×
20.10.2014
216.012.fe57

СПОСОБ ПРИГОТОВЛЕНИЯ БЕТОННОЙ СМЕСИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам приготовления бетонных смесей с добавкой микрокремнезема с химическими добавками. Техническим результатом предложенного способа является повышение прочности бетонной смеси. В способе приготовления бетонной смеси, заключающемся в перемешивании цемента, заполнителей, воды и водной суспензии комплексного модификатора следующего состава, мас.%: микрокремнезем 40-70; химические добавки 2-10; вода - остальное, которую перед перемешиванием подвергают сушке в воздушном потоке до получения порошка, состоящего из гранул, согласно изобретению, водную суспензию комплексного модификатора перед перемешиванием подвергают подсушке путем воздействия непрерывным электромагнитным полем сверхвысокой частоты 400-1000 МГц от СВЧ-генераторов и нагретым воздушным потоком охлаждения СВЧ-генераторов до получения порошка с гранулами размером до 500 мкм и влажностью 9-12%, затем подсушенный комплексный порошкообразный модификатор и цемент подвергают диспергированию и дезагрегации путём воздействия импульсным электромагнитным полем сверхвысокой частоты 1000-3000 МГц продолжительностью 1-1,5 секунды, до получения ультрадисперсного порошка комплексного модификатора размером 60-100 нм влажностью 1-8% и цемента размером 0,1-5 мкм, после чего их перемешивают, совместно перемалывают и активизируют, образуют дезагрегированную и активированную смесь цемента и комплексного модификатора, которую перемешивают с заполнителем и водой, получают бетонную смесь, на которую воздействуют мощным импульсным электромагнитным полем сверхвысокой частоты 400-1000 МГц продолжительностью 1÷100 наносекунды. 1 табл.
Основные результаты: Способ приготовления бетонной смеси, заключающийся в перемешивании цемента, заполнителей, воды и водной суспензии комплексного модификатора следующего состава, мас.%: микрокремнезем 40-70; химические добавки 2-10; вода - остальное, которую перед перемешиванием подвергают сушке в воздушном потоке до получения порошка, состоящего из гранул, отличающийся тем, что водную суспензию комплексного модификатора перед перемешиванием подвергают подсушке путем воздействия непрерывным электромагнитным полем сверхвысокой частоты 400-1000 МГц от СВЧ-генераторов и нагретым воздушным потоком охлаждения СВЧ-генераторов до получения порошка с гранулами размером до 500 мкм и влажностью 9-12%, затем подсушенный комплексный порошкообразный модификатор и цемент подвергают диспергированию и дезагрегации путем воздействия импульсным электромагнитным полем сверхвысокой частоты 1000-3000 МГц продолжительностью 1-1,5 секунды, до получения ультрадисперсного порошка комплексного модификатора размером 60-100 нм влажностью 1-8% и цемента размером 0,1-5 мкм, после чего их перемешивают, совместно перемалывают и активизируют, образуют дезагрегированную и активированную смесь цемента и комплексного модификатора, которую перемешивают с заполнителем и водой, получают бетонную смесь, на которую воздействуют мощным импульсным электромагнитным полем сверхвысокой частоты 400-1000 МГц продолжительностью 1÷100 наносекунды.
Реферат Свернуть Развернуть

Изобретение относится к способам приготовления бетонных смесей с добавкой микрокремнезема с химическими добавками.

Известен способ приготовления бетонной смеси с введением в нее цемента, заполнителей, воды и микрокремнезема с химическими добавками в виде единого пастообразного продукта "пульпы Сулькрем" [Вахомин В.Н., Алферов Ф.А., Лозовский М.А. и др. Новая добавка в технологии бетона - Пульпа Сулькрем, Бетон и железобетон, №2, 1990, с.40-41].

Недостатками способа являются склонность пульпы к расслоению, что требует периодического перемешивания при ее хранении, подверженность пульпы замерзанию при низких температурах, а также необходимость в дополнительных технологических линиях подачи суперпластификатора и других добавок. Пластичность бетонных смесей с добавкой такого пастообразного продукта со временем (через 15-20 мин с момента приготовления) заметно уменьшается.

