×
27.09.2014
216.012.f95c

Результат интеллектуальной деятельности: УСТРОЙСТВО ТРЕХМЕРНОГО СКАНИРОВАНИЯ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ В БЛИЖНЕМ ПОЛЕ ЭЛЕКТРОННЫХ СРЕДСТВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, представляет собой устройство трехмерного сканирования электромагнитных излучений в ближнем поле электронных средств и может быть использовано для измерения напряженности электромагнитного поля при проведении испытаний, диагностики и тестирования электронных устройств и приборов на выполнение требований по электромагнитной совместимости в части помехоэмиссии. Устройство состоит из измерительного модуля, закрепленного над приборным столом на кронштейне с возможностью перемещения по высоте. Измерительный модуль состоит из массива датчиков поля, каждый из которых реализован на двух взаимно перпендикулярных индуктивностях поверхностного монтажа, выводы которых подсоединены к входам мультиплексоров строк и столбцов; с помощью мультиплексоров выбирается требуемый датчик поля. Таким образом, измерение поля в горизонтальной плоскости производится без применения механических перемещающих систем, а с помощью системы вертикального перемещения производятся измерения на различной высоте от испытуемого устройства. Техническим результатом является упрощение конструкции и ускорение процесса измерения при трехмерном сканировании излучаемого компонентами и проводниками печатной платы электронного устройства электромагнитного поля. 3 ил.
Основные результаты: Устройство трехмерного сканирования электромагнитных излучений в ближнем поле электронных средств состоит из измерительного модуля, состоящего из массива датчиков поля, подсоединенных к мультиплексорам, отличающееся тем, что датчик поля реализован на двух перпендикулярно расположенных друг относительно друга индуктивностях поверхностного монтажа, а сам измерительный модуль закреплен на кронштейне и размещен над приборным столом с возможностью перемещения по высоте.

Изобретение относится к технике радиоизмерений и может быть использовано для измерения напряженности электромагнитного поля при проведении испытаний, диагностики и тестирования электронных устройств и приборов на выполнение требований по электромагнитной совместимости в части помехоэмиссии.

В области измерения электромагнитных излучений появились требования к необходимой сертификации электронных средств на помехоэмиссию. Многие сертификационные испытания выполняются быстрее и точнее при помощи систем измерения электромагнитных излучений с компьютерным управлением. Однако для обеспечения эффективного и оптимального выполнения требований по электромагнитной совместимости, измерения электромагнитных полей начинаются с самых ранних стадий разработки изделия. При выполнении таких измерений необходимы простые в управлении, быстрые и недорогие устройства. Для комплексного анализа распределения электромагнитных полей необходим процесс визуализации результатов измерения, т.е. представление результатов в виде графиков или в виде цветовой карты распределения интенсивности электромагнитных излучений. Изображения могут быть сформированы не только в виде двумерных цветовых карт, но и в трехмерном виде.

Уровень техники

Известно устройство «Сканер электромагнитной совместимости RS-серии» корпорации Detectus, описанное в источниках [1,2]. Данное устройство состоит из корпуса, верхней частью которого является приборный стол, вдоль корпуса расположена система горизонтального перемещения по оси X, вертикальными стойками соединенная с горизонтальными направляющими рейками и горизонтальной системой перемещения по оси Y, образующие П-образную форму. На ней расположена вертикальная направляющая, имеющая П-образный профиль, в которой размещается вертикальная система перемещения по оси Z, соединенная с кронштейном крепления датчика поля и фотокамеры. Данные три системы перемещения позволяют механически перемещать датчик поля в трех направлениях, по осям XYZ соответственно. Датчик поля установлен на кронштейне и соединен кабелем с анализатором спектра, рядом с датчиком поля закреплена фотокамера.

Недостатком данной системы является громоздкость систем перемещения датчика поля, П-образная конструкция которого определяет максимальные размеры не только ширины, но и высоты испытуемого устройства, что не позволяет датчику переместиться по высоте ниже горизонтальной планки кронштейна. Таким образом, измерения могут проводиться только на определенной высоте от измеряемого устройства, не позволяя приблизиться датчику на максимально близкое расстояние к элементам устройства, а следовательно, не позволяет измерить ближнее электромагнитное поле с наибольшей чувствительностью и точностью. Датчик поля для измерения в каждой точке координатной сетки перемещается механическим путем, что замедляет процесс сканирования.

