×
27.05.2013
216.012.4592

Результат интеллектуальной деятельности: СПОСОБ ПРЕДЭПИТАКСИАЛЬНОЙ ОБРАБОТКИ ПОВЕРХНОСТИ ГЕРМАНИЕВОЙ ПОДЛОЖКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области полупроводниковой опто- и микроэлектроники. Способ предэпитаксиальной обработки поверхности подложки из германия включает удаление с поверхности подложки оксидного слоя, очистку поверхности германия от неорганических загрязнений и пассивацию поверхности подложки. Удаление оксида с поверхности германия осуществляют погружением подложки в раствор соляной кислоты с концентрацией 30-40 мас.% в течение 2-4 минут. Очистку германия от неорганических примесей проводят погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду в течение 0,5-1,5 минут; пассивацию поверхности германия в растворе соляной кислоты с концентрацией 30-40 мас.% в течение 2-5 минут. Подготовку поверхности подложки ведут при температуре 19-23°С. Способ позволяет упростить процесс предэпитаксиальной обработки поверхности германиевой подложки за счет сокращения числа стадий обработки при минимальной модификации поверхности подложки.
Основные результаты: Способ предэпитаксиальной обработки поверхности подложки из германия, включающий последовательную обработку при температуре 19-23°С поверхности подложки раствором соляной кислоты с концентрацией 30-40 мас.% в течение 2-4 мин для удаления оксидного слоя, раствором, содержащим плавиковую кислоту, перекись водорода, винную кислоту и воду при следующем их соотношении в пересчете на литр раствора: в течение 0,5-1,5 мин для удаления неорганических загрязнений и пассивацию поверхности подложки раствором соляной кислоты с концентрацией 30-40 мас.% в течение 2-5 мин.

Изобретение относится к области полупроводниковой опто- и микроэлектроники и может быть использовано в электронной промышленности для создания приборов на основе полупроводниковых гетероструктур, в т.ч. каскадных фотопреобразователей на основе системы GaInP/GaAs/Ge.

Известен способ химического травления поверхности германиевой подложки (ГП) (см. патент US №2941875, опубликован 21.06.1960), основанный на воздействии на германиевую подложку травильного раствора, содержащего гипохлорит натрия, оксид германия (IV) в качестве ингибитора и растворенный в воде углекислый газ. Использование ингибитора позволило снизить селективность травления кристаллических граней германия и повысить однородность поверхности германиевой подложки. Отсутствие коррозионных реагентов в травителе позволило отказаться от использования дорогого коррозионно-стойкого оборудования для травления.

Недостатком такого способа является сложная конструкция системы подачи углекислого газа, сильная зависимость скорости травления ГП от температуры окружающей среды, осаждение ингибитора и ионов металлов на поверхности ГП.

Известен способ обработки полупроводниковых германиевых пластин (см. J.Kim, К.Saraswat and Y.Nishi. - Study of germanium surface in wet chemical solutions for surface cleaning applications / 208th ECS Meeting, Abstr. №779, 2005), заключающийся во взаимодействии поверхности ГП с растворенным в воде озоном. Использование озона в качестве травителя позволило снизить величину среднеквадратичной шероховатости поверхности подложки германия до 0,12 нм, что соответствует межатомному расстоянию в германии. Также, благодаря расщеплению озоном органических примесей на поверхности германия отпадает необходимость в предварительной стадии обезжиривания подложки.

Недостатком известного способа является сложная система приготовления озонированной дистиллированной воды, а также высокая зависимость концентрации озона в воде от температуры окружающей среды и, как следствие, различная скорость травления германия. Также, озон является канцерогенным веществом.

Известен способ предэпитаксиальной обработки поверхности ГП (см. S.K.Agarwal, R.Tyagi, M.Singh, R.K.Jain. Effect of growth parameters on the MOVPE of GaAs/Ge for solar cell applications / Solar Energy Materials & Solar Cells, V.59. 1999. P.1926), заключающийся в обезжиривании ГП в органическом растворителе (четыреххлористый углерод, изопропиловый спирт, ацетон), затем травлении в растворе состава HF:H2О2:H2O=1:1:5 в течение двух минут и последующей обработке разбавленной плавиковой кислотой для удаления поверхностного оксида.

