30.03.2019
219.016.f940

СИСТЕМА РАДИОУПРАВЛЕНИЯ ОРУЖИЕМ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
02204786
Дата охранного документа
20.05.2003
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к системам радиоуправления оружием, преимущественно зенитных ракетно-пушечных комплексов, содержащих средства радиовизирования цели и управляемого снаряда, объединенных с его пусковой установкой общей транспортной платформой. Технический результат: повышение эксплуатационной технологичности системы и ее готовности к действию за счет выполнения двухдиапазонного моноимпульсного радиолокатора с возможностью обеспечения равных промежуточных частот первичного преобразования сигналов в диапазонных многоканальных приемниках и блоком их управления в общем тракте вторичного преобразования, а также в использовании единых каналов передачи и приема сигналов радиовизирования как цели, так и сигналов командного радиоуправления снарядом. 1 з.п.ф-лы, 4 ил.
Реферат Свернуть Развернуть

Изобретение относится к области управления оружием, к его частному случаю - радиоуправлению, а более конкретно к системам радиоуправления оружием (СРО) противовоздушной обороны (ПВО), включающим радиовизиры цели и управляемого снаряда, объединенным с его пусковой установкой общим транспортным средством.

Изобретение может быть использовано преимущественно в мобильных зенитных ракетно-пушечных комплектах (ЗРПК), устанавливаемых на самоходных шасси, прицепах, катерах и др. транспортных средствах с ограничениями по массе, габаритам и условиям применения.

СРО в том числе для ЗРПК ПВО известны (1), (2).

Известны мобильные ЗРПК с СРО, состоящие из радиовизира цели (РВЦ), радиовизира снаряда (РВС) и пусковой установки (ПУ), размещенных на отдельных транспортных средствах (3), (4).

Известны СРО для мобильных ЗРПК, состоящие из РВЦ и РВС, объединенных с ПУ управляемого снаряда общей транспортной платформой (5).

В таких СРО в качестве РВЦ используются в основном моноимпульсные радиолокаторы, в том числе двухдиапазонпые (5), (6)), а в качестве РВС - командные радиолинии управления (7). ПУ применяются в зависимости от типа оружия (снарядов) и типа транспортных средств (2), (4).

Из известных технических решений наиболее близким прототипом является СРО, описанная в (5).

Известная СРО включает в себя РВЦ и РВС, объединенные с ПУ автомобильным полуприцепом.

РВЦ этой СРО содержит двухдиапазонный моноимпульсный радиолокатор (ДМРЛ) с общей антенной, диапазонные приемопередающие тракты, каждый из которых состоит из микроволнового блока (антенного переключателя), передатчика, многоканального приемника, блоков выделения полезных и мешающих сигналов.

РВС содержит автономную антенну, механически связанную с антенной колонкой общей антенны РВЦ, и командную радиолинию управления в виде системы запроса-ответа с блоками передачи, приема, шифрации и дешифрации передаваемых и принимаемых команд и сигналов.

Данная СРО содержит также сервосистему для управления антенной колонкой, процессор данных (ЭВМ), синхронизатор, дальномер, индикаторы и встроенный контроль.

Объектом радиоуправления известной СРО являются управляемые ракеты класса "земля-воздух" с полуактивными головками самонаведения и радиокоррекцией направления их полета.

Связь процессора данных (ЭВМ) в этой СРО с ПУ оружия осуществляется через интерфейсы блока связи, через которые также осуществляется взаимодействие СРО с другими подсистемами управления оружием: оптическим дальномером, телевизионным монитором и теплопеленгатором.

Использование ДМРЛ со встроенным контролем и командной радиолинией управления в качестве РВЦ и РВС существенно повышает помехозащищенность СРО данного класса ЗРПК и его эксплуатационную технологичность. (ЭТ - обобщенное понятие надежности, контролепригодности, ремонтопригодности и обеспеченности технического обслуживания и готовности СРО к применению).

Однако условия применения мобильных ЗРПК в отличие от стационарных ЗРПК или от разнесенных по площади раздельных РВЦ, РВС и ПУ диктуют жесткие ограничения и требования по массе, габаритам, надежности, энергопотреблению и др. факторам, прямо или косвенно влияющим на ЭТ СРО и ее готовность к действию.

Поэтому в ряде случаев ЭТ СРО рассматриваемого класса ЗРПК оказывается недостаточной. Одним из путей ее повышения является упрощение СРО.