Известна «Система для прецизионного сканирования электромагнитных излучений EPS3000» фирмы Noiseken [3,4], состоящая из корпуса, часть верхней крышки корпуса выполнена из стекла, эта область является приборным столом, внутри корпуса расположены системы горизонтального перемещения датчика поля по осям XY и датчик поля. Сверху корпуса установлен кронштейн, на котором расположена фотокамера. На приборный стол для измерения помещается испытуемое устройство, датчик поля, находящийся снизу данного устройства, перемещается по заданной координатной сетке. Снятые характеристики поля передаются на обработку в анализатор спектра и в ПК. Плата управления двигателями установлена в ПК, фотокамера производит фотоснимок, который в ПК совмещается с картой распределения интенсивности электромагнитных излучений.

Недостатком данной системы является измерение напряженности электромагнитного поля с обратной стороны платы, т.е. с противоположной стороны от компонентов, что может препятствовать верному обнаружению излучающего компонента. Отсутствие возможности перемещения датчика по вертикали также является недостатком данного устройства, так как не позволяет проводить трехмерное сканирование электромагнитных излучений диагностируемого устройства. Датчик поля для измерения в каждой точке координатной сетки перемещается механическим путем, что замедляет процесс сканирования.

Из известных устройств наиболее близким является устройство «Сканер печатных плат» корпорации EMSCAN [1,5,6,7,8]. Устройство представляет собой корпус, верхняя часть которого является приборным столом, на котором устанавливается испытуемое устройство, внутри корпуса размещен массив датчиков поля, сконструированных в виде сетки на основе многослойной печатной платы, выход каждого из датчика подключен к мультиплексору столбцов и мультиплексору строк, производящих выбор определенного датчика. Выходы мультиплексоров подключаются к анализатору спектра, показания которого в свою очередь обрабатываются в ПК.

Недостатком данного устройства является отсутствие возможности измерения с изменением высоты от датчика поля до диагностируемого устройства, т.е. невозможность проведения трехмерного сканирования. Еще одним недостатком является измерение электромагнитного поля с обратной стороны от радиоэлементов печатной платы, вследствие чего усложняется задача определения излучающего элемента, а в некоторых случаях даже отсутствует возможность его определения.

Сущность изобретения

Решаемой технической задачей изобретения является увеличение скорости измерения при трехмерном сканировании электромагнитного поля излучаемого компонентами и проводниками печатной платы электронного устройства при одновременном упрощении конструкции.

Это достигается тем, что на печатной плате формируется массив датчиков поля, все датчики поля подсоединены к мультиплексорам, первые выводы всех датчиков подсоединены к входам мультиплексора строк, вторые выводы датчиков поля подсоединены к входам мультиплексора столбцов, таким образом при подаче управляющего сигнала на мультиплексоры производится выбор одного из датчиков, после чего анализатором спектра с него снимаются характеристики электромагнитного поля и измерения передаются на обработку в ПК. Соответственно, чтобы измерить поле в плоскости XY не требуется механических перемещающих систем, а измерение всей горизонтальной плоскости производится переключением входов мультиплексора и выбором нужного датчика поля, что позволяет значительно сократить время измерений. Измерительный модуль закреплен на кронштейне, который в свою очередь установлен на системе вертикального перемещения, позволяющей перемещать измерительный модуль по вертикали. Сигнал с датчиков поля измеряется анализатором спектра, данные о измерениях передаются в ПК, где заносятся в соответствующую ячейку на хранение с последующей обработкой. Программное обеспечение ПК формирует управляющий сигнал и передает в блок управления и синхронизации, который управляет мультиплексорами и вертикальной перемещающей системой.

