×
10.06.2014
216.012.cd06

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЙ ПЕНТАОКСИДА ТАНТАЛА НА ПОДЛОЖКЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гальванотехники и может быть использовано для изготовления материалов, содержащих пленочные структуры с новыми электрическими, магнитными и оптическими характеристиками, в частности, для получения имплантатов, обладающих электретными свойствами. Способ формирования покрытия пентаоксида тантала на подложке включает формирование покрытия из прекурсора - фторидного соединения тантала, при этом покрытие формируют методом плазменно-электролитической обработки подложки импульсным током во фтортанталатном электролите на проводящей металлической подложке из титана или его сплава в диапазоне напряжений от 50 до 300 В в потенциостатическом режиме. Технический результат: упрощение способа нанесения покрытия пентаоксида тантала, при этом осуществление процесса не требует сложного специального оборудования и дорогостоящих реагентов. 1 з.п. ф-лы, 7 пр.

Изобретение относится к методам получения оксидных покрытий тантала на подложке, преимущественно из титана и его сплавов, и может быть использовано для формирования покрытий пентаоксида тантала для изготовления материалов, содержащих пленочные структуры с новыми электрическими, магнитными и оптическими характеристиками, в частности, для получения имплантатов, обладающих электретными свойствами.

Оксиды переходных металлов представляют собой материалы, которые проявляют полупроводниковые, ферромагнитные, сегнетоэлектрические, электрохромные, фотохромные и другие свойства. В связи с этим открываются широкие возможности для изготовления пленочных структур с новыми электрическими, магнитными и оптическими характеристиками (Технология осаждения пленок оксида тантала методом реактивного магнетронного распыления. Автореферат диссертации на соискание ученой степени кандидата технических наук. Специальность: ВАК 05.27.02. Комлев А.Е. 2011 год, Санкт-Петербург) (D1).

Среди оксидов металлов переходной группы значительный интерес вызывает пентаоксид тантала Та2О5. Благодаря своим уникальным свойствам пленки Та2О5 находят применение в различных областях в качестве перспективных материалов для приборов вакуумной и плазменной электроники, микроэлектроники и устройств медицинского назначения (Технология тонких пленок (справочник). Под ред. Л. Майселла, Нью-Йорк, 1970, Пер. с англ., М.: Сов. Радио, 1977, с.768) (D2) и в качестве защитного покрытия элементов приборов вакуумной и плазменной электроники (High k dielectrics for low temperature electronics / Pereira L., Barquinha P., Fortunate E. et al. // Thin Solid Films, 2008, Vol.516, p.1544-1548) (D3).

Методы осаждения пленок Та2О5 на подложки весьма разнообразны, при этом наиболее стабильные электрофизические свойства пленок достигаются применением метода реактивного магнетронного распыления танталовой мишени материалов в реактивной газовой среде (D1).

Перспективность титана и его сплавов для изготовления имплантатов обосновывается физико-механическими, химическими и биологическими свойствами. Эти свойства соответствуют требованиям к внутрисосудистым имплантатам, работающим в сложных условиях циклического нагружения в контакте с мягкими тканями и кровью (Трофимов В.В., Федчишин О.В., Клименов В.А. Титан, сплавы титана и их применение в стоматологии // Сибирский медицинский журнал. - 2009. - №7. - С.10-12) (D4).

Титан отличается легкостью, устойчивостью к коррозии, хорошо поддается обработке. По отношению к другим металлам, используемым в качестве имплантатов, титан имеет ряд преимуществ. К ним относятся: высокая биосовместимость, биоинертность, хорошая коррозионная стойкость, немагнитность, низкая теплопроводность, малый коэффициент линейного расширения, практически отсутствие токсичности.

Титан в живом организме под действием механической деформации, ионов хлора и коррозии частично биодеградирует и диффундирует в окружающей ткани. Токсических эффектов или аллергических реакций при этом, в отличие от циркониевых и железохромовых сплавов, даже при достаточно высоком уровне содержания металла в тканях, не происходит. Титан отличает также постоянство физико-химических свойств в широком интервале температур (D4).