Недостатком известного способа является высокая скорость травления германия (более 1 мкм/мин), что приводит, при малой вязкости раствора, к увеличению шероховатости поверхности. К тому же, при использовании плавиковой кислоты происходит неполное удаление оксида с поверхности германиевой подложки. Очищенные от оксида участки поверхности подложки покрыты слоем атомов водорода, который неустойчив на воздухе, вследствие чего поверхность подложки неравномерно покрывается оксидной пленкой.

Наиболее близким к настоящему изобретению является способ предэпитаксиальной обработки поверхности германиевой подложки (см. Н.Okumura. - Applied Surface Science. - V.125, 1998. PP.125-128), совпадающий с настоящим изобретением по наибольшему числу существенных признаков, принятый за прототип. Способ-прототип заключается в очистке ГП от органических загрязнений в метаноле (10 минут), затем в дихлорметане, затем снова в метаноле. Естественный оксид с поверхности германия удаляли кратковременным (несколько минут) опусканием подложки в плавиковую кислоту (2,5 мас.%). После чего следовало окисление германия в перекиси водорода (30 мас.%) в течение 30 секунд с образованием на поверхности оксидной пленки, а затем растворение оксида в соляной кислоте (35 мас.%) в течение 30 секунд. Процедуру окисления-растворения повторяли три раза. На последнем этапе проводили пассивацию поверхности германиевой подложки, для чего подложку помещали в водный раствор, содержащий гидроксид аммония и перекись водорода в соотношении 1:2, на одну минуту, где на поверхности ГП формировался толстый слой оксида, защищающий подложку от примесей из атмосферы. Затем следовала сушка подложки и помещение ее в реактор для эпитаксии.

Недостатком способа-прототипа является большое количество стадий обработки (более 10-ти) и значительная модификация поверхности ГП вследствие высокой скорости травления на последнем этапе.

Задачей настоящего технического решения является упрощение процесса предэпитаксиальной обработки поверхности германиевой подложки за счет сокращения числа стадий обработки ГП при минимальной ее модификации.

Поставленная задача решается тем, что способ предэпитаксиальной обработки германиевой подложки включает удаление с поверхности оксидного слоя, очистку поверхности германия от неорганических загрязнений и пассивацию поверхности германия при температуре 19-23°С. Новым в способе является удаление оксида с поверхности германиевой подложки обработкой раствором соляной кислоты с концентрацией 30-40 мас.% в течение 2-4 минут; очистка германиевой подложки от неорганических примесей обработкой раствором, содержащим плавиковую кислоту, перекись водорода, винную кислоту и воду, при следующем их соотношении в пересчете на литр раствора:

плавиковая кислота (40 мас.%) 10-30 мл
перекись водорода (30 мас.%) 200-400 мл
винная кислота 36-72 г
вода остальное;

в течение 0,5-1,5 минут и пассивация поверхности подложки раствором соляной кислоты с концентрацией 30-40 мас.% в течение 2-5 минут.

Помещение ГП в раствор соляной кислоты приводит к удалению оксидов германия с поверхности подложки. При этом происходит удаление крупных частиц примеси с поверхности. При использовании соляной кислоты с концентрацией менее 30 мас.% велика вероятность повторного окисления германия растворенным в кислоте кислородом. Использование соляной кислоты с концентрацией выше 40 мас.% нецелесообразно вследствие снижения степени диссоциации молекул НСl и следовательно, неполного восстановления оксида германия на поверхности подложки. При времени взаимодействия соляной кислоты с поверхностью ГП менее 2 минут происходит неполное восстановление поверхностного оксида. При времени более 4 минут возможно осаждение на поверхность германия примесей из раствора.