Известен способ приготовления бетонной смеси, включающий перемешивание цемента, заполнителей, воды и водной суспензии комплексного модификатора, содержащего микрокремнезем и химические добавки, водную суспензию комплексного модификатора следующего состава, мас.%: микрокремнезем 40-70, химические добавки 2-10, остальное - вода, перед перемешиванием подвергают сушке в воздушном потоке при 160-250°C до получения порошка, состоящего из гранул размером до 500 мкм и влажностью 1-8%, минимальное время перемешивания цемента, заполнителей, воды и комплексного порошкообразного модификатора составляет 3 мин [Патент РФ №2095327, C04B 28/00, опубл. 10.11.1997, БИ №31. Авторы: Каприелов С.С. и др., «Способ приготовления бетонной смеси»].

Недостатком является недостаточно высокая интенсивность набора прочности и прочность бетонной смеси на сжатие.

Как отмечают сами авторы, использование комплексного порошкообразного модификатора бетона с размером гранул более 500 мкм (образец №8, табл.1) наряду с сохранением пластичности бетонных смесей через 120 мин, приводит к снижению прочности бетона на 19% (состав 7, табл.2), что очевидно связано с недостаточной степенью дезагрегации сравнительно крупных частиц модификатора.

Известно, что, как и все пуццолановые материалы, микрокремнезем вступает в реакцию с гидроксид кальция Ca(OH)2, освобождаемой при гидратации портландцемента при образовании вяжущих соединений. Очень высокая чистота и мелкость микрокремнезема способствует более эффективной и быстрой реакции. При надлежащем рассеивании тысячи реакционно-способных сферических микрочастиц окружают каждое зерно цемента, уплотняя цементный раствор, заполняя пустоты прочными продуктами гидратации и улучшая сцепление с заполнителями.

Кроме того, в процессе смешения цемента с водой образуются флокулы - мелкие частички цемента группируются в более крупные сгустки.

Объем пор во флокулах хоть и достаточно большой, но заполнившей его воды все равно недостаточно для обеспечения полной гидратации сопредельных зерен цемента. Вода во флокулах неподвижна. Ее приток извне или наружу практически прекращается. Ситуацию усугубляет и то, что продукты начавшей гидратации цемента еще более закупоривают внутренние каналы.

В натурном выражении этот процесс выливается в то, что самые мелкие и, следовательно, самые реакционно-способные частички цемента, которые должны были обеспечить быстрый набор прочности, сбиваются в сгустки - флокулы. Они реагируют с водой в основном только по своей наружной поверхности. Внутри запасы воды быстро истощаются, и прочностной потенциал цемента оказывается наглухо замурованным на несколько лет, а то и десятилетий, пока атмосферная влага все же не проникнет вглубь этих флокул.

Если проанализировать под микроскопом зерновой состав цементных частиц, то можно отчетливо наблюдать, что он очень укрупняется в водной среде. Даже тонкомолотые быстротвердеющие цементы с преобладанием частиц меньше 20 микрон в водной среде агрегатируются в более крупные сгустки - флокулы. Добавка серпластификатора С-3 полностью не снимает эту проблему.

Данный способ выбран в качестве прототипа.

Техническим результатом предложенного способа является повышение прочности бетонной смеси.

Технический результат достигается тем, что в способе приготовления бетонной смеси, заключающемся в перемешивании цемента, заполнителей, воды и водной суспензии комплексного модификатора следующего состава, мас.%: микрокремнезем 40-70; химические добавки 2-10; вода - остальное, которую перед перемешиванием подвергают сушке в воздушном потоке до получения порошка, состоящего из гранул, согласно изобретению, водную суспензию комплексного модификатора перед перемешиванием подвергают подсушке путем воздействия непрерывным электромагнитным полем сверхвысокой частоты 400-1000 МГц от СВЧ-генераторов и нагретым воздушным потоком охлаждения СВЧ-генераторов до получения порошка с гранулами размером до 500 мкм и влажностью 9-12%, затем подсушенный комплексный порошкообразный модификатор и цемент подвергают диспергированию и дезагрегации путем воздействия импульсным электромагнитным полем сверхвысокой частоты 1000-3000 МГц продолжительностью 1-1,5 секунды, до получения ультрадисперсного порошка комплексного модификатора размером 60-100 нм влажностью 1-8% и цемента размером 0,1-5 мкм, после чего их перемешивают, совместно перемалывают и активизируют, образуют дезагрегированную и активированную смесь цемента и комплексного модификатора, которую перемешивают с заполнителем и водой, получают бетонную смесь, на которую воздействуют мощным импульсным электромагнитным полем сверхвысокой частоты 400-1000 МГц продолжительностью 1÷100 наносекунды.