Запатентованы распыляемая мишень на основе пентаоксида тантала для получения прозрачной проводящей пленки, способ получения такой пленки и состав для использования в этом способе (пат. РФ по заявке №2009117697, опубл. 20.11.2010) (D5). Композиция, состоящая преимущественно из а) от примерно 80 до примерно 99 мол.% диоксида титана и б) от примерно 1 до примерно 20 мол.% одного или нескольких материалов, выбираемых из группы, состоящей из пентаоксида тантала состава Та2О5, диоксида вольфрама, оксида ниобия состава Nb2O5, диоксида молибдена, а также тантала, вольфрама, ниобия и их смесей, причем мольные проценты относятся ко всему продукту, а сумма компонент а) и б) составляет 100.

В частном случае осуществления изобретения компонента б) представляет собой пентаоксид тантала состава Та2О5. Агломерированный продукт получают спеканием композиции заданного состава из перечисленных выше соединений. Распыляемую мишень, включающую продукт, получают спеканием композиции. Прозрачную электропроводящую пленку получают формированием на поверхности субстрата электропроводящего слоя из композиции заданного состава, охарактеризованного выше.

Известен способ изготовления имплантата с электретными свойствами для остеосинтеза (пат. РФ №2040277, опубл. 25.07.1995) (D6). Данный способ реализуют на электронно-лучевой установке со сменной мишенью из тантала и его оксида. Согласно изобретению подложку выполняют в виде имплантата из титана, нагревают его в дополнительной камере в вакууме, проводят геттерное испарение мишени и наносят слой тантала заданной толщины, контролируя скорость конденсации, затем меняют материал мишени на оксид тантала, снижают температуру поверхности имплантата и наносят на первый слой второй - электретный слой из оксида тантала, контролируя скорость конденсации до получения заданной толщины.

В качестве основных недостатков описанных выше способов следует отметить необходимую остановку процессов изготовления имплантатов для замены мишени из тантала на мишень из оксида тантала и сложность изготовления мишени из оксида тантала.

Кроме того, указанные способы достаточно эффективны для изготовления плоских имплантатов, имеющих длину не более 10 см, но неприменимы для конструкций имплантатов сложной формы (Г-образной и других форм), которые начинают использоваться в современной медицине.

Этих недостатков лишен способ изготовления имплантата в электродуговой установке (пат. РФ №2049481, опубл. 10.12.1995) (D7). Имплантат помещают в камеру вакуумного испарения, производят очистку в тлеющем разряде, затем наносят покрытие слоем тантала электрической дугой, осуществляют остывание имплантата в вакууме, после чего извлекают имплантат из камеры вакуумного испарения и помещают его в электролитическую ванну, где проводят окисление слоя тантала. После электролитического окисления обеспечивают электретные свойства пленки оксида тантала в коронном разряде. Очистку имплантата осуществляют в вакуумной камере при давлении 10-3-2·10-4 в тлеющем разряде током 2,9-3,0 А при напряжении 490-510 В в течение 10-15 мин. Затем наносят покрытие слоем тантала электрической дугой током 188-190 А при напряжении 25-30 В и напряжении смещения на имплантат 148-150 В в течение 5-8 мин, после чего осуществляют остывание имплантата в вакууме 10-3-2·10-4 в течение 35-40 мин. Далее помещают имплантат с нанесенным слоем тантала в электролитическую ванну с 0,1%-ным раствором ортофосфорной кислоты и проводят электролитическое окисление слоя тантала при напряжении 90-110 В в течение 20-30 мин.

В качестве недостатка этого способа следует отметить многостадийность изготовления имплантата: нанесение тантала на имплантат в электродуговой установке; окисление тантала в электролитической ванне.

В качестве прототипа выбран способ формирования слоев пентаоксида тантала на подложке (пат. США №6863725, опубл. 05.08.2004) (D8), основанный на сублимации TaF5 и последующем разложении его с образованием пентаоксида тантала. TaF5 при комнатной температуре находится в твердом состоянии. Для сублимации пентафторида тантала его нагревают до оптимальной температуры 60-80°С. Для удаления паров TaF5 из камеры осуществляют продувку инертным газом, например гелием. Пентаоксид тантала из газовой фазы осаждают на подложку при температуре от 200 до 400°С под давлением ниже атмосферного. В камеру можно подавать воду из барботера. В добавление к воде или вместо воды к прекурсору подается поток типового прекурсора - озона О3, являющегося смесью озона О3 и кислорода О2.

