×
29.12.2018
218.016.acff

СВЧ ФОТОДЕТЕКТОР ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотодетекторов (ФД) лазерного излучения (ЛИ). СВЧ фотодетектор лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: Брегговского отражателя 2, настроенного на длину волны лазерного излучения в диапазоне 800-860 нм, включающего чередующиеся пары слоев n-AlAs 3 / n-AlGaAs 4, базового слоя, выполненного из n-GaAs 5, с толщиной 50-100 нм, нелегированного слоя i-GaAs 6 толщиной 0,9-1,1 мкм, эмиттерного слоя p-GaAs 7 толщиной 450-400 нм, фронтальный слой р-AlGaAs, при этом сумма толщин базового, нелегированного и эмиттерного слоев не превышает 1,5 мкм. Изобретение обеспечивает возможность создания такого СВЧ фотодетектора лазерного излучения, который обладал бы малой барьерной емкостью, обеспечивал высокое быстродействие и поглощал бы более 95% фотонов с длинной волны в диапазоне 800-860 нм, обеспечивая близкое к полному собирание фотогенерированных носителей. 2 з.п. ф-лы, 5 ил.
Реферат Свернуть Развернуть

Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотодетекторов (ФД) лазерного излучения (ЛИ).

Быстродействующие ФД являются одними из главных компонентов волоконно-оптических линий связи (ВОЛС) и обеспечивают идеальную гальваническую развязку между источником сигнала и приемником. Также они невосприимчивы к электромагнитным помехам в радиодиапазоне и сами не являются источником таких помех. По этим причинам ВОЛС имеют неоспоримые достоинства в задачах, где предъявляются строгие требования по обеспечению электромагнитной совместимости и использование медных проводников между источником и приемником невозможно или нежелательно. В настоящий момент достигнут значительный прогресс в создании ФД для высокоскоростных систем информационного обмена и создания волоконных линий, обеспечивающих передачу сигнала к СВЧ излучателям. Рабочие частоты ФД, применяемых в таких системах, достигают десятков гигагерц, а в случае радиофотонных трактов - и терагерцового диапазона. Мощность оптического сигнала в зависимости от задачи и рабочей частоты лежит в диапазоне от единиц микроватт до сотен милливатт.

В большинстве приложений в качестве среды ВОЛС используется кварцевое волокно, окна прозрачности которого лежат вблизи следующих длин волн излучения: 0,85 мкм (первое окно), 1,3 мкм (второе окно) и 1,55 мкм (третье окно). Оптимальными материалами для создания ФД, работающего в первом окне является GaAs, эффективно преобразующий фотоны с длинной волны менее 860 нм в электрический ток.

Таким образом, задача улучшения утилитарных характеристик ФД ЛИ, таких как, квантовый выход, КПД и быстродействие являются весьма актуальной для современной фотоники и радиофотоники.

Известен СВЧ фотодетектор лазерного излучения (см. заявку JP 2008140808, МПК H01L 31/10, опубликована 19.06.2008), содержащий p-i-n переход, включающий базовый слой одного типа проводимости, выполненный из кремния, нелегированный слой, выполненный из кремния, и эмиттерный слой другого типа проводимости, выполненный из германия.

Недостатком известного СВЧ фотодетектора лазерного излучения является высокое время разделения носителей, связанное с необходимостью обеспечения большой толщины слоев p-i-n структуры для близкого к полному поглощению носителей, что выражается в пониженном быстродействии фотодетектора.

Известен СВЧ фото детектор лазерного излучения (см. патент RU 2318272, МПК H01L 31/18, опубликован 27.02.2008), содержащий подложку n-InP, поглощающий слой n-In0,53Ga0,47As и слой n+-InP.

Недостатком известного СВЧ фотодетектора лазерного излучения является высокое время разделения носителей, связанное с необходимостью обеспечения большой толщины слоев структуры, а также неэффективное преобразование фотонов с длинной волны в диапазоне 800-860 нм.

Наиболее близким к настоящему техническому решению по совокупности существенных признаков является СВЧ фотодетектор лазерного излучения (см. патент RU 2547004, МПК H01L 31/18, опубликована 10.04.2015), принятый за прототип и включающая подложку n-GaAs, базовый слой n-GaAs, эмиттерный слой p-GaAs и слой p-AlGaAs.

