×
20.10.2014
216.012.fe57

Результат интеллектуальной деятельности: СПОСОБ ПРИГОТОВЛЕНИЯ БЕТОННОЙ СМЕСИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам приготовления бетонных смесей с добавкой микрокремнезема с химическими добавками. Техническим результатом предложенного способа является повышение прочности бетонной смеси. В способе приготовления бетонной смеси, заключающемся в перемешивании цемента, заполнителей, воды и водной суспензии комплексного модификатора следующего состава, мас.%: микрокремнезем 40-70; химические добавки 2-10; вода - остальное, которую перед перемешиванием подвергают сушке в воздушном потоке до получения порошка, состоящего из гранул, согласно изобретению, водную суспензию комплексного модификатора перед перемешиванием подвергают подсушке путем воздействия непрерывным электромагнитным полем сверхвысокой частоты 400-1000 МГц от СВЧ-генераторов и нагретым воздушным потоком охлаждения СВЧ-генераторов до получения порошка с гранулами размером до 500 мкм и влажностью 9-12%, затем подсушенный комплексный порошкообразный модификатор и цемент подвергают диспергированию и дезагрегации путём воздействия импульсным электромагнитным полем сверхвысокой частоты 1000-3000 МГц продолжительностью 1-1,5 секунды, до получения ультрадисперсного порошка комплексного модификатора размером 60-100 нм влажностью 1-8% и цемента размером 0,1-5 мкм, после чего их перемешивают, совместно перемалывают и активизируют, образуют дезагрегированную и активированную смесь цемента и комплексного модификатора, которую перемешивают с заполнителем и водой, получают бетонную смесь, на которую воздействуют мощным импульсным электромагнитным полем сверхвысокой частоты 400-1000 МГц продолжительностью 1÷100 наносекунды. 1 табл.
Основные результаты: Способ приготовления бетонной смеси, заключающийся в перемешивании цемента, заполнителей, воды и водной суспензии комплексного модификатора следующего состава, мас.%: микрокремнезем 40-70; химические добавки 2-10; вода - остальное, которую перед перемешиванием подвергают сушке в воздушном потоке до получения порошка, состоящего из гранул, отличающийся тем, что водную суспензию комплексного модификатора перед перемешиванием подвергают подсушке путем воздействия непрерывным электромагнитным полем сверхвысокой частоты 400-1000 МГц от СВЧ-генераторов и нагретым воздушным потоком охлаждения СВЧ-генераторов до получения порошка с гранулами размером до 500 мкм и влажностью 9-12%, затем подсушенный комплексный порошкообразный модификатор и цемент подвергают диспергированию и дезагрегации путем воздействия импульсным электромагнитным полем сверхвысокой частоты 1000-3000 МГц продолжительностью 1-1,5 секунды, до получения ультрадисперсного порошка комплексного модификатора размером 60-100 нм влажностью 1-8% и цемента размером 0,1-5 мкм, после чего их перемешивают, совместно перемалывают и активизируют, образуют дезагрегированную и активированную смесь цемента и комплексного модификатора, которую перемешивают с заполнителем и водой, получают бетонную смесь, на которую воздействуют мощным импульсным электромагнитным полем сверхвысокой частоты 400-1000 МГц продолжительностью 1÷100 наносекунды.

Изобретение относится к способам приготовления бетонных смесей с добавкой микрокремнезема с химическими добавками.

Известен способ приготовления бетонной смеси с введением в нее цемента, заполнителей, воды и микрокремнезема с химическими добавками в виде единого пастообразного продукта "пульпы Сулькрем" [Вахомин В.Н., Алферов Ф.А., Лозовский М.А. и др. Новая добавка в технологии бетона - Пульпа Сулькрем, Бетон и железобетон, №2, 1990, с.40-41].

Недостатками способа являются склонность пульпы к расслоению, что требует периодического перемешивания при ее хранении, подверженность пульпы замерзанию при низких температурах, а также необходимость в дополнительных технологических линиях подачи суперпластификатора и других добавок. Пластичность бетонных смесей с добавкой такого пастообразного продукта со временем (через 15-20 мин с момента приготовления) заметно уменьшается.