После предыдущего этапа на поверхности ГП могут оставаться неорганические примеси, например, адсорбированные ионы железа, никеля, меди, а также углерод. Для их удаления используется травильный раствор, содержащий 40 мас.% плавиковую кислоту, 30 мас.% перекись водорода, винную кислоту и воду. Плавиковая и винная кислоты являются хорошими комплексообразователями для ионов металлов, т.е. связывают их в устойчивый комплекс и уносят с поверхности ГП. Перекись водорода создает на поверхности ГП тонкий оксидный слой, который далее растворяется при помощи вышеуказанных комплексообразователей. В результате такого процесса происходит удаление с поверхности германия крепкосвязанного адсорбированного углерода. При содержании плавиковой кислоты в травильном растворе менее 10 мл (на 1 литр раствора) происходит неполное удаление неорганических примесей с поверхности ГП. При содержании более 30 мл - проявляется адсорбция анионов фтора на поверхности ГП. При содержании винной кислоты в травильном растворе менее 36 г/литр происходит неполное удаление неорганических примесей с поверхности ГП. При содержании более 72 г вследствие высокой вязкости полученного раствора скорость травления ГП значительно понижается, и происходит переосаждение на поверхность удаленных примесей. При содержании перекиси водорода в травильном растворе менее 200 мл (на 1 литр раствора) скорость удаления поверхностного слоя германия достаточна низка, в результате чего происходит осаждение на поверхность подложки удаленных примесей. При содержании перекиси более 400 мл - скорость травления ГП достаточно высока, что проявляется в увеличении шероховатости поверхности ГП. При обработке ГП менее 0,5 минуты удаляется менее 300 нм германия, что недостаточно для полного удаления примесей с поверхности подложки, за время обработки более 1,5 минут велика вероятности деградации поверхности ГП. Пассивацию обработанной поверхности ГП производят в концентрированном растворе соляной кислоты. При времени взаимодействия соляной кислоты с поверхностью ГП менее двух минут происходит неполное удаление поверхностного оксида, соответственно не вся поверхность ГП оказывается пассивированной. При обработке более 5 минут возможно осаждение на поверхность германия примесей из раствора.

При температуре окружающей среды менее 19°С наблюдается торможение скорости реакций восстановления оксидов, травления и пассивации. При температуре более 23°С снижается вязкость травителя, повышается скорость селективного травления германия.

Заявляемый способ предэпитаксиальной обработки полированных германиевых подложек ведут в несколько стадий: удаление естественного оксида с поверхности германия осуществляют погружением подложки в раствор соляной кислоты на 2-4 минуты; очистку германия от неорганических примесей проводят погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при следующем их соотношении (на литр раствора):

HF (40 мас.%) 10-30 мл
H2O2 (30 мас.%) 200-400 мл
Винная кислота 36-72 г
Н2О остальное,

в течение 0,5-1,5 минут; пассивацию поверхности германия осуществляют в растворе соляной кислоты в течение 2-5 минут. Температура окружающей среды 19-23°С. Качество обработанной подложки из германия оценивают по отсутствию дефектов и оксидных пленок на поверхности ГП (по результатам сканирующей электронной, атомно-силовой микроскопии, а также по данным рентгеноспектрального анализа).

Пример 1

Была осуществлена предэпитаксиальная обработка поверхности германиевых подложек. Процесс обработки осуществляли в несколько стадий: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при следующем их соотношении (на литр раствора):

HF (40 мас.%) 10 мл
H2O2 (30 мас.%) 200 мл
Винная кислота 36 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 2

Была осуществлена предэпитаксиальная обработка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 4 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при следующем их соотношении (на литр раствора):

HF (40 мас.%) 10 мл
H2O2 (30 мас.%) 200 мл
Винная кислота 36 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 3

Была осуществлена предэпитаксиальная обработка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 1 10 мл
H2O2 (30 мас.%) 200 мл
Винная кислота 36 г
Н2О остальное,