Перед перемешиванием бетонной смеси водную суспензию комплексного модификатора подвергают подсушке путем воздействия непрерывным электромагнитным полем сверхвысокой частоты 915 МГц от СВЧ-генераторов и нагретым воздушным потоком охлаждения СВЧ-генераторов до получения порошка с гранулами размером до 500 мкм и влажностью 9-12%, это снижает энергопотребность и продолжительность технологического процесса, так как разогрев и подсушка суспензии производится по всему объему одновременно. Затем подсушенный комплексный порошкообразный модификатор и цемент подвергают диспергированию и дезагрегации путем воздействия импульсным электромагнитным полем сверхвысокой частоты 2450 МГц продолжительностью 1-1,5 секунды, до получения ультрадисперсного порошка комплексного модификатора размером 60-100 нм влажностью 1-8% и цемента размером 0,1-5 мкм. Импульсный режим работы СВЧ-генератора обеспечивает низкую энергоемкость процесса.

Прочность бетона будет повышаться за счет мелкости (нанодисперсности и ультрадисперсности) частиц модификатора и цемента. Чем меньше частицы, тем быстрее и эффективнее цемент набирает прочность, образуя монолитность цементного камня.

Перемешивание частиц модификатора и цемента, их совместный помол и механоактивация повышают активность частиц при взаимодействии с водой и другими наполнителями. Полученную дезагрегированную и активированную смесь цемента и комплексного модификатора перемешивают с заполнителем и водой, получают бетонную смесь, на которую воздействуют мощным импульсным электромагнитным полем сверхвысокой частоты 400-1000 МГц продолжительностью 1÷100 наносекунды. Это позволяет разрушить образовавшиеся сгустки, которые получаются при взаимодействии цемента и воды, модификатора и воды, цемента, модификатора и воды, что ускорит процесс набора прочности и повысит прочность бетонной смеси на сжатие.

Пример реализации способа приготовления бетонной смеси.

Материалы для приготовления комплексного модификатора: микрокремнезем (МК) марки МК-85 по ТУ 7-249533-90 "Микрокремнезем конденсированный. Технические условия"; суперпластификатор (СП) марки С-3 на основе натриевой соли продукта конденсации нафталинсульфокислоты и формальдегида, соответствующий ТУ 6-36-0204229-625-90 "Пластификатор С-3"; нитрилотриметиленфосфоновая кислота (НТФ), соответствующая ТУ 6-09-5283-86 "Нитрилотриметиленфосфоновая кислота. Технические условия"; нитрит натрия (НН), соответствующий ГОСТ 19906-74 "Нитрит натрия технический. Технические условия"; смола нейтрализованная воздухововлекающая (СНВ), соответствующая ТУ 81-05-75-74. Суспензия комплексного модификатора подвергалась подсушке путем воздействия непрерывным электромагнитным полем сверхвысокой частоты 915 МГц от СВЧ-генераторов и нагретым воздушным потоком охлаждения СВЧ-генераторов до получения порошка, состоящего из гранул размером до 500 мкм и влажностью 9-12%. Подсушенный комплексный порошкообразный модификатор и цемент подвергали диспергированию и дезагрегации путем воздействия импульсным электромагнитным полем сверхвысокой частоты 2450 МГц продолжительностью 1-1,5 секунды, до получения ультрадисперсного порошка комплексного модификатора размером 60-100 нм влажностью 1-8% и цемента размером 0,1-5 мкм с последующим их перемешиванием, совместным помолом и механоактивацией. Диспергирование и совместный помол привели к увеличению межфазной поверхности раздела материалов. Полученную дезагрегированную и активированную смесь цемента и комплексного модификатора перемешивали с заполнителем и водой, получали бетонную смесь. На эту смесь воздействовали мощным импульсным электромагнитным полем сверхвысокой частоты 915 МГц продолжительностью 1÷100 наносекунды.

Дисперсность является качественной термодинамической характеристикой системы, определяющей величину поверхности раздела фаз. Избыточная поверхностная энергия оказывает значительное влияние на интенсивность и особенности протекания не только химических, но и физико-химических процессов, как при обычных, так и при повышенных температурах.