Процесс осуществляют с использованием специального оборудования при пониженном давлении в атмосфере инертного газа. В качестве реагентов используют воду, кислород и озон.

Общим признаком у выбранного прототипа и заявляемого изобретения является использование в качестве прекурсоров фторидных соединений - пентафторида тантала TaF5 и гексафтортанталатов щелочных металлов и аммония MTaF6, где M - Na, K, NH4.

К недостаткам способа относится необходимость использования сложного оборудования, вакуума и озона.

Задачей предлагаемого изобретения является упрощение способа нанесения покрытий из Ta2O5 на подложку из титана и его сплавов путем формирования покрытий методом плазменно-электролитической обработки (ПЭО).

Поставленная задача решается за счет того, что в способе получения покрытий из Ta2O5, формируемых из фторидных соединений тантала на подложке, в отличие от известного способа, покрытие из Ta2O5 формируют методом плазменно-электролитической обработки подложки (изделия) из титана или его сплавов импульсным током во фтортанталатном электролите.

Контроль параметров ПЭО-процесса на компьютере в режиме реального времени осуществляли с помощью автоматизированной системы управления и контроля, АСУиК (ООО «Флерон», г. Владивосток). По данным АСУиК частота импульсов источника тока равна 300 с-1, передний фронт импульса крутой, менее 0,1 мс. Снижение в импульсе значения управляемой величины, напряжения при потенциостатическом режиме происходит плавно, приблизительно экспоненциально, так, что время релаксации, т.е. время, за которое напряжение уменьшается в е≈2,7 раз составляет 0,3-0,5 мс. АСУиК проводит измерение напряжения и силы тока 128 раз за каждые 20 мс и рассчитывает среднее значение. В описываемом изобретении приводятся лишь средние значения напряжения и силы тока.

Образцы для формирования анодных покрытий изготавливали прямоугольной формы из сплава титана ВТ1-0 размером 2 см×0,5 см и толщиной 0,5 мм. Плазменно-электролитическое оксидирование проводили в электролите, помещенном в стакан из полиэтилена объемом 100 мл, с целью охлаждения электролита стакан помещали в холодную воду со льдом; к началу процесса анодирования температура электролита составляла ~10°C. В качестве катода использовали титановую пластину 3 см×13,5 см толщиной 0,5 мм, изогнутую по форме цилиндрического стакана. Диаметр катода меньше внутреннего диаметра стакана примерно на 0,1-0,4 см и составляет около 4,5-4,8 см. Электролит перемешивали, используя магнитную мешалку. Анод располагали по центру стакана так, что расстояние от анода до окружающего его цилиндрического катода составляло около 1,2-2,4 см.

Процесс осуществляют следующим образом.

В эксперименте образцы подложки изготавливают из титанового сплава ВТ 1-0 соответствующего размера. Предварительно образцы подложки подвергают механической обработке, снимая заусеницы, затем химически полируют в смеси концентрированных фтористоводородной и азотной кислот при объемном отношении HF к HNO3, равном 1 к 3, после чего промывают подготовленные образцы последовательно в проточной, затем в дистиллированной воде и сушат на воздухе.

Процесс плазменно-электролитического оксидирования проводят в электролитической ячейке во фтортанталатном электролите, в частности, в растворе гексафтортанталата аммония, или калия, или натрия с их концентрацией от 0,06 до 0,10 моль/л. Снижение концентраций гексафтортанталатов щелочных металлов или аммония менее 0,06 моль/л приводит к тому, что образующаяся пленка пентаоксида тантала не является сплошной. Повышение концентрации MTaF6 более 0,10 моль/л нецелесообразно, т.к. это не дает дополнительного эффекта, но приводит к излишнему расходу реагентов.

В качестве катода служит титановое изделие, в частности имплантат. Электролит в ячейке перемешивают с помощью магнитной мешалки. В экспериментах в качестве источника тока используют управляемый компьютером реверсивный тирристорный агрегат TEP4-63/460H-2-2-УХЛ4 (Россия), работающий в однополярном режиме.