Сущность изобретения поясняется приведенными далее чертежами. На Фиг.1 представлена структурная схема сканирующего устройства, на Фиг.2 схематически представлена реализация измерительного устройства, на Фиг.3 представлен участок из измерительных датчиков. Предлагаемое устройство (Фиг.1) содержит измерительный модуль 1 на основе многослойной печатной платы, состоящий из массива датчиков поля 2, обращение к определенному датчику осуществляется с помощью двух мультиплексоров: мультиплексора строк 3 и мультиплексора столбцов 4, управляемых с блока управления и синхронизации 5. Сигнал от датчика через блок управления и синхронизации поступает на измерительное устройство 7, в качестве измерительного устройства может использоваться анализатор спектра или измерительный приемник. Блок управления и синхронизации состоит из микроконтроллера, управляемого с помощью программного обеспечения персонального компьютера. В памяти ПК сформирован массив, в который вносятся координаты измеряемой точки и ее измеренная электромагнитная эмиссия. Данные о координатах поступают от ПК в блок управления и синхронизации, микроконтроллер выдает команду мультиплексорам, которые в свою очередь переключают выходы на соответствующий датчик поля, сигнал с датчика поля поступает на измерительное устройство, где измеряется, и оцифрованное значение передается в ПК, заносится в ячейку памяти. В каждой точке координатной сетки производится перебор измеряемых частот в заданном диапазоне. Таким образом производится обращение к каждому датчику, и в итоге получаем массив координат с измеренными характеристиками поля в заданном диапазоне частот, что позволяет, используя цветовую шкалу, воспроизвести уровни электромагнитной эмиссии на дисплее. Для создания трехмерной картины распределения электромагнитной эмиссии необходимо с помощью блока вертикального перемещения 6 переместить измеритель на требуемый шаг и произвести заново измерение, таким образом, пошагово перемещая измерительный модуль, получим трехмерную картину распределения напряженности электромагнитных полей на различных частотах.

Реализация измерительного устройства схематически представлена на Фиг.2. Устройство состоит из приборного стола 9, на котором в процессе измерения размещается измеряемое устройство. На координатном столе закреплена стойка 10, в которой размещен винт 11, позволяющий перемещать измерительный модуль 12 по вертикали. Измерительный модуль сопряжен со стойкой и винтом с помощью кронштейна 13, винт вращается двигателем 15. Управление двигателем и выбор измерительных зондов, а также передача сигнала с датчика поля производится через разъем 14.

В качестве датчика поля могут быть использованы две индуктивности поверхностного монтажа поз.16, 17 (Фиг.3), расположенных перпендикулярно друг к другу, или диод с микрополосковыми линиями, расположенными перпендикулярно друг другу [7], что позволит обнаружить электромагнитные поля по X и по Y направлению. Индуктивности располагают на первом слое многослойной печатной платы, вторым слоем является слой заземления, предотвращающий наведение полей на третий слой, образованный проводниками соединяющих контакт горизонтально расположенной индуктивности с мультиплексором строк, четвертым слоем является слой заземления, экранирующий слой проводников третьего слоя от проводников пятого слоя, которые соединяют контакт вертикально расположенной индуктивности с мультиплексором столбцов. Шестой слой является слоем заземления, на последнем седьмом слое расположены мультиплексоры, дешифраторы и согласующие компоненты. Печатные проводники третьего слоя печатной платы требуется располагать перпендикулярно проводникам пятого слоя, а также уровнять волновое сопротивление каждого проводника третьего и пятого слоя согласующими элементами.

Таким образом, предлагаемое устройство трехмерного сканирования электромагнитных излучений в ближнем поле электронных средств может быть применено в качестве измерителя ближнего электромагнитного поля электронных средств, позволяющее создать картину распределения напряженности электромагнитных полей на различных частотах, а также трехмерную картину распределения напряженности электромагнитных полей, которая может быть использована для анализа электромагнитной совместимости измеряемого устройства, а также для определения излучающих компонентов ЭС. Что позволяет принять необходимые меры для улучшения электромагнитной обстановки электронного средства при ее разработке.

Литература

1. М.I. Montrose, Testing for EMC compliance approaches and techniques / Montrose M.I., Nakauchi E.M. USA: Institute of Electrical and Electronics Engineers, Inc. p.462, 2004, p.341-345.

2. URL: http://www.detectus.com/products_emc.html

3. URL: http://www.noiseken.com/uploads/photos0/148.pdf

4. URL: http://www.intrasoft-spb.ru/sistemy-ispytanii-elektronnogo-oborudova/izmeritelnyi-kompleks-dlya-pretsizionnog.php

5. URL: http://www.emscan.com/emxpert/index.cfm

6. Уильяме Т. ЭМС для разработчиков продукции / Т.Уильямс - М.: Издательский дом «Технологии», 2004 г., - 540 с., стр.163-164.

7. Патент США №4829238, МПК G01R 21/04; G01R 31/02, опубл. 1989.