Известен способ приготовления бетонной смеси, включающий перемешивание цемента, заполнителей, воды и водной суспензии комплексного модификатора, содержащего микрокремнезем и химические добавки, водную суспензию комплексного модификатора следующего состава, мас.%: микрокремнезем 40-70, химические добавки 2-10, остальное - вода, перед перемешиванием подвергают сушке в воздушном потоке при 160-250°C до получения порошка, состоящего из гранул размером до 500 мкм и влажностью 1-8%, минимальное время перемешивания цемента, заполнителей, воды и комплексного порошкообразного модификатора составляет 3 мин [Патент РФ №2095327, C04B 28/00, опубл. 10.11.1997, БИ №31. Авторы: Каприелов С.С. и др., «Способ приготовления бетонной смеси»].

Недостатком является недостаточно высокая интенсивность набора прочности и прочность бетонной смеси на сжатие.

Как отмечают сами авторы, использование комплексного порошкообразного модификатора бетона с размером гранул более 500 мкм (образец №8, табл.1) наряду с сохранением пластичности бетонных смесей через 120 мин, приводит к снижению прочности бетона на 19% (состав 7, табл.2), что очевидно связано с недостаточной степенью дезагрегации сравнительно крупных частиц модификатора.

Известно, что, как и все пуццолановые материалы, микрокремнезем вступает в реакцию с гидроксид кальция Ca(OH)2, освобождаемой при гидратации портландцемента при образовании вяжущих соединений. Очень высокая чистота и мелкость микрокремнезема способствует более эффективной и быстрой реакции. При надлежащем рассеивании тысячи реакционно-способных сферических микрочастиц окружают каждое зерно цемента, уплотняя цементный раствор, заполняя пустоты прочными продуктами гидратации и улучшая сцепление с заполнителями.

Кроме того, в процессе смешения цемента с водой образуются флокулы - мелкие частички цемента группируются в более крупные сгустки.

Объем пор во флокулах хоть и достаточно большой, но заполнившей его воды все равно недостаточно для обеспечения полной гидратации сопредельных зерен цемента. Вода во флокулах неподвижна. Ее приток извне или наружу практически прекращается. Ситуацию усугубляет и то, что продукты начавшей гидратации цемента еще более закупоривают внутренние каналы.

В натурном выражении этот процесс выливается в то, что самые мелкие и, следовательно, самые реакционно-способные частички цемента, которые должны были обеспечить быстрый набор прочности, сбиваются в сгустки - флокулы. Они реагируют с водой в основном только по своей наружной поверхности. Внутри запасы воды быстро истощаются, и прочностной потенциал цемента оказывается наглухо замурованным на несколько лет, а то и десятилетий, пока атмосферная влага все же не проникнет вглубь этих флокул.

Если проанализировать под микроскопом зерновой состав цементных частиц, то можно отчетливо наблюдать, что он очень укрупняется в водной среде. Даже тонкомолотые быстротвердеющие цементы с преобладанием частиц меньше 20 микрон в водной среде агрегатируются в более крупные сгустки - флокулы. Добавка серпластификатора С-3 полностью не снимает эту проблему.

Данный способ выбран в качестве прототипа.

Техническим результатом предложенного способа является повышение прочности бетонной смеси.

Технический результат достигается тем, что в способе приготовления бетонной смеси, заключающемся в перемешивании цемента, заполнителей, воды и водной суспензии комплексного модификатора следующего состава, мас.%: микрокремнезем 40-70; химические добавки 2-10; вода - остальное, которую перед перемешиванием подвергают сушке в воздушном потоке до получения порошка, состоящего из гранул, согласно изобретению, водную суспензию комплексного модификатора перед перемешиванием подвергают подсушке путем воздействия непрерывным электромагнитным полем сверхвысокой частоты 400-1000 МГц от СВЧ-генераторов и нагретым воздушным потоком охлаждения СВЧ-генераторов до получения порошка с гранулами размером до 500 мкм и влажностью 9-12%, затем подсушенный комплексный порошкообразный модификатор и цемент подвергают диспергированию и дезагрегации путем воздействия импульсным электромагнитным полем сверхвысокой частоты 1000-3000 МГц продолжительностью 1-1,5 секунды, до получения ультрадисперсного порошка комплексного модификатора размером 60-100 нм влажностью 1-8% и цемента размером 0,1-5 мкм, после чего их перемешивают, совместно перемалывают и активизируют, образуют дезагрегированную и активированную смесь цемента и комплексного модификатора, которую перемешивают с заполнителем и водой, получают бетонную смесь, на которую воздействуют мощным импульсным электромагнитным полем сверхвысокой частоты 400-1000 МГц продолжительностью 1÷100 наносекунды.