Таким образом, задачей данного изобретения является повышение ЭТ СРО и ее готовности к действию путем упрощения ее электрической схемы и конструкции.

Поставленная задача достигается тем, что в заявляемой СРО ДМРЛ выполняется с возможностью обеспечения равных промежуточных частот (ПЧ) первичного преобразования (ПЧ-1) в многоканальных приемниках обоих диапазонов и с блоком уплотнения этих сигналов в общем тракте последующего вторичного преобразования (ПЧ-2) и выделения сигналов, а блоки РВЦ используются также для передачи и приема сигналов РВС. Для этого шифратор команд на управляемую ракету (снаряд) включен через коммутатор в цепь запуска передатчика одного диапазона, а дешифратор сигналов, принимаемых от ракеты, включен в цепь приемника другого диапазона. При этом ДМРЛ поочередно выполняет функции РВЦ и РВС.

На фиг. 1 изображена блок-схема СРО; на фиг.2 и 3 - варианты выполнения блока уплотнения сигналов. На фиг.4 изображены диаграммы, поясняющие принцип уплотнения сигналов и режимов работы СРО.

Условным обозначениям на фиг.1-4 соответствуют:
1 - опорный генератор задающих частот;
2 - передатчик 1-го диапазона;
3 - передатчик 2-го диапазона;
4 - многоканальный приемник 1-го диапазона;
5 - многоканальный приемник 2-го диапазона;
6 - синхронизатор системы;
7 - коммутатор запуска передатчика 3;
8 - шифратор команд;
9 - дешифратор сигналов ракеты;
10 - блок уплотнения сигналов;
11 - тракт вторичного преобразования и выделения сигналов;
12 - индикатор;
13 - антенная колонка;
14 - процессор данных и управления режимами работы;
15 - блок связи;
16 - пусковая установка оружия;
17 - привод антенны (антенной колонки);
18 - общая антенна;
19 - антенный переключатель 1-го диапазона;
20 - антенный переключатель 2-го диапазона;
21 - 1-й коммутатор блока 10;
22 - 2-й коммутатор блока 10;
23 - 1-й канальный вход блока 10;
24 - 2-й канальный вход блока 10;
25 - 1-й выход блока 10;
26 - 2-й выход блока 10;
27 - 3-й выход блока 10;
28 - управляющий вход блока 10;
29 - 1-й высокочастотный (ВЧ) элемент ИЛИ;
30 - 2-й высокочастотный (ВЧ) элемент ИЛИ;
31 - 3-й высокочастотный (ВЧ) элемент ИЛИ;
32 - тактовые импульсы Ти1;
33 - тактовые импульсы Ти2;
34 - тактовые импульсы Ти3;
35 - синхронизирующие импульсы Си1;
36 - синхронизирующие импульсы Си2;
37 - синхронизирующие импульсы Си3;
38 - радиоимпульсы РВЦ 1-го диапазона;
39 - радиоимпульсы РВЦ 2-го диапазона;
40 - радиоимпульсы РВС;
41 - видеоимпульсы РВЦ 1-го диапазона;
42 - видеоимпульсы РВЦ 2-го диапазона;
43 - видеоимпульсы РВС;
44 - очередность видеоимпульсов РВЦ и РВС;
45 - скорость цели (Vц) и снаряда (Vc).

"Из перечисленного выше в состав ДМРЛ входят следующие элементы и устройства: 1, 2, 3, 4, 5, 11, 18, 19, 20, по своей сути являющиеся элементами и устройствами однодиапазонных моноимпульсных радиолокаторов, которые в ДМРЛ имеют общий синхронизатор 6, индикатор 12, процессор 14 данных и сервосистему - привод 17 антенной колонки 13 с общей антенной 18. (Более подробные сведения об элементах моноимпульсных радиолокаторов содержатся в книге А.И. Леонова, К.И. Фомичева. Моноимпульсная радиолокация. М., "Советское радио", 1970, 389 с.)"
Заявляемая СРО работает следующим образом.

Опорный генератор 1 задающих частот (фиг.1) вырабатывает высокостабильную опорную частоту, которая используется для формирования несущих и гетеродинных частот в диапазонных передатчиках 2,3, многоканальных приемниках 4,5 первичного преобразования и общем тракте 11 вторичного преобразования.

Кратно деленная опорная частота генератора 1 вводится также в синхронизатор 6 системы, где используется для формирования тактовых и синхронизирующих импульсов (Ти и Си соответственно), определяющих интервалы времени работы системы в режимах РВЦ и РВС, и импульсное заполнение этих интервалов (фиг.4).

