×
27.05.2013
216.012.4586

Результат интеллектуальной деятельности: КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ИММОБИЛИЗАЦИИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ И СПОСОБ ЕГО ПРИМЕНЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области атомной техники и касается технологии переработки высокосолевых жидких радиоактивных отходов низкого и среднего уровня активности, содержащих до 30% органических веществ, путем включения их в магнезиальный цемент. Композиционный материал имеет следующий состав, мас.%: порошок магнезитовый каустический 27-28, твердые соли 5-6, хлорид кальция (CaCl) 0,1-6, каталитическая углеродосодержащая добавка 0,1-0,2; раствор ферроцианида калия 0,05-0,1; раствор нитрата никеля 0,05-0,1, жидкие радиоактивные отходы - остальное. В жидкие радиоактивные отходы вводят ингредиенты в следующей последовательности: твердые соли, раствор ферроцианида калия, раствор нитрата никеля, хлорид кальция, каталитическая углеродосодержащая добавка, порошок магнезитовый каустический. Изобретение позволяет получать компаунды, отвечающие основным требованиям их качества по ГОСТ Р 51883-2002 (скорость выщелачивания для цезия-137 ≤1-10, достигнутая - 2·10 г/см·сут, а механическая прочность на сжатие ≥5 МПа), с наполнением сухими радиоактивными солями до 37 мас.%. 2 н. и 10 з.п. ф-лы, 3 табл.

Изобретение относится к области атомной техники и касается технологии переработки радиоактивных отходов. В настоящее время проблема безопасного обращения с радиоактивными отходами является одной из основных проблем, от которой зависят масштабы и динамика развития ядерной энергетики, а также дальнейшее внедрение радиационных технологий. Предлагаемое изобретение, более конкретно, относится к области переработки высокосолевых жидких радиоактивных отходов (ЖРО) низкого и среднего уровня активности, содержащих до 30% органических веществ. Такие отходы образуются, например, в результате дезактивации малосолевых радиоактивно загрязненных вод на предприятиях по обращению с радиоактивными отходами и на действующих АЭС термическим способом (дистилляция или упаривание). Данный способ дезактивации реализуется в специальных выпарных аппаратах (перегонных кубах) с подводом тепла водяным паром через стенку аппарата. Конечными продуктами работы аппаратов являются дистиллят и небольшие по объему ЖРО, называемые кубовыми остатками (КО), в которых концентрации радионуклидов и солей в 60-300 раз больше, чем в исходных ЖРО. Таким образом, способ дистилляции или упаривания приводит лишь к уменьшению объема ЖРО за счет концентрирования и не решает проблемы обеспечения длительного и безопасного для окружающей среды хранения ЖРО.

В настоящее время одной из наиболее перспективных технологий иммобилизации ЖРО, получаемых в результате процесса дистилляции или упаривания, является их омоноличивание, т.е. включение их в матричные затвердевающие составы. Эти составы должны отвечать требованиям ГОСТ Р 51883-2002 (Отходы радиоактивные цементированные. Общие технические требования). Следует отметить, что технология иммобилизации ЖРО посредством омоноличивания предпочтительно не должна требовать высоких энергетических затрат и осуществляться при любых положительных температурах на оборудовании, применяющемся при обычном цементировании.

Известен (А.А.Игнатов и др. Разработка и испытания матричных составов для цементирования ЖРО ЛСК «Радон» // «Экология и атомная энергетика», №2(17), с.91) матричный состав для цементирования ЖРО специальных прачечных, в который входят: портландцемент марок М-400 (М-500), хлорид кальция, природный сорбент (бентонит или природная смесь бентонита с цеолитом). К недостаткам данного состава следует отнести: использование относительно дорогих материалов, которые широко применяются в строительстве, а также не очень высокая степень наполнения цементных компаундов сухими радиоактивными солями.

Известен (авторское свидетельство СССР №1275560 А, 1986 г.) способ отверждения ЖРО путем их упаривания до получения шлама с кристаллогидратной водой и далее включение шлама в битум при температуре (50-90)°С и в отношении шлама к битуму 1:4. Указанный способ имеет ряд существенных недостатков. Так в получаемой композиции шлам - битум содержание отходов мало, и поэтому его эффективность невысока. Кроме того, способ имеет высокую энергоемкость из-за длительного упаривания ЖРО и высокую пожароопасность ввиду горючести битума.