Характеристикой дисперсности является степень дисперсности S, т.е. степень раздробленности вещества дисперсной фазы, представляющая величину, обратную размеру частиц d.

Наиболее удобной и распространенной характеристикой дисперсности порошкообразных материалов является удельная поверхность, определяемая отношением поверхности всех частиц к их объему или массе.

Величину удельной поверхности комплексного модификатора определяли методом на основе зависимости воздухопроницаемости слоя материала от его дисперсности. Этот метод основан на измерении сопротивления, оказываемого воздуху, просасываемому через слой уплотненного материала определенной толщины и площади поперечного сечения.

Исследования фазового состава порошкообразного материала и определение размера частиц проводились в Центре коллективного пользования научным оборудованием «Исследование физико-химических свойств веществ и материалов» (ЦКП).

Доля частиц размером 60-85 нм в смеси порошкообразного модификатора составила 70-85%. Средний размер частиц модификатора составил 100 нм. Определено с помощью сканирующего электронного микроскопа JSM-6390A.

С учетом того, что насыпная плотность модификатора составляет 750±50 кг/м3, удельная поверхность порошка комплексного модификатора составила 450000 см2/г, удельная поверхность порошка цемента - 36000 см2/г.

Температуру замерзания полученного продукта определяли по визуальной оценке поведения материала при понижении температуры: по изменению сыпучести (угла естественного откоса). При превышении угла естественного откоса 20° сыпучесть признавалась неудовлетворительной. Соответственно определялся и оптимальный диапазон влажности материала, температура замерзания и соответственно угол естественного откоса связаны с относительной влажностью.

Оптимальную дисперсность материала определяли по максимальной прочности бетона, которая достигалась при перемешивании порошкообразного модификатора с другими компонентами бетонной смеси в течение 3 мин.

Бетонные смеси готовили с применением портландцемента М400 (ГОСТ 10178), кварцевого песка с Мкр=2,1 (ГОСТ 8736), гранитного щебня фракции 5-20 мм (ГОСТ 8267). В способе приготовления бетонной смеси, принятом за прототип, в смесителе не менее 3 мин совместно перемешиваются: цемент, заполнители, вода и порошкообразный продукт комплексный модификатор полифункционального действия с размером частиц в пределах 500 мкм и относительной влажностью 1-8%, который приготавливается из суспензии, путем ее сушки в воздушном потоке при 160-250°C. В предлагаемом способе микрокремнезем и химдобавки вводили в виде порошкообразного модификатора, который приготавливается из суспензии комплексного модификатора, путем подсушке воздействуя непрерывным электромагнитным полем сверхвысокой частоты 915 МГц от СВЧ-генераторов и нагретым воздушным потоком охлаждения СВЧ-генераторов до получения порошка, состоящего из гранул размером до 500 мкм и влажностью 9-12%. Подсушенный комплексный порошкообразный модификатор и цемент подвергали диспергированию и дезагрегации путем воздействия импульсным электромагнитным полем сверхвысокой частоты 2450 МГц продолжительностью 1-1,5 секунды, до получения ультрадисперсного порошка комплексного модификатора размером 60-100 нм влажностью 1-8% и цемента размером 0,1-5 мкм с последующим их перемешиванием, совместным помолом и механоактивацией.

Цемент, микрокремнезем и химические добавки относятся к классу несовершенных диэлектриков и чрезвычайно эффективно взаимодействуют с СВЧ-полем. Поглощаемая смесями СВЧ-мощность распределяется примерно равномерно по объему агрегированных комков, что и позволяет осуществить их быстрый нагрев. Это приводит к интенсивному испарению воды. При этом влажность порошкообразного материала, после обработки, достигает 1-8%. Такая влажность материала необходима для обеспечения требуемых условий при помоле и механоактивации, длительном хранении, а также для сохранения пуццолановой активности и предотвращения слипания частиц порошка.

Составы бетонных смесей с модификаторами, приготовленными по прототипу и предлагаемому способу принимали одинаковыми, кг/м3:

цемент 300; песок 730; щебень 1120; вода 165.

Порошкообразный модификатор и суспензия (пульпа) вводились в бетонную смесь из расчета 15% микрокремнезема от массы цемента, причем вода в составе суспензии учитывалась в общем количестве воды затворения.