8. Патент США №6268738, МПК G01R 31/28, опубл. 2001.

Устройство трехмерного сканирования электромагнитных излучений в ближнем поле электронных средств состоит из измерительного модуля, состоящего из массива датчиков поля, подсоединенных к мультиплексорам, отличающееся тем, что датчик поля реализован на двух перпендикулярно расположенных друг относительно друга индуктивностях поверхностного монтажа, а сам измерительный модуль закреплен на кронштейне и размещен над приборным столом с возможностью перемещения по высоте.
УСТРОЙСТВО ТРЕХМЕРНОГО СКАНИРОВАНИЯ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ В БЛИЖНЕМ ПОЛЕ ЭЛЕКТРОННЫХ СРЕДСТВ
УСТРОЙСТВО ТРЕХМЕРНОГО СКАНИРОВАНИЯ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ В БЛИЖНЕМ ПОЛЕ ЭЛЕКТРОННЫХ СРЕДСТВ
УСТРОЙСТВО ТРЕХМЕРНОГО СКАНИРОВАНИЯ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ В БЛИЖНЕМ ПОЛЕ ЭЛЕКТРОННЫХ СРЕДСТВ
Источник поступления информации: Роспатент

Показаны записи 121-130 из 241.
10.09.2015
№216.013.7657

Система комплексного управления движением транспорта

Изобретение относится к управлению движением транспорта, а именно к системам комплексного управления движением транспорта. Система включает в себя центральный компьютер, каналы связи с передатчиком и приемником, устройства сбора информации, централизованное устройство управления светофорами,...
Тип: Изобретение
Номер охранного документа: 0002561884
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7659

Устройство увеличения подъемной силы самолета короткого взлета и посадки

Изобретение относится к авиационной технике и касается средств увеличения подъемной силы самолетов короткого взлета и посадки. Устройство увеличения подъемной силы содержит поворотную силовую установку с винтами, привод поворота, автоматы демпфирования нагрузок, замки фиксации, топливную...
Тип: Изобретение
Номер охранного документа: 0002561886
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.76d0

Крыло самолета короткого взлета и посадки

Изобретение относится к авиационной технике и касается несущих систем самолетов короткого взлета и посадки. Крыло самолета короткого взлета и посадки содержит установленные в верхней части жесткие сдвижные панели, щелевые закрылки с каретками и опорными роликами, направляющие рельсы перемещения...
Тип: Изобретение
Номер охранного документа: 0002562005
Дата охранного документа: 10.09.2015
10.11.2015
№216.013.8df9

Способ очистки воздуха

Изобретение относится к процессам пылеулавливания. Способ очистки воздуха заключается в охлаждении и пересыщении очищаемого потока водяными парами при пропускании его через увлажнитель и разнотемпературную конденсационную камеру с газовым трактом преимущественно прямоугольного сечения,...
Тип: Изобретение
Номер охранного документа: 0002567952
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8dfd

Разнотемпературная конденсационная камера

Изобретение относится к оборудованию для пылеулавливания. Разнотемпературная конденсационная камера с газовым трактом преимущественно прямоугольного сечения, содержащая нижнее днище, верхнее днище, холодную и горячую боковые стенки тракта с устройствами обеспечения разности температур их...
Тип: Изобретение
Номер охранного документа: 0002567956
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.9381

Ротор генератора индукторного

Изобретение относится к области ветроэнергетики, в частности к ветроэлектрогенераторам сегментного типа. Технический результат заключается в повышении технологичности изготовления ротора. Ротор индукторного генератора содержит вал, ступицу, П-образные магнитопроводы. При этом ротор снабжен...
Тип: Изобретение
Номер охранного документа: 0002569380
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9382

Автомобильный генератор

Изобретение относится к электрическим машинам, а именно к бесконтактным синхронным генераторам индукторного типа. Технический результат - обеспечение возможности генерирования электрической энергии за счёт энергии торможения. Автомобильный генератор содержит основание, привод, тормозные...
Тип: Изобретение
Номер охранного документа: 0002569381
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.93c0

Способ определения концентрационного положения порога перколяции

Изобретение относится к области материаловедения, а именно к определению критической концентрации одной из фаз в многофазной системе. Способ определения концентрационного положения порога перколяции в наногранулированных композитных материалах с системой фаз металл-диэлектрик включает...
Тип: Изобретение
Номер охранного документа: 0002569443
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.93d5