Перед перемешиванием бетонной смеси водную суспензию комплексного модификатора подвергают подсушке путем воздействия непрерывным электромагнитным полем сверхвысокой частоты 915 МГц от СВЧ-генераторов и нагретым воздушным потоком охлаждения СВЧ-генераторов до получения порошка с гранулами размером до 500 мкм и влажностью 9-12%, это снижает энергопотребность и продолжительность технологического процесса, так как разогрев и подсушка суспензии производится по всему объему одновременно. Затем подсушенный комплексный порошкообразный модификатор и цемент подвергают диспергированию и дезагрегации путем воздействия импульсным электромагнитным полем сверхвысокой частоты 2450 МГц продолжительностью 1-1,5 секунды, до получения ультрадисперсного порошка комплексного модификатора размером 60-100 нм влажностью 1-8% и цемента размером 0,1-5 мкм. Импульсный режим работы СВЧ-генератора обеспечивает низкую энергоемкость процесса.

Прочность бетона будет повышаться за счет мелкости (нанодисперсности и ультрадисперсности) частиц модификатора и цемента. Чем меньше частицы, тем быстрее и эффективнее цемент набирает прочность, образуя монолитность цементного камня.

Перемешивание частиц модификатора и цемента, их совместный помол и механоактивация повышают активность частиц при взаимодействии с водой и другими наполнителями. Полученную дезагрегированную и активированную смесь цемента и комплексного модификатора перемешивают с заполнителем и водой, получают бетонную смесь, на которую воздействуют мощным импульсным электромагнитным полем сверхвысокой частоты 400-1000 МГц продолжительностью 1÷100 наносекунды. Это позволяет разрушить образовавшиеся сгустки, которые получаются при взаимодействии цемента и воды, модификатора и воды, цемента, модификатора и воды, что ускорит процесс набора прочности и повысит прочность бетонной смеси на сжатие.

Пример реализации способа приготовления бетонной смеси.

Материалы для приготовления комплексного модификатора: микрокремнезем (МК) марки МК-85 по ТУ 7-249533-90 "Микрокремнезем конденсированный. Технические условия"; суперпластификатор (СП) марки С-3 на основе натриевой соли продукта конденсации нафталинсульфокислоты и формальдегида, соответствующий ТУ 6-36-0204229-625-90 "Пластификатор С-3"; нитрилотриметиленфосфоновая кислота (НТФ), соответствующая ТУ 6-09-5283-86 "Нитрилотриметиленфосфоновая кислота. Технические условия"; нитрит натрия (НН), соответствующий ГОСТ 19906-74 "Нитрит натрия технический. Технические условия"; смола нейтрализованная воздухововлекающая (СНВ), соответствующая ТУ 81-05-75-74. Суспензия комплексного модификатора подвергалась подсушке путем воздействия непрерывным электромагнитным полем сверхвысокой частоты 915 МГц от СВЧ-генераторов и нагретым воздушным потоком охлаждения СВЧ-генераторов до получения порошка, состоящего из гранул размером до 500 мкм и влажностью 9-12%. Подсушенный комплексный порошкообразный модификатор и цемент подвергали диспергированию и дезагрегации путем воздействия импульсным электромагнитным полем сверхвысокой частоты 2450 МГц продолжительностью 1-1,5 секунды, до получения ультрадисперсного порошка комплексного модификатора размером 60-100 нм влажностью 1-8% и цемента размером 0,1-5 мкм с последующим их перемешиванием, совместным помолом и механоактивацией. Диспергирование и совместный помол привели к увеличению межфазной поверхности раздела материалов. Полученную дезагрегированную и активированную смесь цемента и комплексного модификатора перемешивали с заполнителем и водой, получали бетонную смесь. На эту смесь воздействовали мощным импульсным электромагнитным полем сверхвысокой частоты 915 МГц продолжительностью 1÷100 наносекунды.