Недостатками известного СВЧ фотодетектора лазерного излучения является высокая барьерная емкость за счет отсутствия нелегированной области, а также низкое быстродействие, связанное с необходимостью создания слоев большой толщины для обеспечения близкого к полному поглощения фотонов.

Задачей настоящего решения является создание такого СВЧ фотодетектора лазерного излучения, который обладал бы малой барьерной емкостью, обеспечивал высокое быстродействие и поглощал бы более 95% фотонов с длинной волны в диапазоне 800-860 нм, обеспечивая близкое к полному собирание фотогенерированных носителей.

Поставленная задача достигается тем, что СВЧ фотодетектор лазерного излучения, включает полупроводниковую подложку, выполненную из n-GaAs, и последовательно осажденные: Брегговский отражатель, настроенный на длину волны лазерного излучения в диапазоне 800-860 нм, включающий чередующиеся пары слоев n-AlAs/n-Al0,2Ga0,8As, базовый слой, выполненный из n-GaAs, нелегированный слой i-GaAs и эмиттерный слой p-GaAs, при этом сумма толщин базового, нелегированного и эмиттерного слоев не превышает 1,5 мкм.

В СВЧ фотодетекторе лазерного излучения толщина слоя n-AlAs Брегговского отражателя может находится в диапазоне от 66 нм для длины волны лазерного излучения 800 нм до 72 нм для длины волны лазерного излучения 860 нм, а толщина слоя n-Al0,2Ga0,8As Брегговского отражателя может находиться в диапазоне от 57 нм для длины волны лазерного излучения 800 нм до 63 нм для длины волны лазерного излучения 860 нм.

В СВЧ фотодетекторе лазерного излучения толщина базового слоя может находиться в диапазоне от 50 до 100 нм, толщина нелегированного слоя может составлять от 0.9 до 1.1 мкм, а толщина эмиттерного слоя может находиться в диапазоне от 450 до 400 нм.

Настоящее техническое решение поясняется чертежами, где:

на фиг. 1 представлено схематичное изображение поперечного сечения настоящего СВЧ фотодетектора лазерного излучения;

на фиг. 2 приведены спектры отражение Брегговского отражателя (БО) на основе AlAs/Al0,2Ga0,8As (кривые 1-3) и AlAs/GaAs (кривая 4), центрированных на длину волны ЛИ 830 нм, в зависимости от числа пар слоев: кривая 1-20 пар; кривые 2, 4 - 15 пар, кривая 3-12 пар;

на фиг.3 приведены доли непоглощенных фотонов лазерного излучения в ФД ЛИ на основе GaAs в зависимости от суммарной толщины базового нелегированного и эмиттерного слоев для длин волн в диапазоне 800-860 для структур без БО (серия кривых 5) и с БО на основе 15 пар слоев AlAs/Al0,2Ga0,2As толщиной 69/60 нм, соответственно (серия кривых 6);

на фиг.4 представлены вклады различных фотоактивных слоев в постоянную времени разделения фотогенерированных носителей в ФД ЛИ на основе GaAs в вентильном режиме при напряжении 1 В: кривая 7 -время диффузии неравновесных дырок из слоя n-GaAs; кривая 8 - время дрейфа неравновесных дырок через слой i-GaAs; кривая 9 - время диффузии неравновесных электронов из слоя p-GaAs; кривая 10 - время разделения электрон-дырочных пар в i-GaAs; кривая 11 - время дрейфа неравновесных электронов через слой i-GaAs;

на фиг. 5 показаны вклады различных фотоактивных слоев в удельную диффузионную емкость структуры ФД на основе GaAs в вентильном режиме при напряжении 1В (кривые 12-14), а также барьерная емкость такого ФД ЛИ (кривая 15): кривая 12 - вклад слоя i-GaAs, кривая 13 - вклад слоя n-GaAs, кривая 14 - вклад слоя p-GaAs.

Настоящий СВЧ фотодетектор лазерного излучения показан на фиг. 1. Он включает подложку 1, выполненную, например, из и-GaAs, и последовательно осажденные: Брегговский отражатель 2, настроенный на длину волны лазерного излучения в диапазоне 800-860 нм, включающий чередующиеся пары слоев n-AlAs 3 /n-Al0,2Ga0,2As 4, базовый слой, выполненный из n-GaAs 5, с толщиной, например, 50-100 нм, нелегированный слой i-GaAs 6 толщиной, например, 0,9-1,1 мкм и эмиттерный слой p-GaAs 7 толщиной, например, 450-400 нм, при этом сумма толщин базового, нелегированного и эмиттерного слоев не превышает 1,5 мкм.