Си вводятся в упомянутые устройства 2,3,4,5, а также в коммутатор 7 запуска передатчика 3, шифратор 8 команд для ракеты, дешифратор 9 ее ответных сигналов, блок 10 уплотнения сигналов ПЧ-1, тракт 11 вторичного преобразования на ПЧ-2 и выделения сигналов РВЦ и РВС (с управляемым гетеродином) и индикатор 12.

Ти поступают в коммутатор 7, шифратор 8, дешифратор 9, блок 10 и тракт 11. Работой синхронизатора 6 системы управляет процессор 14 данных и управления режимами работы СРО, связанный через интерфейсы с блоком 15 связи, с пусковой установкой 16, индикатором 12 и приводом 17, управляющим общей антенной 18 (или антенной колонкой 13 при необходимости управления съюстированными с нею смежными приборами управления оружием (оптическими, телевизионными и др.)).

Антенные переключатели 19 и 20 осуществляют коммутацию диапазонных радиолокационных устройств для передачи и приема сигналов РВЦ и РВС.

Система гетеродирования многоканальных приемников 4 и 5 выполняется так, чтобы обеспечить на их выходах равенство промежуточных частот па ПЧ-1.

Приемники 4 и 5 обычно имеют по три выхода: по одному суммарному и по два разностных. С этих групповых выходов сигналы на ПЧ-1 вводятся в блок 10 уплотнения, с выхода которого поочередно выдаются сигналы: либо РВЦ 1-го диапазона (РВЦ-1), либо РВЦ 2-го диапазона (РВЦ-2), либо РВС.

Суть уплотнения сигналов с помощью блока 10 упрощенно заключается в следующем.

Конструкция блока 10 может быть различной. При управлении от Ти (фиг.2) блок 10 содержит коммутаторы 21,22 с двумя групповыми входами 23,24, тремя выходами 25,26,27 и управляющими входами 28 по Ти. В варианте выполнения на логических ВЧ элементах ИЛИ (фиг. 3) этот блок может содержать элементы 29,30,31 ИЛИ, подключенные к двум групповым входам 23,24 и также с тремя выходами 25,26,27.

Второй пример выполнения отличается тем, что он не требует управления от Ти, а функции коммутатора может обеспечить синхронизатор 6 системы, задавая соответствующие последовательности Си в интервалах Ти.

В обоих вариантах импульсы 32,33,34 задают временные промежутки Ти1, Ти2 и Ти3, в течение которых формируются импульсы 35,36 и 37, соответственно Си1, Си2 и Си3 для режимов РВЦ-1, РВЦ-2 и РВС (на фиг.4 последние показаны условно на разных частотах повторения для РВЦ, а для РВС - с времяимпульсным кодированием и дешифровкой).

Принятые от цели и ракеты сигналы на выходах приемнииков выделяются в виде радиоимпульсов 38 и 39 соответственно по каждому из трех каналов РВЦ-1 и РВЦ-2 и радиоимпульсов 40 канала РВС.

Радиоимпульсы 38,39,40 поочередно в интервалы времени Ти1, Ти2 и Ти3 с выходов 25,26,27 блока 10 уплотнения сигналов поступают в тракт 11 вторичного преобразования и выделения сигналов, где подвергаются преобразованию, усилению, временной и частотной селекции, амплитудному и фазовому детектированию.

С трех выходов тракта 11 видеоимпульсы 41,42,43 поступают в процессор 14 данных и управления режимами, где из очередности 44 импульсов РВЦ-1, РВЦ-2 и РВС извлекается информация о параметрах цели и ракеты, например об их скоростях 45 относительно СРО (условно Vц - для цели, Vc - для ракеты).

Дешифровка видеоимпульсов 43 РВС производится в дешифраторе 9 принятых сигналов по их времяимпульсной расстановке, и ее результаты вводятся через дополнительный вход в процессор 14 данных.

С выходов процессора 14 данных извлеченная информация о параметрах цели и ракеты выводится на индикатор 12 и через блок 15 связи в ПУ 16 оружия или используется для радиокоррекции по каналу РВС траектории и направления полета ракеты.

Для выполнения большинства устройств предлагаемой СРО могут быть использованы в основном стандартные схемотехнические решения и конструкции, описанные в приведенной или общетехнической литературе, или конструкторская документация и оснастка для их изготовления, которой располагает заявитель.