в течение 1,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 4

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 10 мл
H2O2 (30 мас.%) 200 мл
Винная кислота 36 г
Н2О остальное,

в течение 1,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 23°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 5

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 4 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 10 мл
H2O2 (30 мас.%) 200 мл
Винная кислота 36 г
H2O остальное

в течение 1,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 23°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 6

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 30 мл
H2O2 (30 мас.%) 200 мл
Винная кислота 36 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 7

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 10 мл
H2O2 (30 мас.%) 200 мл
Винная кислота 72 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 8

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 10 мл
H2O2 (30 мас.%) 400 мл
Винная кислота 72 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 9

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 30 мл
H2O2 (30 мас.%) 400 мл
Винная кислота 72 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 10

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 4 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 30 мл
H2O2 (30 мас.%) 400 мл
Винная кислота 72 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 11

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличительными признаками: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 4 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 30 мл
H2O2 (30 мас.%) 400 мл
Винная кислота 72 г
Н2О остальное,

в течение 1,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 12

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 4 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

НF (40 мас.%) 30 мл
H2O2 (30 мас.%) 400 мл
Винная кислота 72 г
Н2О остальное,

в течение 1,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 5 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствуют дефекты травления и оксидные пленки.

Пример 13

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 4 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 30 мл
H2O2 (30 мас.%) 400 мл
Винная кислота 72 г
Н2О остальное,

в течение 1,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 5 минут. Температура окружающей среды 23°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 14

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек из германия способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 30 мл
H2O2 (30 мас.%) 400 мл
Винная кислота 72 г
Н2О остальное,

в течение 1,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 5 минут. Температура окружающей среды 23°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 15

Была осуществлена предэпитаксиальная обработка поверхности германиевых подложек. Процесс обработки осуществляли в несколько стадий: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при следующем их соотношении (на литр раствора):

HF (40 мас.%) 5 мл
H2O2 (30 мас.%) 200 мл
Винная кислота 36 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП не соответствовало требованиям эпитаксиального наращивания, на поверхности подложек присутствовали следы неорганических примесей.

Пример 16

Была осуществлена предэпитаксиальная обработка поверхности германиевых подложек. Процесс обработки осуществляли в несколько стадий: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при следующем их соотношении (на литр раствора):

HF (40 мас.%) 10 мл
H2O2 (30 мас.%) 600 мл
Винная кислота 36 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП не соответствовало требованиям эпитаксиального наращивания, на поверхности подложек присутствовали многочисленные неровности и шероховатости.

Пример 17

Была осуществлена предэпитаксиальная обработка поверхности германиевых подложек. Процесс обработки осуществляли в несколько стадий: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при следующем их соотношении (на литр раствора):

HF (40 мас.%) 10 мл
H2O2 (30 мас.%) 200 мл
Винная кислота 36 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 15°С. Качество поверхности ГП не соответствовало требованиям эпитаксиального наращивания, на поверхности подложек присутствовали следы оксидов.

Способ предэпитаксиальной обработки поверхности подложки из германия, включающий последовательную обработку при температуре 19-23°С поверхности подложки раствором соляной кислоты с концентрацией 30-40 мас.% в течение 2-4 мин для удаления оксидного слоя, раствором, содержащим плавиковую кислоту, перекись водорода, винную кислоту и воду при следующем их соотношении в пересчете на литр раствора: в течение 0,5-1,5 мин для удаления неорганических загрязнений и пассивацию поверхности подложки раствором соляной кислоты с концентрацией 30-40 мас.% в течение 2-5 мин.
Источник поступления информации: Роспатент

Показаны записи 81-90 из 121.
19.12.2018
№218.016.a8a8

Способ упрочнения поверхности вольфрамовой пластины

Изобретение относится к обработке и упрочнению поверхности вольфрамовой пластины, подвергающейся интенсивным тепловым нагрузкам, в частности, в установках термоядерного синтеза, в которых вольфрам используют в качестве материала первой стенки и пластин дивертора. Проводят воздействие на...
Тип: Изобретение
Номер охранного документа: 0002675194
Дата охранного документа: 17.12.2018
27.12.2018
№218.016.ac3c