Ветроколесо сегментного ветроэлектрогенератора

Изобретение относится к ветроэнергетике, а именно к ветроколесам ветроустановок с горизонтальной осью вращения, преимущественно предназначенным для работы с электрогенераторами сегментного типа. Ветроколесо сегментного ветроэлектрогенератора содержит ступицу, спицы, обод, лопасти с лонжеронами,...
Тип: Изобретение
Номер охранного документа: 0002569464
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.93d8

Статор электрогенератора

Изобретение относится к области ветроэнергетики, в частности к статорам электрогенератора, входящего в состав ветроагрегата. Cтатор электрогенератора содержит магнитопроводы, перемычки, установленные между ними, рабочие и возбуждающие катушки и крепежные элементы. Магнитопроводы выполнены в...
Тип: Изобретение
Номер охранного документа: 0002569467
Дата охранного документа: 27.11.2015
Показаны записи 121-130 из 285.
10.03.2015
№216.013.311f

Способ изготовления сотовой конструкции

Изобретение относится к области изготовления многослойных панелей и может быть использовано в производстве конструкции противотурбулентного устройства (ПТУ) и касается способа изготовления сотовой конструкции. Состоит из сотопакетов, соединенных с ребрами жесткости каркаса и между собой....
Тип: Изобретение
Номер охранного документа: 0002544043
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.3b1d

Аналого-цифровой преобразователь в системе остаточных классов

Изобретение относится к области измерительной и вычислительной техники и может быть использовано для быстрого преобразования аналоговых электрических сигналов в цифровой код в системах, функционирующих в системе остаточных классов (СОК). Технический результат - упрощение конструкции....
Тип: Изобретение
Номер охранного документа: 0002546621
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3c58

Способ обработки сопрягаемых поверхностей запорного устройства и устройство для его осуществления

Изобретение относится к области машиностроения и может быть использовано при изготовлении запорных устройств, например, для нефтегазовых магистралей. Способ обработки сопрягаемых поверхностей запорного устройства, выполненного в виде расположенного между щеками шибера, включает обработку шибера...
Тип: Изобретение
Номер охранного документа: 0002546936
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3c96

Способ сравнительных испытаний по надежности партий интегральных схем

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых интегральных схем (ИС). Сущность: из партий ИС методом случайной выборки отбирают одинаковое количество изделий (не менее 10 от каждой партии) и измеряют значение информативного...
Тип: Изобретение
Номер охранного документа: 0002546998
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3cf0

Способ обработки нанокомпозитов в водородной плазме

Изобретение относится к вакуумно-плазменной обработке композитов. При обработке нанокомпозитов в водородной плазме используют установку, содержащую СВЧ-печь, установленный внутри печи кварцевый реактор для размещения в нем нанокомпозитов, состоящий из корпуса в виде полого цилиндра из...
Тип: Изобретение
Номер охранного документа: 0002547088
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3d80

Устройство для контроля эвм

Изобретение относится к области автоматики и вычислительной техники и может быть использовано в вычислительных структурах, функционирующих в модулярной системе счисления. Техническим результатом является уменьшение количества используемого оборудования за счет использования блоков сложения...
Тип: Изобретение
Номер охранного документа: 0002547232
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.4331

Вертикальный ротор

Изобретение относится к области энергетики и может быть использовано в ветроэлектрогенераторах с вертикальной осью вращения. Вертикальный ротор содержит вертикальный вал, активные лопасти, соединенные гибкими связями с валом. Места крепления лопастей соединяются между собой дополнительными...
Тип: Изобретение
Номер охранного документа: 0002548699
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.45f5

Установка для очистки воздуха

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Установка для очистки воздуха содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного воздушного потока, несколько...
Тип: Изобретение
Номер охранного документа: 0002549413
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.45f6

Конденсационная камера

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Конденсационная камера для установки для очистки газового потока содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного...
Тип: Изобретение
Номер охранного документа: 0002549414
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.45fa

Способ подачи пара в конденсационную камеру

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Способ подачи пара в конденсационную камеру для очистки газового потока заключается в многократном последовательном поэтапном насыщении запыленного газового...
Тип: Изобретение
Номер охранного документа: 0002549418
Дата охранного документа: 27.04.2015
+ добавить свой РИД