Наиболее близким по совокупности существенных признаков к предлагаемому техническому решению является композиционный материал, защищенный патентом РФ №2378723 от 10.04.2010 г., в связи с этим он принят за прототип. Известный композиционный материал для иммобилизации радиоактивных и химических токсичных отходов имеет следующий состав, мас.%:

порошок магнезитовый каустический (ПМК-87) 30-50
наполнитель 30-50
каталитическая добавка в виде порошка
породы шунгита или белой сажи 0,01-0,5
водные растворы хлористого магния с
плотностью 1,1-1,3 г/см3 или сульфата
магния с плотностью 1,2-1,35 г/см3 остальное.

В качестве наполнителя композиционный материал содержит металлургический шлак с размерами частиц до 0,074 мм или золу от сжигания органических и/или неорганических веществ. Дополнительно материал содержит до 0,5% бентонитовой глины.

Недостатком этого композиционного материала является превышение одного из основных, согласно ГОСТ Р 51883-2002, показателей качества цементных компаундов, а именно - скорости выщелачивания для цезия-137 (≤1·10-3 г/см2·сут) - даже при малой степени наполнения (3-8 мас.%) компаундов радиоактивными солями. Это связано с тем, что матрица магнезиального цемента (МЦ) не является барьером для цезия-137, а эффективности введенных в композиционный материал сорбентов для удержания радионуклидов с требуемыми показателями недостаточно.

Также известны способы иммобилизации радиоактивных отходов, в том числе, в минеральные матричные блоки. Например, в соответствии с патентом РФ №2189652 предложен способ иммобилизации радиоактивных отходов в минеральный матричный блок, включающий смешивание радиоактивных отходов с окислителем, восстановителем и минеральной добавкой в определенной пропорции, заполнение зазора между наружной и внутренней емкостями порошкообразным неорганическим теплоизоляционным материалом, загрузку полученной смеси во внутреннюю емкость, нагрев смеси радиоактивных отходов с окислителем, восстановителем и минеральной добавкой путем инициирования в ней экзотермической реакции между окислителем и восстановителем, получение расплава конечного продукта и его охлаждение. Однако данный способ сложен технологически, энергоемок и требует для своей реализации применения специального устройства.

Наиболее близким по совокупности существенных признаков к предлагаемому в изобретении является способ иммобилизации жидких радиоактивных отходов в соответствии с патентом РФ №2214011 (прототип), включающий их концентрирование и отверждение с выдерживанием смеси до формирования прочного твердого монолитного блока, фиксирующего в своей структуре компоненты радиоактивных отходов, отличающийся тем, что отверждение осуществляют путем смешивания радиоактивных отходов с раствором хлористого магния плотностью 1,2-1,35 г/см3, магнезиального вяжущего и тонкодисперсного минерального наполнителя с размерами частиц 0,005-0,015 мм. Недостатками данного способа является превышение нормативной скорости выщелачивания для цезия-137 и недостаточная наполняемость конечного продукта радиоактивными отходами, содержащими значительное количество органических и поверхностно-активных веществ.

Технический результат, на достижение которого направлено изобретение, заключается в разработке такого композиционного материала и способа его применения, которые позволяют иммобилизировать ЖРО с качеством, отвечающим ГОСТ Р 51883-2002, а именно скорость выщелачивания для цезия-137 обеспечивается ≤1·10-3 г/см2·сут при достижении степени наполнения компаундов сухими радиоактивными солями 35-37%.

С этой целью в композиционном материале для иммобилизации высокосолевых жидких радиоактивных отходов, включающем отвердитель, порошок магнезитовый каустический и каталитическую углеродосодержащую добавку, в качестве отвердителя примененены твердые соли и в состав материала дополнительно введены растворы ферроцианида калия и нитрата никеля, а также хлорид кальция при следующем соотношении мас.%:

твердые соли 5-6
порошок магнезитовый каустический 27-28
каталитическая углеродосодержащая добавка 0,1-0,2
раствор ферроцианида калия 0,05-0,1
раствор нитрата никеля 0,05-0,1
хлорид кальция (CaCl2) 0,1-6
жидкие радиоактивные отходы остальное

Дополнительными отличиями предлагаемого композиционного материала является применение в качестве твердых солей шестиводного хлорида магния (MgCl2·6H2O) или семиводного сульфата магния (MgSO4·7H2O), а в качестве каталитической добавки - белой сажи, шунгита или пирокарбона.