Способ получения нанокомпозитного материала на основе алюминия

Изобретение относится к получению нанокомпозитного материала на основе алюминия. Способ включает приготовление шихты путем нанесения раствора нитрата металла-катализатора на поверхность частиц алюминия и его сушки, термического разложения нитрата металла-катализатора до оксида...
Тип: Изобретение
Номер охранного документа: 0002676117
Дата охранного документа: 26.12.2018
16.05.2019
№219.017.5260

Способ изготовления фотоэлектрического преобразователя с антиотражающим покрытием

Изобретение относится к солнечной энергетике. Способ изготовления фотоэлектрического преобразователя включает последовательное формирование фоточувствительной полупроводниковой гетероструктуры АВ с пассивирующим слоем и контактным слоем GaAs, удаление контактного слоя над...
Тип: Изобретение
Номер охранного документа: 0002687501
Дата охранного документа: 14.05.2019
18.05.2019
№219.017.53af

Способ изготовления омических контактов фотоэлектрического преобразователя

Способ изготовления омических контактов фотоэлектрического преобразователя включает напыление на гетероструктуру AB основы фронтального омического контакта через первую фоторезистивную маску с рисунком фронтального омического контакта и основы тыльного омического контакта, термообработку...
Тип: Изобретение
Номер охранного документа: 0002687851
Дата охранного документа: 16.05.2019
01.06.2019
№219.017.7275

Способ изготовления нитридного светоизлучающего диода

Способ изготовления нитридного светоизлучающего диода включает последовательное формирование на диэлектрической подложке слоя нитридного полупроводника n-типа проводимости, активного слоя нитридного полупроводника, слоя нитридного полупроводника р-типа проводимости. На полученной...
Тип: Изобретение
Номер охранного документа: 0002690036
Дата охранного документа: 30.05.2019
07.06.2019
№219.017.7543

Концентраторно-планарный солнечный фотоэлектрический модуль

Концентраторно-планарный фотоэлектрический модуль (1) содержит фронтальную светопрозрачную панель (2) с концентрирующими оптическими элементами (4), светопрозрачную тыльную панель (5), на которой сформированы планарные неконцентраторные фотоэлектрические преобразователи (6) с окнами (10),...
Тип: Изобретение
Номер охранного документа: 0002690728
Дата охранного документа: 05.06.2019
13.06.2019
№219.017.8186

Импульсный инжекционный лазер

Импульсный инжекционный лазер содержит гетероструктуру раздельного ограничения, включающую асимметричный многомодовый волновод, ограничительные слои (3), (8) которого одновременно являются эмиттерами n- и р-типа проводимости с одинаковыми показателями преломления, активную область (6),...
Тип: Изобретение
Номер охранного документа: 0002691164
Дата охранного документа: 11.06.2019
20.06.2019
№219.017.8cbe

Оптический магнитометр

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе карбида кремния для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Оптический...
Тип: Изобретение
Номер охранного документа: 0002691774
Дата охранного документа: 18.06.2019
20.06.2019
№219.017.8cfa

Оптический магнитометр

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе карбида кремния для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Оптический...
Тип: Изобретение
Номер охранного документа: 0002691775
Дата охранного документа: 18.06.2019
20.06.2019
№219.017.8d0a

Способ измерения температуры

Изобретение относится к области нанотехнологий и может быть использовано в области измерения локальных слабых температурных полей с микро- и наноразмерным разрешением в микроэлектронике, биотехнологиях и др. Предложен способ измерения температуры, включающий предварительное построение...
Тип: Изобретение
Номер охранного документа: 0002691766
Дата охранного документа: 18.06.2019
Показаны записи 81-90 из 109.
29.12.2018
№218.016.acf3