Прочность бетона оценивали испытанием образцов-кубов размером ребра 10 см, твердевших в стандартных условиях.

В таблице 1, в качестве примера, приведены результаты испытаний свойств комплексного модификатора, бетонных смесей и бетонов, приготовленные предлагаемым способом.

Известно, что наиболее активными составляющими бетонной смеси является цемент и вода. Скорость и глубина гидратации цемента, условия твердения бетона в раннем возрасте являются решающими факторами, влияющими и на темпы набора прочности бетона, и на его качество.

Таблица 1
Состав компонентов суспензии и влияние модификаторов на прочность бетона
№ п/п Соотношение компонентов суспензии, масс.% Влажность полученного модификатора, % Температура замерзания модификатора, °C Размер гранул, мкм Прочность бетона 28 сут норм. хр., МПа
МК СП С-3 НТФ НН СНВ Вода
Прототип
1 50 5,5 0,16 - - 44,34 1,3 ниже -40 470 58,3
2 50 5,0 0,16 4,34 - 40 1,1 ниже -40 500 63,4
3 50 5,5 0,16 - 0,04 44,3 1,2 ниже -40 460 54,2
4 70 6,5 0,30 - - 18,7 7,8 -31 500 62,8
Предлагаемый вариант Размер гранул, нм
5 50 5,5 0,16 - - 44,34 1,5 ниже -40 95 71,3
6 50 5,0 0,16 4,34 - 40 2,1 ниже -40 100 75,8
7 50 5,5 0,16 - 0,04 44,3 1,1 ниже -40 90 60,7

Эффект СВЧ-нагрева основан на поглощении электромагнитной энергии в диэлектриках. Поля СВЧ проникают на значительную глубину, которая зависит от свойств материалов. Взаимодействуя с веществом на атомном и молекулярном уровне, эти поля влияют на движение электронов, что приводит к преобразованию СВЧ-энергии в тепло одновременно по всему объему на глубину проникновения электромагнитных волн.

Такие свойства ЭМП СВЧ позволяют интенсифицировать набор прочности бетонной смеси на 5-8%.

В таблице приведены результаты испытаний свойств комплексного модификатора, бетонных смесей и бетонов. Из таблицы видно, что образцы №5-7, полученные предложенным способом, обладает низкой влажностью и соответственно низкой температурой замерзания. Эффективность оценивалась на бетонах одинакового состава.

Предлагаемый способ приводит к повышению прочности бетона одного и того же состава на 12-23% по сравнению с прототипом.

Способ приготовления бетонной смеси, заключающийся в перемешивании цемента, заполнителей, воды и водной суспензии комплексного модификатора следующего состава, мас.%: микрокремнезем 40-70; химические добавки 2-10; вода - остальное, которую перед перемешиванием подвергают сушке в воздушном потоке до получения порошка, состоящего из гранул, отличающийся тем, что водную суспензию комплексного модификатора перед перемешиванием подвергают подсушке путем воздействия непрерывным электромагнитным полем сверхвысокой частоты 400-1000 МГц от СВЧ-генераторов и нагретым воздушным потоком охлаждения СВЧ-генераторов до получения порошка с гранулами размером до 500 мкм и влажностью 9-12%, затем подсушенный комплексный порошкообразный модификатор и цемент подвергают диспергированию и дезагрегации путем воздействия импульсным электромагнитным полем сверхвысокой частоты 1000-3000 МГц продолжительностью 1-1,5 секунды, до получения ультрадисперсного порошка комплексного модификатора размером 60-100 нм влажностью 1-8% и цемента размером 0,1-5 мкм, после чего их перемешивают, совместно перемалывают и активизируют, образуют дезагрегированную и активированную смесь цемента и комплексного модификатора, которую перемешивают с заполнителем и водой, получают бетонную смесь, на которую воздействуют мощным импульсным электромагнитным полем сверхвысокой частоты 400-1000 МГц продолжительностью 1÷100 наносекунды.
Источник поступления информации: Роспатент