Дисперсность является качественной термодинамической характеристикой системы, определяющей величину поверхности раздела фаз. Избыточная поверхностная энергия оказывает значительное влияние на интенсивность и особенности протекания не только химических, но и физико-химических процессов, как при обычных, так и при повышенных температурах.

Характеристикой дисперсности является степень дисперсности S, т.е. степень раздробленности вещества дисперсной фазы, представляющая величину, обратную размеру частиц d.

Наиболее удобной и распространенной характеристикой дисперсности порошкообразных материалов является удельная поверхность, определяемая отношением поверхности всех частиц к их объему или массе.

Величину удельной поверхности комплексного модификатора определяли методом на основе зависимости воздухопроницаемости слоя материала от его дисперсности. Этот метод основан на измерении сопротивления, оказываемого воздуху, просасываемому через слой уплотненного материала определенной толщины и площади поперечного сечения.

Исследования фазового состава порошкообразного материала и определение размера частиц проводились в Центре коллективного пользования научным оборудованием «Исследование физико-химических свойств веществ и материалов» (ЦКП).

Доля частиц размером 60-85 нм в смеси порошкообразного модификатора составила 70-85%. Средний размер частиц модификатора составил 100 нм. Определено с помощью сканирующего электронного микроскопа JSM-6390A.

С учетом того, что насыпная плотность модификатора составляет 750±50 кг/м3, удельная поверхность порошка комплексного модификатора составила 450000 см2/г, удельная поверхность порошка цемента - 36000 см2/г.

Температуру замерзания полученного продукта определяли по визуальной оценке поведения материала при понижении температуры: по изменению сыпучести (угла естественного откоса). При превышении угла естественного откоса 20° сыпучесть признавалась неудовлетворительной. Соответственно определялся и оптимальный диапазон влажности материала, температура замерзания и соответственно угол естественного откоса связаны с относительной влажностью.

Оптимальную дисперсность материала определяли по максимальной прочности бетона, которая достигалась при перемешивании порошкообразного модификатора с другими компонентами бетонной смеси в течение 3 мин.

Бетонные смеси готовили с применением портландцемента М400 (ГОСТ 10178), кварцевого песка с Мкр=2,1 (ГОСТ 8736), гранитного щебня фракции 5-20 мм (ГОСТ 8267). В способе приготовления бетонной смеси, принятом за прототип, в смесителе не менее 3 мин совместно перемешиваются: цемент, заполнители, вода и порошкообразный продукт комплексный модификатор полифункционального действия с размером частиц в пределах 500 мкм и относительной влажностью 1-8%, который приготавливается из суспензии, путем ее сушки в воздушном потоке при 160-250°C. В предлагаемом способе микрокремнезем и химдобавки вводили в виде порошкообразного модификатора, который приготавливается из суспензии комплексного модификатора, путем подсушке воздействуя непрерывным электромагнитным полем сверхвысокой частоты 915 МГц от СВЧ-генераторов и нагретым воздушным потоком охлаждения СВЧ-генераторов до получения порошка, состоящего из гранул размером до 500 мкм и влажностью 9-12%. Подсушенный комплексный порошкообразный модификатор и цемент подвергали диспергированию и дезагрегации путем воздействия импульсным электромагнитным полем сверхвысокой частоты 2450 МГц продолжительностью 1-1,5 секунды, до получения ультрадисперсного порошка комплексного модификатора размером 60-100 нм влажностью 1-8% и цемента размером 0,1-5 мкм с последующим их перемешиванием, совместным помолом и механоактивацией.

Цемент, микрокремнезем и химические добавки относятся к классу несовершенных диэлектриков и чрезвычайно эффективно взаимодействуют с СВЧ-полем. Поглощаемая смесями СВЧ-мощность распределяется примерно равномерно по объему агрегированных комков, что и позволяет осуществить их быстрый нагрев. Это приводит к интенсивному испарению воды. При этом влажность порошкообразного материала, после обработки, достигает 1-8%. Такая влажность материала необходима для обеспечения требуемых условий при помоле и механоактивации, длительном хранении, а также для сохранения пуццолановой активности и предотвращения слипания частиц порошка.

Составы бетонных смесей с модификаторами, приготовленными по прототипу и предлагаемому способу принимали одинаковыми, кг/м3:

цемент 300; песок 730; щебень 1120; вода 165.