Также с целью достижения поставленного технического результата в изобретении предлагается в способе применения композиционного материала для иммобилизации высокосолевых жидких радиоактивных отходов, состоящем в их концентрировании и отверждении с помощью композиционного материала, включающего отвердитель, порошок магнезитовый каустический и каталитическую углеродосодержащую добавку, с выдерживанием смеси до формирования прочного твердого монолитного блока, фиксирующего в своей структуре компоненты радиоактивных отходов, в качестве отвердителя предлагается использовать твердые соли, а в композиционный материал дополнительно вводить растворы ферроцианида калия и нитрата никеля, а также хлорид кальция при следующем соотношении мас.%:

твердые соли 5-6
порошок магнезитовый каустический 27-28
каталитическая углеродосодержащая добавка 0,1-0,2
раствор ферроцианида калия 0,05-0,1
раствор нитрата никеля 0,05-0,1
хлорид кальция (CaCl2) 0,1-6
жидкие радиоактивные отходы с pH≤9,7-9,9, остальное

Причем отверждение предлагается проводить введением в жидкие радиоактивные отходы ингредиентов композиционного материала в следующей последовательности: 1 - твердые соли, 2 - раствор ферроцианида калия, 3 - раствор нитрата никеля, 4 - хлорид кальция, 5 - каталитическая углеродосодержащая добавка и 6 - порошок магнезитовый каустический при непрерывном перемешивании смеси.

Дополнительными отличиями предлагаемого способа является применение в качестве твердых солей шести водного хлорида магния (MgCl2·6H2O) или семиводного сульфата магния (MgSO4·7H2O), а в качестве каталитической добавки - белой сажи, шунгита или пирокарбона.

Применение в составе предложенного композиционного материала в качестве отвердителей порошка магнезитового каустического вместо ненасыщенных растворов хлорида или сульфата магния твердых солей позволяет использовать воду, содержащуюся в составе ЖРО для образования насыщенных растворов хлорида или сульфата магния, и обеспечивает повышение наполняемости конечного продукта (отвердевшего компаунда) радиоактивными отходами.

Введение растворов гексацианоферрата калия (желтой кровяной соли) и азотнокислого никеля, образующих при смешении труднорастворимое соединение - ферроцианид никеля-калия (ФЦНК), являющийся эффективным селективным сорбентом на цезий, обеспечивает существенное уменьшение скорости выщелачивания из отвердевшего компаунда цезия-137.

И, наконец, введение в состав компаунда хлорида кальция позволяет увеличить степень наполнения компаунда радиоактивными солями и связать входящие в состав отходов фосфаты, оксалаты, силикаты в труднорастворимые соединения.

Один из вариантов выполнения разработанного способа омоноличивания ЖРО описан ниже. В качестве ЖРО использовались кубовые остатки спецпрачечной, содержащие фосфаты, силикаты, сульфаты, оксалаты, органические и поверхностно-активные вещества. Солесодержание кубовых остатков составляло 400-600 г/л, а органических и поверхностно-активных веществ - до 30 мас.%.

А. ЖРО подают насосом из расходной емкости, оборудованной дозирующим устройством, в смеситель установки цементирования (если pH ЖРО больше 9,7-9,9, в него вводят необходимый объем соляной кислоты), затем дозатором подают в смеситель кристаллогидраты сульфата магния или сернокислого магния и смесь перемешивают в течение 3-5 мин. После такого контакта кристаллизационная вода солей переходит в ЖРО и немного его разжижает.

Б. В смесь «А», находящуюся в смесителе, с помощью дозатора вводят отмеренный объем желтой кровяной соли и смесь перемешивают в течение 3-5 мин, а затем туда же подают отмеренный объем нитрата никеля и смесь перемешивают в течение 3-5 мин, после чего выдерживают в течение 2-3 ч с периодическим перемешиванием через каждые 0,5 ч. По реакции:

K4[Ni(CN)6]+4Cs+→CS4[Ni(CN6]+4K+

получают ФЦНК, который обладает высокой эффективностью очистки цезия-137 (коэффициент очистки до 103). Следует иметь в виду, что образованное труднорастворимое соединение при pH≥10 начинает эффективно растворяться.