Блок уплотнения сигналов может быть выполнен но одному из предложенных вариантов. Предполагается, что диапазонные многоканальные приемники с общим трактом преобразования и выделения сигналов имеют управляемые системы гетеродинирования частот, автоматической регулировки усиления и регулировки полосы пропускания приемников.

Блок связи и ПУ выполняются под конкретные виды оружия.

В результате использования изобретения упрощается конструкция приемных трактов ДМРЛ, отпадает необходимость в дополнительной антенной системе и приемопередающем тракте РВС, т.к. их функции выполняются ДМРЛ, повышается эксплуатационная технологичность СРО и ее готовность к действию за счет повышения надежности, снижения энергопотребления, габаритов, массы, большей компактности и коммуникабельности СРО в составе рассматриваемого класса ЗРПК.

Изобретение может быть использовано в разработках заявителя.

ЛИТЕРАТУРА
1. Основы радиоуправления. Под ред. В. А. Вейцеля и В.И. Типугина. Учебное пособие для вузов. M., "Сов. радио", 1973, 464 с.

2. Зенитные ракетные и ракетно-пушечные комплексы капиталистических стран. Под ред. Е.А. Федосова. М., НИЦ (770), 1986, 249 с., ил.

3. Там же. ЗРПК "Флайкетчер". с.143.

4. JANES RADAR AND EEECTRON1C WARFARE SYSTEMS. 1993-94. To же English Edition. 1996-97.

5. Радиолокатор управления оружием. Wang Yui, Pehg Jiating, CIE int. Conf. Radar. Nanjing. Now. 4.04.86 - Beijng 1986. p.27-32 (Англия. Копия блок-схемы из данного источника прилагается).

6. Двухдиапазонный моноимпульсный радиолокатор со встроенным контролем. Заявка 2001104500 от 20.02.2001 г. Заявитель: ОАО "Корпорация "Фазотрон-НИИР". Авторы: Канащенков А.И., Матюшин А.С. и др.

7. Справочник по радиоэлектронным системам. Том 2. Под ред. Б.Х. Кривицкого. М. , Энергия, 1978. Раздел 8. Системы командного радиоуправления, с. 201-261.

1.Системарадиоуправленияоружием,включающаярадиовизирыцелииуправляемогоснаряда,объединенныхсегопусковойустановкойобщейтранспортнойплатформой,содержащаясоответственнодвухдиапазонныймоноимпульсныйрадиолокаторсопорнымгенераторомзадающихчастот,команднуюрадиолиниюуправлениясшифраторомидешифратором,синхронизатор,процессорданных,индикатор,блоксвязиспусковойустановкойоружияисервосистемууправленияантеннойколонкойсистемы,отличающаясятем,чтодвухдиапазонныймоноимпульсныйрадиолокаторвыполненсвозможностьюобеспеченияравныхпромежуточныхчастотпреобразованиясигналоввмногоканальныхприемникахобоихдиапазоновиблокеихуплотнения,которыйвключенмеждувыходамиуказанныхприемниковнапервойпромежуточнойчастотеивходамиобщеготрактапреобразованияивыделениясигналовнавторойпромежуточнойчастоте,приэтомпередатчикодногодиапазонаподключенчерезкоммутаторзапускакшифраторукомандснаряду,аодинизвыходовобщеготрактапреобразованияивыделениясигналовподключенчерездешифраторсигналовснарядакдополнительномувходупроцессораданныхиуправлениярежимамиработысистемы,служащеговыходомсигнальныхданныхдляприводовсервосистемыантеннойколонки,индикатора,синхронизаторасистемыиблокасвязиспусковойустановкой,причемуправляющиевходыблокауплотнениясигналов,коммутаторазапуска,шифратора,дешифратораиобщеготрактавторичногопреобразованияивыделениясигналовподключеныктактовымвыходамсинхронизаторасистемы,связанногосопорнымгенераторомзадающихчастот,являющегосяобщимдлярадиовизировцелииуправляемогоснаряда.12.Системапоп.1,отличающаясятем,чтоблокуплотнениясигналоввыполненизлогическихвысокочастотныхэлементовИЛИ,азадатчикамипоследовательностипоступлениясигналовнаихвходыслужатимпульсысинхронизациирадиовизировцелииуправляемогоснаряда.2
Источник поступления информации: Роспатент

Всего документов: 24
Всего документов: 17

Похожие РИД в системе