Структура ФД представляет собой полупроводниковый p-i-n переход, разделяющий фотогенерированные носители за счет тянущего поля p-i-n перехода. Ключевой особенностью большинства типов СВЧ ФД ЛИ является наличие толстого нелегированного i-слоя. Назначением такого слоя является расширение обедненной области между сильно легированными мелкой примесью эмиттерным и базовым слоями ФД с целью снижения емкости структуры. Этот параметр оказывает исключительно важное влияние на показатели быстродействия ФД, а, следовательно, и возможность его использования при преобразовании СВЧ сигналов.

Быстродействие p-i-n структур определяется несколькими постоянными времени:

где τ0 - постоянная времени, определяемая скоростью разделения электрон-дырочных пар в области пространственного заряда (ОПЗ);

τэмиттер - постоянная времени, определяемая скоростью диффузии неравновесных носителей заряда из эмиттера по направлению к ОПЗ;

τбаза - постоянная времени, определяемая скоростью диффузии неравновесных носителей заряда из базы по направлению к ОПЗ;

τRC = RhC - постоянная времени перезаряда емкостей, определяемая сопротивлением нагрузки ФД RH и емкостью p-i-n структуры.

Скорость разделения электрон-дырочных пар в ОПЗ зависит от подвижности носителей заряда градиента поля в ОПЗ, определяемого контактной разницей потенциалов, напряжением на ФД и толщины i-слоя d. Скорости диффузии в эмиттере и базе определяются толщинами этих слоев и коэффициентами диффузии неосновных носителей заряда.

Сопротивление нагрузки ФД зависит от режима его работы, для большинства приложений оно составляет 50 Ом, однако, в некоторых задачах может быть меньше. Емкость p-i-n структуры включает два основных компонента:

- барьерную емкость;

- диффузионную емкость.

Барьерная емкость играет доминирующую роль при отрицательных смещениях на p-i-n структуре. Ее можно оценить по формуле:

где ε - диэлектрическая проницаемость i-слоя; ε0 - электрическая постоянная; S - площадь ФД.

При положительных смещениях существенной оказывается диффузионная емкость. Ее значение можно рассчитать из решения диффузионно-дрейфовых уравнений для структуры. Диффузионная емкость определяется нескомпенсированным зарядом в фотоактивных слоях и также существенно зависит от толщины i-слоя. Диффузионная емкость экспоненциально возрастает с увеличением положительного смещения на ФД.

Для обеспечения высокого быстродействия ФД необходим компромисс в выборе толщины нелегированной области. При малой ее толщине поле в области ОПЗ будет достаточно для быстрого разделения носителей, однако, барьерная емкость структуры окажется большей, чем для толстого i-слоя.

Толщина i-слоя помимо быстродействия также определяет долю поглощаемого в нем излучения, а, следовательно, и квантовый выход ФД. Поглощение излучения в полупроводниках подчиняется закону Бугера-Бэра, поэтому доля непоглощенного лазерного излучения в структуре с суммарной толщиной всех фотоактивных слоев h может быть выражена формулой:

где α - коэффициент поглощения полупроводника.

Существует возможность оптимизации поглощения в слоях ФД ЛИ, так как необходимая толщина поглощающего слоя структуры может быть обеспечена не только за счет нелегированной i-области, но также и легированных мелкой примесью эмиттерного и базового слоев. Поэтому в p-i-n ФД ЛИ возможно достижение квантового выхода близкого к 100% при достаточно высоких частотах и значительных мощностях.

Важной особенностью настоящего СВЧ фотодетектора лазерного излучения является наличие встроенного Брэгговского отражателя. БО обеспечивают двухкратное прохождение оптического излучения через структуру, и таким образом, позволяют в два раза сократить толщину поглощающих слоев ФД ЛИ.

Если в конце структуры установлен Брегговский отражатель с коэффициентом ξ отражения то формула (3) заменится следующей:

Чем ближе коэффициент ξ к единице, тем меньше доля непоглощенного света согласно (4). При ξ =1 эквивалентная оптическая толщина слоев структуры удваивается.