Showing 1-10 of 29 items.
10.01.2013
№216.012.1979

Способ питания газодизеля

Изобретение относится к двигателестроению, в частности к системам и способам питания двигателей внутреннего сгорания, и может быть использовано в качестве систем питания газодизелей с применением альтернативных видов топлива. Техническим результатом является сокращение расхода жидких...
Тип: Изобретение
Номер охранного документа: 0002472013
Дата охранного документа: 10.01.2013
10.02.2013
№216.012.23f1

Способ комплексной очистки газообразных продуктов сгорания

Изобретение относится к способу обработки газообразных продуктов сгорания, к способу для очистки подобных продуктов и может быть использовано для систем очистки от токсичных компонентов выхлопных газов и отходящих производственных вентиляционных выбросов, в частности для очистки выхлопных газов...
Тип: Изобретение
Номер охранного документа: 0002474703
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.268c

Способ работы маневровых тепловозов

Изобретение относится к рельсовым транспортным средствам, в частности к маневровым тепловозам с дизелями. Способ работы маневровых тепловозов, заключается в том, что тепловозы одного тягового участка разбивают на две группы, причем первую группу размещают в конце тягового участка, выводят их...
Тип: Изобретение
Номер охранного документа: 0002475388
Дата охранного документа: 20.02.2013
27.03.2013
№216.012.30d8

Способ работы маневрового электровоза и маневровый электровоз

Изобретение относится к области рельсовых транспортных средств, в частности к маневровым локомотивам. Способ работы маневрового электровоза заключается в отборе электрической энергии из контактной сети и питании тяговых электродвигателей. На участках постоянного напряжения электрическую энергию...
Тип: Изобретение
Номер охранного документа: 0002478042
Дата охранного документа: 27.03.2013
10.10.2013
№216.012.7429

Стенд для испытания турбокомпрессора двигателя внутреннего сгорания

Изобретение может быть использовано при испытаниях турбокомпрессоров для наддува двигателей внутреннего сгорания (ДВС). Стенд содержит входную и выходную магистрали, регулируемый источник газового потока с регулируемым приводом, выполненный в виде технологического компрессора, испытуемый...
Тип: Изобретение
Номер охранного документа: 0002495394
Дата охранного документа: 10.10.2013
10.04.2014
№216.012.b368

Акустический способ обнаружения неисправности рельсового пути

Использование: для акустической дефектоскопии неисправностей рельсового пути. Сущность: заключается в том, что в рельсы передают акустический сигнал, принимают отраженный сигнал, а по времени распространения акустических сигналов к месту неисправности и обратно определяют его координату,...
Тип: Изобретение
Номер охранного документа: 0002511644
Дата охранного документа: 10.04.2014
10.06.2014
№216.012.cf0e

Энергетическая установка

Изобретение может быть использовано в установках для автономного электроснабжения, теплоснабжения, снабжения горячей водой, паром и хладоносителем. Энергетическая установка подключена к тепловой сети, магистрали водопроводной воды, электрической сети (1) и сети (61) аварийного электропитания и...
Тип: Изобретение
Номер охранного документа: 0002518777
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cfb0

Способ и устройство распознавания рельефности изображения лица

Изобретение относится к области распознавания образов, а именно к способам и устройствам распознавания рельефности двухмерного изображения. Техническим результатом является повышение достоверности распознавания рельефности лица. Способ распознавания рельефности изображения лица заключается в...
Тип: Изобретение
Номер охранного документа: 0002518939
Дата охранного документа: 10.06.2014
27.07.2014
№216.012.e570

Способ термической обработки сварных стыков рельсов

Изобретение относится к области термомеханической обработки сварных соединений, например сварных стыков рельсов, и может быть использовано на железнодорожном транспорте. Техническим результатом является повышение твердости и коррозионной стойкости сварных стыков рельсов за счет его...
Тип: Изобретение
Номер охранного документа: 0002524526
Дата охранного документа: 27.07.2014
27.08.2014
№216.012.ed64

Способ контроля качества изоляции электротехнических изделий

Изобретение относится к электротехнической области и может быть использовано при пропитке и сушке электротехнических изделий, в частности обмоток электрических машин подвижного состава. Технический результат: повышение качества контроля изоляции при пропитке и сушке изделия во время...
Тип: Изобретение
Номер охранного документа: 0002526591
Дата охранного документа: 27.08.2014
Showing 1-10 of 44 items.
10.01.2013
№216.012.1979

