешней поверхности шириной 30-40 мм и глубиной 12-15 мм и наружным кольцевым слоем из полиуретана...
Тип: Изобретение
Номер охранного документа: 0002620525
Дата охранного документа: 26.05.2017
26.08.2017
№217.015.dd35

Устройство для контроля герметичности топливного бака самолета

Изобретение относится к испытательной технике и может быть использовано при контроле герметичности самолетных топливных баков сложной конфигурации. Контроль герметичности осуществляется с использованием рабочей газовой смеси воздуха с контрольным газом (элегазом или гелием). За пределами...
Тип: Изобретение
Номер охранного документа: 0002624618
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.e0f9

Способ получения нанокристаллического порошкового материала для изготовления широкополосного радиопоглощающего композита

Изобретение относится к получению нанокристаллического магнитомягкого порошкового материала для изготовления широкополосного радиопоглощающего композита. Способ включает измельчение аморфной ленты из магнитомягкого сплава на молотковой дробилке до частиц 3-5 мм и затем измельчение в...
Тип: Изобретение
Номер охранного документа: 0002625511
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e424

Способ изготовления пропитанных смолой деталей из композиционного материала

Изобретение относится к способу изготовления пропитанных смолой деталей из композиционного материала и может применяться в различных областях (авиационной, космической, судостроительной, автомобильной и других). Согласно способу изготовления пропитанных смолой деталей из композиционного...
Тип: Изобретение
Номер охранного документа: 0002626413
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e66b

Способ контроля герметичности топливного бака самолета

Изобретение относится к области контроля герметичности полых изделий и может быть использовано для контроля герметичности самолетных топливных баков преимущественно сложной конфигурации. Сущность: контроль герметичности осуществляют с использованием рабочей газовой смеси воздуха с контрольным...
Тип: Изобретение
Номер охранного документа: 0002626976
Дата охранного документа: 02.08.2017
19.01.2018
№218.016.051c

Способ снижения лобового сопротивления аппаратов на статической воздушной подушке

Изобретение относится к способам снижения лобового сопротивления аппаратов на статической воздушной подушке и касается транспортных средств с малым отношением длины к ширине. Для снижения скорости и изменения направления набегающего воздуха из отверстий в носовой части корпуса аппарата...
Тип: Изобретение
Номер охранного документа: 0002630875
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.05dd

Устройство для мерной резки углеродного волокна

Изобретение относится к области машиностроения, а именно к устройству для мерной резки углеродного волокна, и может быть использовано при производстве углеродного волокна и изделий из полимерных композиционных материалов, упрочненных углеродным волокном. Задачей изобретения является разработка...
Тип: Изобретение
Номер охранного документа: 0002631037
Дата охранного документа: 15.09.2017
+ добавить свой РИД