Порошкообразный модификатор и суспензия (пульпа) вводились в бетонную смесь из расчета 15% микрокремнезема от массы цемента, причем вода в составе суспензии учитывалась в общем количестве воды затворения.

Прочность бетона оценивали испытанием образцов-кубов размером ребра 10 см, твердевших в стандартных условиях.

В таблице 1, в качестве примера, приведены результаты испытаний свойств комплексного модификатора, бетонных смесей и бетонов, приготовленные предлагаемым способом.

Известно, что наиболее активными составляющими бетонной смеси является цемент и вода. Скорость и глубина гидратации цемента, условия твердения бетона в раннем возрасте являются решающими факторами, влияющими и на темпы набора прочности бетона, и на его качество.

Таблица 1
Состав компонентов суспензии и влияние модификаторов на прочность бетона
№ п/п Соотношение компонентов суспензии, масс.% Влажность полученного модификатора, % Температура замерзания модификатора, °C Размер гранул, мкм Прочность бетона 28 сут норм. хр., МПа
МК СП С-3 НТФ НН СНВ Вода
Прототип
1 50 5,5 0,16 - - 44,34 1,3 ниже -40 470 58,3
2 50 5,0 0,16 4,34 - 40 1,1 ниже -40 500 63,4
3 50 5,5 0,16 - 0,04 44,3 1,2 ниже -40 460 54,2
4 70 6,5 0,30 - - 18,7 7,8 -31 500 62,8
Предлагаемый вариант Размер гранул, нм
5 50 5,5 0,16 - - 44,34 1,5 ниже -40 95 71,3
6 50 5,0 0,16 4,34 - 40 2,1 ниже -40 100 75,8
7 50 5,5 0,16 - 0,04 44,3 1,1 ниже -40 90 60,7

Эффект СВЧ-нагрева основан на поглощении электромагнитной энергии в диэлектриках. Поля СВЧ проникают на значительную глубину, которая зависит от свойств материалов. Взаимодействуя с веществом на атомном и молекулярном уровне, эти поля влияют на движение электронов, что приводит к преобразованию СВЧ-энергии в тепло одновременно по всему объему на глубину проникновения электромагнитных волн.

Такие свойства ЭМП СВЧ позволяют интенсифицировать набор прочности бетонной смеси на 5-8%.

В таблице приведены результаты испытаний свойств комплексного модификатора, бетонных смесей и бетонов. Из таблицы видно, что образцы №5-7, полученные предложенным способом, обладает низкой влажностью и соответственно низкой температурой замерзания. Эффективность оценивалась на бетонах одинакового состава.

Предлагаемый способ приводит к повышению прочности бетона одного и того же состава на 12-23% по сравнению с прототипом.

Способ приготовления бетонной смеси, заключающийся в перемешивании цемента, заполнителей, воды и водной суспензии комплексного модификатора следующего состава, мас.%: микрокремнезем 40-70; химические добавки 2-10; вода - остальное, которую перед перемешиванием подвергают сушке в воздушном потоке до получения порошка, состоящего из гранул, отличающийся тем, что водную суспензию комплексного модификатора перед перемешиванием подвергают подсушке путем воздействия непрерывным электромагнитным полем сверхвысокой частоты 400-1000 МГц от СВЧ-генераторов и нагретым воздушным потоком охлаждения СВЧ-генераторов до получения порошка с гранулами размером до 500 мкм и влажностью 9-12%, затем подсушенный комплексный порошкообразный модификатор и цемент подвергают диспергированию и дезагрегации путем воздействия импульсным электромагнитным полем сверхвысокой частоты 1000-3000 МГц продолжительностью 1-1,5 секунды, до получения ультрадисперсного порошка комплексного модификатора размером 60-100 нм влажностью 1-8% и цемента размером 0,1-5 мкм, после чего их перемешивают, совместно перемалывают и активизируют, образуют дезагрегированную и активированную смесь цемента и комплексного модификатора, которую перемешивают с заполнителем и водой, получают бетонную смесь, на которую воздействуют мощным импульсным электромагнитным полем сверхвысокой частоты 400-1000 МГц продолжительностью 1÷100 наносекунды.
Источник поступления информации: Роспатент