Конструкция БО выбиралась из условия обеспечения высокого коэффициента отражения в рабочем диапазоне 800-860 нм (фиг. 2). Расчет распространения света в структуре был произведен с использованием метода матриц Абелеса. Оптимальными материалами для слоев БО являются AlAs и Al0,2Ga0,8As, которые имеют значительную разницу в показателе преломления, не поглощают ЛИ в рабочем диапазоне, а также согласованы по параметру решетки с GaAs. Число пар слоев отражателя выбрано равным 15 (см. фиг. 2, кривая 2), так как при меньшем числе пар коэффициент отражения не доходит до 90% (см. фиг. 2, кривая 3), дальнейшее же увеличение числа пар до 20 и более (см. фиг. 2, кривая 1) уже не оказывает заметного влияния на коэффициент отражения. Предлагаемый БО на основе непоглощающих материалов AlAs/Al0,2Ga0,8As имеет существенно более высокий коэффициент отражения по сравнению с БО на основе пар слоев GaAs/AlAs (см. фиг. 2, кривая 4), среди которых GaAs поглощает ЛИ.

Расчетные толщины слоев AlAs/Al0,2Ga0,8As для длины волны 800 нм составляют 66/57 нм соответственно, для длины волны 860 нм 71/62 нм соответственно и меняются линейно при изменении длинны волны центрирования БО в диапазоне 800-860 нм.

Встраивание БО в предлагаемую структуру ФД ЛИ позволяет обеспечить поглощение порядка 95% фотонов ЛИ в рабочем диапазоне при в два раза меньшей общей толщине поглощающих базового нелегированного и эмиттерного слоев. Действительно, в случае структуры ФД ЛИ без БО поглощение порядка 95% достигается при общей толщине порядка 3 мкм (см. фиг 3 серия кривых 5), в то время как при введении БО поглощение на уровне 95% обеспечивается при общей толщине порядка 1,5 мкм. Таким образом, ФД ЛИ без БО явно уступает по быстродействию ФД с БО, так как фотогенерированным носителям потребуется большее время для разделения. Уменьшение же общей толщины ФД ЛИ без БО для увеличения его быстродействия будет приводить к падению поглощения и квантовой эффективности прибора. К примеру, ФД ЛИ без БО с общей толщиной 1,5 мкм обеспечит поглощение на уровне, не превышающем 70%.

Расчет фоточувствительности и временных параметров структуры ФД производился методом решения системы уравнений диффузии и дрейфа, а также уравнения Пуассона для фотоактивных слоев. При этом учитывалось кулоновское взаимодействие электронов и дырок, генерированных ЛИ в i-слое. Быстродействие СВЧ ФД ЛИ определяет постоянная времени разделения фотогенерированных носителей заряда и удельная емкость структуры. Расчеты показывают, что толщины слоев заявляемого СВЧ ФД ЛИ обеспечивают достижение постоянной времени разделения фотогенерированных носителей на уровне 10 пс (фиг. 4). Постоянная определяется временем разделения электрон-дырочных пар в слое i-GaAs, которая составляет 10 пс для толщины нелегированного слоя 1 мкм (фиг. 4, кривая 10) и временем собирания неравновесных электронов из слоя p-GaAs, которое составляет 10 пс для толщины этого слоя в 400 нм (фиг. 4, кривая 9). Время дрейфа электронов через слой i-GaAs пренебрежимо мало, порядка 1 пс для толщины 1 мкм (рис. 4, кривая 11). Время дрейфа дырок через слой i-GaAs составляет порядка 50 пс (фиг. 4, кривая 8), однако, ввиду малой толщины слоя n-GaAs (100 нм), из которого они инжектируются, а также расположения слоя с тыльной стороны, суммарный вклад этих носителей заряда в фототок не превышает 3%. В то же самое время, такой толщины достаточно для создания необходимой контактной разности потенциалов на p-i-n переходе и сильного равномерного электрического поля в слое i-GaAs.

Толщина слоя p-GaAs помимо достижения малого значения постоянной времени разделения носителей заряда, которое составляет 10 пс при толщине 100 нм (фиг. 4, кривая 7), выбрана и с учетом обеспечения высокого значения внутреннего квантового выхода фотоответа (фиг. 5).

Если для структуры без БО увеличения толщины эмиттерного слоя р-GaAs позволяет улучшить чувствительность за счет улучшения поглощения, то для предлагаемой структуры более толстый слой только ухудшит квантовый выход, т.к. снизится коэффициент собирания. Выбранная толщина слоя i-GaAs помимо приемлемой постоянной времени разделения фотогенерированных носителей также отвечает условию баланса между барьерной и диффузионной емкостями в рабочих режимах (фиг. 5, кривые 12 и 15). При этом вклад в диффузионную емкость, в основном, обеспечивает слой i-GaAs.