Способ питания газодизеля

Изобретение относится к двигателестроению, в частности к системам и способам питания двигателей внутреннего сгорания, и может быть использовано в качестве систем питания газодизелей с применением альтернативных видов топлива. Техническим результатом является сокращение расхода жидких...
Тип: Изобретение
Номер охранного документа: 0002472013
Дата охранного документа: 10.01.2013
10.02.2013
№216.012.2393

Способ производства топливных брикетов

Изобретение относится к способу производства топливных брикетов, включающих подготовку промышленных и твердых бытовых отходов, их дозирование компонентов, смешивание, формование и сушку, где дозирование топливной смеси производят по теплотворной способности из соотношения: где M, M, M, M,…, M...
Тип: Изобретение
Номер охранного документа: 0002474609
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.26be

Устройство для разогрева смерзшегося груза в вагоне

Изобретение относится к области погрузочно-разгрузочных работ, а именно к системам обогрева для размораживания смерзшегося груза в вагоне. Устройство для разогрева смерзшегося груза в вагоне (1) состоит из боковых стенок, пола, теплоизоляционного (4) и нагревательного элементов, которые...
Тип: Изобретение
Номер охранного документа: 0002475438
Дата охранного документа: 20.02.2013
10.03.2013
№216.012.2dba

Устройство для контроля температуры нагрева подшипников осей вагона

Изобретение относится к области железнодорожного транспорта, а конкретнее к устройствам для обнаружения и индикации перегрева осевых подшипников. Устройство контроля температуры нагрева подшипников осей вагона содержит датчики температуры нагрева, размещенные в корпусах, установленных в...
Тип: Изобретение
Номер охранного документа: 0002477237
Дата охранного документа: 10.03.2013
27.03.2013
№216.012.30d8

Способ работы маневрового электровоза и маневровый электровоз

Изобретение относится к области рельсовых транспортных средств, в частности к маневровым локомотивам. Способ работы маневрового электровоза заключается в отборе электрической энергии из контактной сети и питании тяговых электродвигателей. На участках постоянного напряжения электрическую энергию...
Тип: Изобретение
Номер охранного документа: 0002478042
Дата охранного документа: 27.03.2013
27.04.2013
№216.012.3b09

Способ сжигания твердых бытовых отходов и мусора и устройство для его осуществления

Изобретение относится к строительству, а именно к технологиям сжигания твердых бытовых отходов, и может быть использовано во всех отраслях, в том числе и на железнодорожном транспорте. Способ сжигания твердых бытовых отходов и мусора заключается в принудительной подаче в топку котла, в огневой...
Тип: Изобретение
Номер охранного документа: 0002480674
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.4023

Устройство контроля состояний рельсовой линии

Изобретение относится к железнодорожной автоматике и предназначено для контроля состояния рельсовой линии. Устройство контроля состояний рельсовой линии содержит рельсовые линии, путевой генератор, первое и второе путевые реле, первый и второй резисторы, путевой трансформатор, полосовой фильтр,...
Тип: Изобретение
Номер охранного документа: 0002481989
Дата охранного документа: 20.05.2013
27.06.2013
№216.012.4fca

Способ очистки внутренней поверхности емкости

Изобретение относится к средствам, предназначенным для разрушения сводов и перемычек из слежавшегося сыпучего материала, образовавшихся в различных, в том числе труднодоступных местах емкостей. Способ очистки заключается в том, что в требующую очистки емкость устанавливают пневмопушку с соплом,...
Тип: Изобретение
Номер охранного документа: 0002486019
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5012

Способ контроля состояния рельсовой линии

Изобретение относится к железнодорожной технике, а именно к железнодорожной автоматике и телемеханике, и может быть использовано для регулирования движения поездов. Способ контроля состояния рельсовой линии заключается в том, что в рельсовую линию на входном конце подают переменное напряжение,...
Тип: Изобретение
Номер охранного документа: 0002486091
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.50e8

Бетонная шпала-демпфер

Изобретение относится к конструкции верхнего строения пути и предназначено для восприятия нагрузки от подвижного состава. Может быть использовано на грузонапряженных линиях железнодорожного пути в местах с продольной негомогенностью пути, в частности с меняющейся по длине жесткостью нижнего...
Тип: Изобретение
Номер охранного документа: 0002486305
Дата охранного документа: 27.06.2013
+ добавить свой РИД