Показаны записи 21-29 из 29.
20.12.2015
№216.013.9d11

Вакуумное теплоизоляционное изделие (варианты)

Изобретения относятся к теплоизоляционным изделиям и могут быть использованы в качестве теплоизоляции вагонов, изотермических контейнеров, холодильников и другого оборудования. В вакуумном теплоизоляционном изделии, состоящем из вакуумированного плоского корпуса с верхней (1) и нижней (2)...
Тип: Изобретение
Номер охранного документа: 0002571834
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9f74

Способ регулирования маневровых передвижений без маневровых светофоров

Изобретение относится к области железнодорожной автоматики и телемеханики и может быть использовано для регулирования движения поездов. В способе проведения маневровых работ на локомотив поступает информация о готовности маневрового маршрута и отображается на локомотивном табло с учетом...
Тип: Изобретение
Номер охранного документа: 0002572457
Дата охранного документа: 10.01.2016
20.04.2016
№216.015.3553

Способ контроля свободности рельсовой линии

Изобретение относится к области железнодорожной автоматики и может быть использовано для регулирования движения поездов на станции. В способе в рельсовую линию на одном конце подают сигнал тональной частоты, а на другом конце контролируют изменение сигнала, предварительно определив пороговые...
Тип: Изобретение
Номер охранного документа: 0002581277
Дата охранного документа: 20.04.2016
20.05.2016
№216.015.3ec5

Технологическая линия для производства пенобетонных изделий

Технологическая линия для производства пенобетонных изделий включает установленные в технологической последовательности и связанные транспортными средствами бункеры и питатели-дозаторы для сухих компонентов - цемента, песка и фиброволокна, емкость с водой и управляемым устройством для подачи...
Тип: Изобретение
Номер охранного документа: 0002584714
Дата охранного документа: 20.05.2016
10.08.2016
№216.015.5549

Технологическая линия для производства пенобетонных изделий

Изобретение относится к приготовлению пенобетонных изделий. Технический результат - интенсификация набора прочности пенобетонной смеси, повышение прочности пенобетонных изделий на сжатие, снижение расхода цемента, повышение однородности и стабильности пенобетонной смеси. В технологическую линию...
Тип: Изобретение
Номер охранного документа: 0002593685
Дата охранного документа: 10.08.2016
05.07.2018
№218.016.6c5d

Способ контроля состояний рельсовой линии участка приближения к переезду

Изобретение относится к железнодорожной автоматике и телемеханике для контроля состояний рельсовых линий на участке приближения к переездам. В способе на одном конце в рельсовую линию непрерывно подают сигнал опроса рельсовых линий, а на другом ее конце принимают посланный сигнал и в...
Тип: Изобретение
Номер охранного документа: 0002659668
Дата охранного документа: 03.07.2018
21.11.2018
№218.016.9f29

Автоматическая предупредительно-оповестительная система переездной железнодорожной сигнализации

Изобретение относится к области железнодорожной автоматики и телемеханики для информирования водителей транспортных средств о приближении и проследовании поездов по многопутному переезду. Система включает рельсовые цепи участков приближения четного и нечетного путей, источники питания и...
Тип: Изобретение
Номер охранного документа: 0002672743
Дата охранного документа: 19.11.2018
02.10.2019
№219.017.cd3e

Модульный завод по производству растворобетонных смесей

Изобретение относится к области строительства, а именно к производству бетонных смесей и изделий из них, растворных смесей, и может быть использовано для производства железобетонных изделий и конструкций, наружных и внутренних работ в крупнопанельном домостроении и в монолитном строительстве....
Тип: Изобретение
Номер охранного документа: 0002701003
Дата охранного документа: 24.09.2019
22.01.2020
№220.017.f885

Способ определения сопротивления рельсовой линии

Изобретение относится к железнодорожной автоматике и телемеханике и может быть использовано для контроля состояния сопротивления рельсовых линий, входящих в состав рельсовых цепей синусоидального тока, а также являющихся элементом обратной тяговой сети при электротяге. Сущность заявленного...
Тип: Изобретение
Номер охранного документа: 0002711548
Дата охранного документа: 17.01.2020
Показаны записи 21-30 из 44.
27.07.2014
№216.012.e570