СВЧ ФОТОДЕТЕКТОР ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
СВЧ ФОТОДЕТЕКТОР ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
СВЧ ФОТОДЕТЕКТОР ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 174.
13.01.2017
№217.015.88dc

Одномодовый плазмонный волновод

Изобретение относится к плазмонной интегральной оптике и может быть использовано при конструировании компонентов плазмонных устройств различного назначения. Одномодовый плазмонный волновод, выполненный в виде заполненного диэлектриком протяженного V-образного канала в пленке металла на...
Тип: Изобретение
Номер охранного документа: 0002602737
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.b204

Квантовый генератор случайных чисел

Изобретение относится к квантовым генераторам случайных чисел и может быть использовано в криптографии. Техническим результатом является повышение качества, степени надежности и скорости генерации. Устройство содержит источник фотонов, однофотонный детектор, измеритель времени, задающий...
Тип: Изобретение
Номер охранного документа: 0002613027
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b401

Генератор плазмонных импульсов терагерцовой частоты

Изобретение относится к технике генерации импульсов терагерцовой частоты. Генератор плазмонных импульсов терагерцовой частоты включает спазер в режиме пассивной модуляции добротности на основе активной среды, помещенной в резонансную структуру, образованную в тонкой пленке металла, размещенной...
Тип: Изобретение
Номер охранного документа: 0002613808
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.c0b4

Устройство для изготовления интегральной оптической волноводной структуры

Изобретение относится к области изготовления трехмерных интегральных оптических волноводных структур. Устройство для изготовления интегральной оптической волноводной структуры в оптически прозрачном образце с показателем преломления n, включающее в себя трехмерную систему перемещения...
Тип: Изобретение
Номер охранного документа: 0002617455
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.d079

Устройство для сейсмической разведки

Изобретение относится к области геофизики и может быть использовано для проведения подводной многомерной сейсмической разведки на акваториях, покрытых льдом. Устройство для сейсмической разведки снабжено буксируемой капсулой. Капсула состоит из правого и левого бортов, в которых на специальных...
Тип: Изобретение
Номер охранного документа: 0002621272
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d304

Способ подводной сейсмической разведки

Изобретение относится к области геофизики и может быть использовано для поиска и уточнения строения месторождений углеводородов и других полезных ископаемых на акваториях, покрытых льдом круглогодично или большую часть года, и повышения эффективности процесса их освоения. При реализации...
Тип: Изобретение
Номер охранного документа: 0002621638
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d32a

Сеть квантового распределения ключей

Изобретение относится к области сетевой волоконно-оптической квантовой криптографии - к защищенным информационным сетям с квантовым распределением криптографических ключей. Технический результат - создание сети с возможностью реконфигурации, а также обладающей большей выживаемостью при потере...
Тип: Изобретение
Номер охранного документа: 0002621605
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.de15

Подводный буровой модуль для бурения нефтяных и газовых скважин

Изобретение относится к горной промышленности, в частности к буровым модулям, предназначенным для бурения нефтяных и газовых скважин на шельфах морей. Подводный буровой модуль, имеющий открытую рамную конструкцию, включает буровую вышку с вертикальными направляющими для бурильной машины,...
Тип: Изобретение
Номер охранного документа: 0002624841
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.e62e

Система детектирования одиночных фотонов

Изобретение относится к области оптического приборостроения и касается системы детектирования одиночных фотонов. Система включает в себя приемный модуль с приемной зоной, блок ориентации, оптический модуль и световод, который имеет оболочку с первым и вторым окончаниями и сердцевину с первым и...
Тип: Изобретение
Номер охранного документа: 0002627025
Дата охранного документа: 02.08.2017
29.12.2017
№217.015.f0bd

Композиция для получения полупроницаемой пористой мембраны

Изобретение относится к составу формовочного раствора для получения нетканого материала методом электроформования и может использоваться для получения водоупорной, воздухо-, паропроницаемой мембраны, а также регулирования комплекса эксплуатационных свойств мембранного материала. Композиция...
Тип: Изобретение
Номер охранного документа: 0002638981
Дата охранного документа: 19.12.2017
Показаны записи 1-10 из 71.
10.02.2013
№216.012.24d1