Экспериментально установлено, что в электролитах указанных составов при напряжении на электродах Uф, равном 25 В, и длительности обработки в течение 2 мин, искрение на аноде не наблюдается, образуются тонкие, цветов побежалости пленки, содержащие только оксид титана. Тантал в таких пленках не обнаружен. При напряжении Uф выше 50 В и длительности обработки в течение 2 мин на аноде наблюдаются отдельные искровые разряды, а анализы подтверждают встраивание тантала в покрытие. При напряжении Uф, равном 300 В, и длительности обработки в течение 2 мин в первые мгновения в ячейке протекают токи, приводящие к быстрому разогреву электролита и его вскипанию. Таким образом установлено, что рабочий диапазон напряжений при потенциостатическом формировании лежит в пределах от 50 В до 300 В.

На основе данных рентгенофазового анализа было установлено наличие в составе полученных покрытий пентаоксида тантала.

Таким образом, техническим результатом заявляемого изобретения является возможность формирования покрытий из пентаоксида тантала на подложке из титана и его сплавов методом плазменно-электролитического оксидирования в одну стадию, что существенно упрощает способ формирования покрытий и сокращает время процесса. При этом осуществление процесса не требует сложного специального оборудования и дорогостоящих реагентов.

Покрытия из Ta2O5, полученные предлагаемым методом, могут быть обработаны известными способами, например, в коронном разряде, приобретая электретные свойства. Метод коронного разряда на сегодняшний день является наиболее распространенным в производстве пленочных электретов. Его преимуществом являются простота аппаратуры и высокая производительность (Электреты / Пер. с англ. под ред. Г. Сесслера. М.: Мир, 1983. 487 с.) (D9).

Возможность осуществления изобретения подтверждается примерами.

Пример 1.

Образец из титана марки ВТ1-0 размером 2 см×0,5 см и толщиной 0,5 мм предварительно подвергают механической обработке, снимая заусеницы, затем химически полируют в смеси фтористоводородной и азотной кислот, взятых в отношении 1 к 3, промывают в проточной, затем в дистиллированной воде и сушат на воздухе. Процесс плазменно-электролитического оксидирования проводят в гексафтортанталате аммония, с концентрацией NH4TaF6 в растворе 0,06 моль/л в ячейке из полиэтилена. В качестве катода служит титановая заготовка. Электролит перемешивают с помощью магнитной мешалки. В качестве источника тока используют управляемый компьютером реверсивный тирристорный агрегат ТЕР4-63/460Н-2-2-УХЛ4 (Россия), работающий в однополярном режиме. Процесс осуществляют при напряжении на электродах Uф, равном 50 В, длительность обработки составляет 2 мин. Начальная температура электролита 10°C, конечная - 18°C, конечное эффективное значение плотности тока равно 1,7 А/дм2. Толщина покрытия составляет 1,7 мкм. Краевой угол смачивания покрытия водой 71°, шероховатость поверхности - 0,15 мкм. При исследовании элементного состава, проводившемся на рентгеноспектральном анализаторе JXA-8100 фирмы JEOL с энергодисперсионной приставкой Oxford Instrument INCA-sight, было установлено, что в составе покрытий сформированных под напряжением 50 В содержится, ат.%: O - 62,1; F - 3,4; Ti - 24,2; Ta - 10,3.

Пример 2.

Образец из титана марки ВТ1-1 размером 2 см×0,5 см и толщиной 0,5 мм предварительно подвергают механической обработке, снимая заусеницы, затем химически полируют в смеси фтористоводородной и азотной кислот, взятых в отношении 1:3, промывают в проточной и дистиллированной воде, сушат на воздухе. Процесс осуществляют аналогично описанному в примере 1 при напряжении на электродах Uф, равном 100 В, длительность обработки составляет 2 мин. Концентрация NH4TaF6 в растворе 0,11 моль/л. Начальная температура электролита 10°C, конечная - 19°C, конечное эффективное значение плотности тока равно 3,1 А/дм2. Толщина покрытия составляет 1,8 мкм. Краевой угол смачивания покрытия водой 74°, шероховатость поверхности - 0,17 мкм. В составе покрытий, сформированных под напряжением 100 В, содержится, ат.%: O - 65,2; F - 2,9; Ti - 16,1; Ta - 15,8.