Способ термической обработки сварных стыков рельсов

Изобретение относится к области термомеханической обработки сварных соединений, например сварных стыков рельсов, и может быть использовано на железнодорожном транспорте. Техническим результатом является повышение твердости и коррозионной стойкости сварных стыков рельсов за счет его...
Тип: Изобретение
Номер охранного документа: 0002524526
Дата охранного документа: 27.07.2014
27.08.2014
№216.012.ed64

Способ контроля качества изоляции электротехнических изделий

Изобретение относится к электротехнической области и может быть использовано при пропитке и сушке электротехнических изделий, в частности обмоток электрических машин подвижного состава. Технический результат: повышение качества контроля изоляции при пропитке и сушке изделия во время...
Тип: Изобретение
Номер охранного документа: 0002526591
Дата охранного документа: 27.08.2014
10.11.2014
№216.013.0525

Способ изготовления упругопористого нетканного проволочного материала

Изобретение относится к области обработки металлов давлением, в частности к изготовлению упругодемпфирующего пористого материала и изделий из него для виброзащиты динамически нагруженных объектов, которые могут быть использованы на железнодорожном и автомобильном транспорте, в...
Тип: Изобретение
Номер охранного документа: 0002532715
Дата охранного документа: 10.11.2014
10.12.2014
№216.013.0c97

Способ оценки технического состояния цилиндропоршневой группы двигателя внутреннего сгорания

Изобретение может быть использовано для определения технического состояния двигателей внутреннего сгорания (ДВС). Способ заключается в том, что получают индикаторную диаграмму, разбивают ее на участки и определяют показатели политроп сжатия и расширения. Измерение давления в цилиндре производят...
Тип: Изобретение
Номер охранного документа: 0002534640
Дата охранного документа: 10.12.2014
20.02.2015
№216.013.27b1

Способ соединения рельсовых плетей бесстыкового пути

Изобретение относится к железнодорожному транспорту, а именно к рельсовому стыковому соединению, и может быть использовано при удлинении рельсовых плетей бесстыкового пути алюмотермитной сваркой в процессе их укладки на подрельсовое основание и при восстановлении их целостности. Определяют...
Тип: Изобретение
Номер охранного документа: 0002541618
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3af1

Автоматизированная система ведения и анализа графика движения

Изобретение относится к системам ведения и анализа графика движения. Техническим результатом является повышение точности расчета системы тягового электроснабжения и формирование энергооптимального графика движения поездов. Система состоит из устройства ведения и анализа графика движения,...
Тип: Изобретение
Номер охранного документа: 0002546577
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.41eb

Способ балансировки роторов

Изобретение относится к области машиностроения и предназначено для использования в технологических процессах балансировки роторов. Способ заключается в том, что измеряют дисбалансы, определяют параметры корректирующих воздействий для каждой плоскости коррекции и производят корректировку масс,...
Тип: Изобретение
Номер охранного документа: 0002548373
Дата охранного документа: 20.04.2015
20.06.2015
№216.013.55ca

Упруго-демпферная опора ротора

Изобретение относится к области транспортного машиностроения и может быть использовано в машинах и механизмах с быстровращающимися роторами для снижения уровня вибрации роторов, особенно на резонансных режимах путем диссипации энергии вибрации. Упруго-демпферная опора включает наружное (1) и...
Тип: Изобретение
Номер охранного документа: 0002553492
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.5653

Способ изготовления вакуумного теплоизоляционного изделия

Способ предназначен для изготовления теплоизоляционных изделий. Способ заключается в изготовлении методом экструдирования наружной оболочки с внутренними ребрами жесткости продольной вставки, приварке к наружной оболочке торцевых стенок и вакуумировании внутренней полости наружной оболочки,...
Тип: Изобретение
Номер охранного документа: 0002553629
Дата охранного документа: 20.06.2015
10.07.2015
№216.013.5ba1

Способ плавления материалов

Изобретение относится к области строительства и может быть использовано при ремонте и/или создании новых кровель, выполненных из рулонных материалов. Техническим результатом изобретения является повышение качества восстановления кровли и увеличение ее эксплуатационного ресурса. Способ плавления...
Тип: Изобретение
Номер охранного документа: 0002554998
Дата охранного документа: 10.07.2015
+ добавить свой РИД