Конструкция системы концентраторных фотоэлектрических установок

Изобретение относится к области солнечной энергетики и, в частности, к солнечным энергетическим установкам с концентраторами солнечного излучения и системами слежения, применяемым, например, в составе электростанций, предназначенных для выработки электроэнергии путем фотоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002474927
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.2880

Конструкция фотоэлектрического модуля

Изобретение относится к области солнечной энергетики. Конструкция фотоэлектрического модуля (1) содержит боковые стенки (2), фронтальную панель (3) с линзами Френеля (4), светопрозрачную тыльную панель (5), солнечные элементы (6) с фотоприемными площадками (15), совмещенными с фокальным пятном...
Тип: Изобретение
Номер охранного документа: 0002475888
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2ca5

Солнечная концентраторная фотоэлектрическая установка

Солнечная концентраторная фотоэлектрическая установка содержит концентраторные фотоэлектрические модули (2), размещенные на механической системе, азимутальный и зенитальный приводы, расположенные в электромеханическом шкафу, и систему ориентации концентраторных фотоэлектрических модулей (2) на...
Тип: Изобретение
Номер охранного документа: 0002476956
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2ca6

Солнечная фотоэнергоустановка

Изобретение относится к солнечной фотоэнергетике и может найти применение как в мощных солнечных электростанциях, так и в качестве фотоэлектрической энергоустановки индивидуального пользования. Солнечная фотоэнергоустановка включает прямоугольные концентраторные фотоэлектрические модули (1),...
Тип: Изобретение
Номер охранного документа: 0002476957
Дата охранного документа: 27.02.2013
20.04.2013
№216.012.3815

Автономная система электроснабжения на основе солнечной фотоэлектрической установки

Изобретение относится к области солнечной энергетики, в частности к непрерывно следящим за Солнцем солнечным установкам как с концентраторами солнечного излучения, так и с плоскими кремниевыми модулями, предназначенным для питания потребителей, например, в районах ненадежного и...
Тип: Изобретение
Номер охранного документа: 0002479910
Дата охранного документа: 20.04.2013
27.05.2013
№216.012.4592

Способ предэпитаксиальной обработки поверхности германиевой подложки

Изобретение относится к области полупроводниковой опто- и микроэлектроники. Способ предэпитаксиальной обработки поверхности подложки из германия включает удаление с поверхности подложки оксидного слоя, очистку поверхности германия от неорганических загрязнений и пассивацию поверхности подложки....
Тип: Изобретение
Номер охранного документа: 0002483387
Дата охранного документа: 27.05.2013
20.06.2013
№216.012.4e4d

Способ изготовления фотовольтаического преобразователя

Способ изготовления фотовольтаического преобразователя включает нанесение на периферийную область подложки из n-GaSb диэлектрической маски, формирование на открытых участках фронтальной поверхности подложки высоколегированного слоя р-типа проводимости диффузией цинка из газовой фазы, удаление...
Тип: Изобретение
Номер охранного документа: 0002485627
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e4e

Способ изготовления чипов наногетероструктуры и травитель

Изобретение относится к созданию высокоэффективных солнечных элементов на основе полупроводниковых многослойных наногетероструктур для прямого преобразования энергии солнечного излучения в электрическую энергию с использованием солнечных батарей. Способ изготовления чипов наногетероструктуры,...
Тип: Изобретение
Номер охранного документа: 0002485628
Дата охранного документа: 20.06.2013
10.09.2013
№216.012.691c

Способ изготовления чипов многослойных фотоэлементов

Способ изготовления чипов многослойных фотоэлементов включает выращивание фоточувствительной многослойной полупроводниковой структуры на германиевой подложке, последовательное создание на поверхности фоточувствительной многослойной структуры пассивирующего слоя и контактного слоя. Способ также...
Тип: Изобретение
Номер охранного документа: 0002492555
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6d4f

Способ изготовления чипов каскадных фотоэлементов

Способ изготовления чипов каскадных фотоэлементов относится к солнечной энергетике. Способ включает выращивание фоточувствительной многослойной полупроводниковой структуры на германиевой подложке, последовательное выращивание на поверхности фоточувствительной многослойной структуры...
Тип: Изобретение
Номер охранного документа: 0002493634
Дата охранного документа: 20.09.2013
+ добавить свой РИД