Способ изготовления свч фотодетектора

Изобретение относится к оптоэлектронике и может быть использовано для создания мощного СВЧ фотодетектора на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ заключается в создании многослойной структуры из системы чередующихся слоев AlGaAs...
Тип: Изобретение
Номер охранного документа: 0002676185
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.acfa

Свч фотоприемник лазерного излучения

Изобретение относится к полупроводниковым приборам, применяемым в электронике. СВЧ фотоприемник лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: слоя тыльного потенциального барьера 2 n-AlGaAs, базового слоя, выполненного из n-GaAs 3, с толщиной...
Тип: Изобретение
Номер охранного документа: 0002676188
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.acff

Свч фотодетектор лазерного излучения

Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотодетекторов (ФД) лазерного излучения (ЛИ). СВЧ фотодетектор лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: Брегговского отражателя 2, настроенного на...
Тип: Изобретение
Номер охранного документа: 0002676187
Дата охранного документа: 26.12.2018
01.03.2019
№219.016.cedd

Способ полирования полупроводниковых материалов

Изобретение относится к области обработки полупроводниковых материалов, а именно к химико-механическим способам полирования полупроводников. Изобретение обеспечивает высокое качество полированной поверхности. Сущность изобретения: в способе химико-механического полирования полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002457574
Дата охранного документа: 27.07.2012
01.03.2019
№219.016.d0be

Способ изготовления полупроводниковой структуры с p-n переходами

Изобретение относится к электронной технике, а именно к полупроводниковым многопереходным структурам, используемым, в частности, в фотоэлектрических преобразователях. Способ изготовления полупроводниковой структуры включает последовательное формирование на полупроводниковой подложке методом...
Тип: Изобретение
Номер охранного документа: 0002461093
Дата охранного документа: 10.09.2012
01.03.2019
№219.016.d0c1

Способ определения неоднородностей в полупроводниковом материале

Изобретение относится к области электронной техники и может быть использовано для контроля качества проводящих слоев и поверхностей полупроводниковых пленок, применяемых при изготовлении изделий микроэлектроники. Сущность изобретения: в способе определения неоднородностей в полупроводниковом...
Тип: Изобретение
Номер охранного документа: 0002461091
Дата охранного документа: 10.09.2012
03.03.2019
№219.016.d231

Способ изготовления мощного фотодетектора

Изобретение может быть использовано для создания СВЧ-фотодетекторов на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ заключается в создании фоточувствительной области и контактной площадки для бондинга вне фоточувствительной области на...
Тип: Изобретение
Номер охранного документа: 0002680983
Дата охранного документа: 01.03.2019
10.04.2019
№219.017.0277

Способ формирования многослойного омического контакта фотоэлектрического преобразователя (варианты)

Изобретение относится к микроэлектронике. Сущность изобретения: в способе формирования многослойного омического контакта фотоэлектрического преобразователя на основе арсенида галлия электронной проводимости формируют фотолитографией топологию фоточувствительных областей и проводят травление...
Тип: Изобретение
Номер охранного документа: 0002391741
Дата охранного документа: 10.06.2010
16.05.2019
№219.017.5260

Способ изготовления фотоэлектрического преобразователя с антиотражающим покрытием

Изобретение относится к солнечной энергетике. Способ изготовления фотоэлектрического преобразователя включает последовательное формирование фоточувствительной полупроводниковой гетероструктуры АВ с пассивирующим слоем и контактным слоем GaAs, удаление контактного слоя над...
Тип: Изобретение
Номер охранного документа: 0002687501
Дата охранного документа: 14.05.2019
18.05.2019
№219.017.5967

Солнечный фотоэлектрический модуль на основе наногетероструктурных фотопреобразователей

Концентраторный фотоэлектрический модуль на основе наногетероструктурных солнечных элементов относится к области фотоэлектрического преобразования энергии, в частности к системам с расщеплением солнечного спектра. Модуль содержит корпус (1), имеющий фронтальную панель (2), содержащую...
Тип: Изобретение
Номер охранного документа: 0002426198
Дата охранного документа: 10.08.2011
+ добавить свой РИД