Пример 3.

Образец из титанового сплава марки ВТ-5. Процесс осуществляют аналогично описанному в примере 1 при напряжении на электродах, равном 150 В, длительность обработки - 2 мин. Концентрация NH4TaF6 в растворе 0,08 моль/л. Начальная температура электролита 10°C, конечная - 19°C, конечное эффективное значение плотности тока равно 4,5 А/дм2. Толщина покрытия составляет 2,6 мкм. Краевой угол смачивания покрытия водой 85°, шероховатость поверхности - 0,19 мкм. В составе покрытий, сформированных под напряжением 150 В, содержится, ат.%: O - 66,5; F - 2,3; Ti - 12,1; Ta - 19,1.

Пример 4.

Процесс осуществляют аналогично описанному в примере 1 при напряжении на электродах 200 В, длительность обработки - 2 мин. Концентрация KTaF6 в растворе 0,06 моль/л. Начальная температура электролита 10°C, конечная - 21°C, конечное эффективное значение плотности тока равно 6,2 А/дм2. Толщина покрытия составляет 2,3 мкм. Краевой угол смачивания покрытия водой 64°, шероховатость поверхности - 0,22 мкм. В составе покрытий, сформированных под напряжением 200 В, содержится, ат.%: O - 67,4; F - 2,7; Ti - 9,7; Ta - 20,2.

Пример 5.

Процесс осуществляют аналогично описанному в примере 1 при напряжении на электродах Uф, равном 250 В, длительность обработки - 2 мин. Концентрация NaTaF6 в растворе 0,06 моль/л. Начальная температура электролита 10°C, конечная - 25°C, конечное эффективное значение плотности тока равно 5,1 А/дм2. Толщина покрытия составляет 18 мкм. Краевой угол смачивания покрытия водой 78°, шероховатость - 0,57 мкм. В составе покрытий, сформированных под напряжением 250 В, содержится, ат.%: O - 69,6; Ti - 10,7; Ta - 19,7.

Пример 6.

Процесс осуществляют аналогично описанному в примере 1 при напряжении на электродах Uф, равном 25 В, длительность обработки - 2 мин. Концентрация NH4TaF6 в растворе 0,04 моль/л. При этом режиме искрение на аноде не наблюдается, образуются тонкие, цветов побежалости пленки, содержащие только оксид титана. Тантал в таких пленках не обнаружен.

Пример 7.

Процесс осуществляют аналогично описанному в примере 1 при напряжении на электродах Uф, равном 350 В. Концентрация NH4TaF6 в растворе 0,06 моль/л. В первые мгновения в ячейке протекают токи, приводящие к быстрому разогреву электролита и его вскипанию.

Примеры 6, 7 показывают, что выход за рабочие диапазоны напряжений от 50 В до 300 В при потенциостатическом формировании покрытий нецелесообразен.

Источник поступления информации: Роспатент

Показаны записи 71-80 из 128.
18.01.2019
№219.016.b177

Способ получения защитных покрытий на вентильных металлах и их сплавах

Изобретение относится к плазменно-электролитическому нанесению покрытий на вентильные металлы и их сплавы и может найти применение в различных отраслях промышленности, в машиностроении, приборостроении для работы в узлах трения и для защиты изделий и сооружений от атмосферной и...
Тип: Изобретение
Номер охранного документа: 0002677388
Дата охранного документа: 16.01.2019
08.02.2019
№219.016.b811

Способ получения керамического ядерного топлива

Изобретение относится к технологии производства спеченных керамических топливных таблеток для ядерных реакторов, содержащих делящиеся материалы, в частности порошок диоксида урана. Cпособ предусматривает искровое плазменное спекание подпрессованного порошка диоксида урана UO в молибденовой...
Тип: Изобретение
Номер охранного документа: 0002679117
Дата охранного документа: 06.02.2019
03.03.2019
№219.016.d237

Сорбционный материал для селективного извлечения радионуклидов стронция из сложных по ионному составу растворов и способ извлечения радионуклидов стронция с его помощью

Группа изобретений относится к сорбционным материалам и способам сорбционного извлечения радионуклидов стронция из многокомпонентных растворов и может найти применение для очистки сложных по ионному составу растворов и водных сред. Сорбционный материал для селективного извлечения радионуклидов...
Тип: Изобретение
Номер охранного документа: 0002680964
Дата охранного документа: 01.03.2019
03.03.2019
№219.016.d289

Способ получения гидрофобных материалов

Изобретение относится к способам получения материалов с гидрофобными свойствами и может быть использовано в производстве строительных материалов и для получения гидрофобных сорбентов на основе природных алюмосиликатов для очистки жидких сред. Способ предусматривает термообработку исходного...
Тип: Изобретение
Номер охранного документа: 0002681017
Дата охранного документа: 01.03.2019
14.03.2019
№219.016.df31

Способ изготовления объёмных композиционных панелей

Изобретение относится к серийному изготовлению объемных крупногабаритных композиционных панелей и может быть использовано в производстве панелей с многоуровневой поверхностью с выступающими и утопленными площадками различной формы и с различным рельефом поверхности, предназначенных для...
Тип: Изобретение
Номер охранного документа: 0002681814
Дата охранного документа: 12.03.2019
08.04.2019
№219.016.fe65

Способ изготовления слоистых стеклометаллокомпозитов

Изобретение относится к способу получения слоистого стеклометаллокомпозита. Способ включает формирование стеклометаллопакета путем укладки чередующихся пластин из алюминия или его сплава, предварительно выдержанных в течение 5-10 минут в расплаве стекла с температурой стеклования 450-550°С,...
Тип: Изобретение
Номер охранного документа: 0002684255
Дата охранного документа: 04.04.2019
16.05.2019
№219.017.520d

Способ очистки нефтесодержащих вод и устройство для его осуществления

Группа изобретений относится к очистке нефтесодержащих вод и может найти применение для очистки сточных вод промышленных предприятий, деятельность которых связана с использованием нефтесодержащих жидкостей, нефтебаз, АЗС, нефтедобывающих платформ, а также судовых льяльных вод. Способ очистки...
Тип: Изобретение
Номер охранного документа: 0002687461
Дата охранного документа: 13.05.2019
18.05.2019
№219.017.53c9

Способ получения нанодисперсного магнитоактивного рентгеноконтрастного средства

Изобретение относится к медицине, в частности к рентгенологии, и может быть использовано в качестве рентгеноконтрастного средства при рентгенологических исследованиях различных органов. Способ включает осаждение магнетита FeO из раствора, содержащего соли железа (II) и железа (III),...
Тип: Изобретение
Номер охранного документа: 0002687748
Дата охранного документа: 16.05.2019
20.05.2019
№219.017.5c3e

Способ получения сорбционного материала для сбора нефти и нефтепродуктов

Изобретение относится к материалам для сорбции нефтепродуктов и может быть использовано для ликвидации аварийных разливов нефти и нефтепродуктов на водной поверхности природных и искусственных водоемов, для очистки сточных вод. Способ включает изготовление полипропиленового волокна методом...
Тип: Изобретение
Номер охранного документа: 0002687913
Дата охранного документа: 16.05.2019
04.06.2019
№219.017.72af

Способ получения композитного материала, обладающего фотокаталитическими свойствами

Изобретение касается функциональных полимерных композиционных материалов, содержащих частицы металлов и/или оксидов металлов, и более конкретно, относится к способам получения гибридных композитных материалов, содержащих диоксид титана в полимерной матрице и обладающих выраженными...
Тип: Изобретение
Номер охранного документа: 0002690378
Дата охранного документа: 03.06.2019
Показаны записи 71-80 из 83.
10.07.2019
№219.017.ac16

Способ получения никель-медного оксидного катализатора

Изобретение относится к получению никель-медных оксидных катализаторов на металлической подложке, которые могут быть использованы при конверсии СО в CO в высокотемпературных процессах очистки технологических и выхлопных газов, в частности в энергетике и автомобильной промышленности....
Тип: Изобретение
Номер охранного документа: 0002342999
Дата охранного документа: 10.01.2009
10.07.2019
№219.017.b163

Способ получения катализатора для очистки выхлопных газов двигателей внутреннего сгорания

Изобретение относится к способам получения катализаторов, предпочтительно используемых для очистки выхлопных газов двигателей внутреннего сгорания. Способ включает пропитку инертного носителя смесью органических растворов соединений европия и/или церия, платины и/или палладия и висмута, отгонку...
Тип: Изобретение
Номер охранного документа: 0002465047
Дата охранного документа: 27.10.2012
05.09.2019
№219.017.c6ee

Способ получения гибридных композитных материалов с электропроводящим покрытием

Изобретение относится к способу получения конструкционных слоистых композитных материалов на основе препрегов из стеклоткани либо углеткани, пропитанных отверждаемым полимером и может найти применение при изготовлении фюзеляжей в авиационной и аэрокосмической технике, а также композитных...
Тип: Изобретение
Номер охранного документа: 0002699120
Дата охранного документа: 03.09.2019
15.10.2019
№219.017.d5c4

Способ вскрытия флюорита

Изобретение относится к способам переработки минерального сырья, в частности флюорита и флюоритовых концентратов, с получением соединений фтора, используемых в качестве фторирующих агентов. Способ переработки сырья включает сульфатизацию, осуществляемую путем обжига с 20% избытком фторида...
Тип: Изобретение
Номер охранного документа: 0002702883
Дата охранного документа: 11.10.2019
13.02.2020
№220.018.01ee

Рентгеноконтрастное биоактивное стекло и способ его получения

Изобретение относится к медицине, а именно к композиции рентгеноконтрастного биостекла и способу ее получения, и может быть использовано в ортопедии и челюстно-лицевой хирургии для создания на имплантатах биоактивного покрытия или в стоматологии в качестве добавки в пломбировочный материал, и...
Тип: Изобретение
Номер охранного документа: 0002714035
Дата охранного документа: 11.02.2020
29.02.2020
№220.018.072a

Способ переработки ильменитового концентрата

Изобретение может быть использовано при переработке природного титансодержащего сырья с получением диоксида титана анатазной модификации. Способ переработки ильменитового концентрата включает его вскрытие с помощью сульфатизирующего реагента с последующим отделением соединений титана от...
Тип: Изобретение
Номер охранного документа: 0002715193
Дата охранного документа: 25.02.2020
29.02.2020
№220.018.0748

Способ переработки ильменитового концентрата

Изобретение относится к переработке природного титансодержащего сырья с получением диоксида титана рутильной модификации, который находит применение в лакокрасочной и целлюлозно-бумажной отраслях промышленности, в производстве пластмасс и резинотехнических изделий, а также в качестве...
Тип: Изобретение
Номер охранного документа: 0002715192
Дата охранного документа: 25.02.2020
12.04.2023
№223.018.48ab

Способ получения ортоборатов лантана, допированных европием и висмутом

Изобретение относится к способу получения боратных люминофоров с помощью термообработки, причем в качестве прекурсора используют смесь олеата лантана, олеата европия, экстракта висмута с борной кислотой с введением октанола и триоктиламина, которую нагревают сначала в течение 1 часа при 200°C и...
Тип: Изобретение
Номер охранного документа: 0002762551
Дата охранного документа: 21.12.2021
12.04.2023
№223.018.48b2

Способ получения боратов лантана, легированных европием и тербием

Изобретение относится к получению люминесцентных материалов, используемых в светотехнике, а также в нелинейной оптике в широком спектральном диапазоне. Для получения боратных люминофоров проводят термообработку органических солей редкоземельных элементов. В качестве прекурсора используют смесь...
Тип: Изобретение
Номер охранного документа: 0002761209
Дата охранного документа: 06.12.2021
21.05.2023
№223.018.6952

Способ лечения аденокарциномы эрлиха

Изобретение относится к области медицины, а именно к экспериментальной онкологии и лучевой терапии, и может быть использовано для лечения аденокарциномы Эрлиха методом лучевой терапии. Вводят в опухоль синтезированные микрочастицы биостекла «Bioglass 45S5». Затем выполяют локальное облучение...
Тип: Изобретение
Номер охранного документа: 0002794457
Дата охранного документа: 18.04.2023
+ добавить свой РИД