В. В смесь «Б» дозатором сбрасывают отмеренную навеску порошка хлорида кальция из расчета 0,1-0,2 г на 1 г сухих радиоактивных солей. Содержащиеся в составе ЖРО фосфаты, оксалаты, силикаты, карбонаты натрия, натриевые соли жирных кислот образуют труднорастворимые соединения. В объеме смеси образуются сгустки (осадок), которые после перемешивания в течение 3-5 мин достигают сметанообразного состояния средней густоты. Так как фосфаты кальция мало растворимы, при образовании осадка происходит сокристаллизация, соосаждение и сорбция радионуклидов, т.е. дополнительная очистка. При этом pH среды смеси должна быть в диапазоне 9,7-9,9. [Осадительные методы очистки ЖРО: Методические указания / ЛТИ им. Ленсовета. - Л., 1989. - c.6-7].

Г. В смесь «В» из емкости-дозатора с отмеренной навеской вводят каталитическую добавку в виде порошков «белой сажи», шунгита или пироксилина, затем навеску бентонитовой глины, которая составляет 0,5-1% от массы МЦ, и осуществляют перемешивание в течение 3-5 мин. Каталитическая добавка в количествах 0,2-0,6 мас.% от массы сухих радиоактивных солей способствует совмещению компонентов ЖРО и МЦ с получением более прочных компаундов. Бентонитовая глина является сорбентом для стронция-90, активность которого в ЖРО соизмерима с активностью цезия-137, и дополнительным сорбентом для цезия. Затем в смеситель порциями всыпают порошок магнезитовый каустический (марка ПМК-87) при постоянном перемешивании магнезиального теста. Когда ЖРО становится густым, в него добавляют воду или ЖРО, затем вновь порцию ПМК, воду или ЖРО и так поступают до полного опорожнения дозатора. Полученное цементное тесто нужной консистенции заливают в штатные 200 л железные бочки или в железобетонные невозвратные защитные контейнеры типа НЗК, предназначенные для хранения, транспортировки и захоронения РАО низкой и средней активности. Емкости выдерживают на воздухе до превращения компаунда в монолит.

Положительные свойства разработанного композиционного материала и способа его применения для переработки ЖРО омоноличиванием (созданием магнезиального компаунда) подтверждаются экспериментально.

Пример 1. Определение в соответствии с изобретением зависимости механической устойчивости отвержденных компаундов от соотношения отверждающих кубовые остатки ингредиентов - хлорида (сульфата) магния и порошка магнезитового каустического (ПМК-87).

В экспериментах в качестве ЖРО использовались реальные кубовые остатки от установки дистилляции ЖРО с солесодержанием 400-600 г/л, сульфат и хлорид магния марки «Ч» (ГОСТ 7759-73) и порошок магнезитовый каустический (ПМК-87), изготовленный по ГОСТ 1216-87. Этот порошок получен улавливанием пыли при обжиге природного магнезита. Он на 82-83% состоит из MgO, содержит до 2,5% СаО и 2,5% SiO2 и имеет плотность 3,1-3,4 г/см3.

Зависимость прочности отвержденных ЖРО спецпрачечных от соотношения ПМК/MgCl2 приведена в табл.1. Из таблицы видно, что при создании цементирующих компаундов соотношение ПМК/MgCl2(MgSO4) должно быть не менее чем 4:1.

Таблица 1
Влияние соотношения ПМК/MgCl2 от 2:1 до 4:1 на механическую устойчивость компаундов в воде
Состав цемента, г* Соотношение ПМК-8
MgCl2(MgSO4)
Вид образцов после выдержки в воде**
ПМК-87 MgCl2 (MgSO4)
8,0 4,0 2:1 Развалился после 1 сут
8,6 3,4 2,5:1 Развалился после 3 сут
9,0 3,0 3:1 Много трещин
9,4 2,7 3,5:1 Меньше, чем в экспер. 3
9,6 2,4 4:1 Без трещин
*) - содержание ЖРО во всех компаундах было одинаково - 12 г (600 г/л), в качестве каталитической добавки использовали навески шунгита или белой сажи, массы которых составляли 0,2-0,3 мас.% от массы реагентов ЦК.
**) - время сушки образцов после изготовления в помещение при 18-20°С составляло 10 сут, а выдержки их в воде - 20 сут.

Пример 2. Подтверждение эффективности рекомендуемого изобретением сорбента для удержания цезия-137 в магнезиальных компаундах.

Для сравнения поведения цезия-137 в компаундах без включения в них селективных сорбентов и эффективности сорбентов, применяющихся для его удержания, были изготовлены компаунды из магнезиального цемента и портландцемента марки-400. В экспериментах использовали природные сорбенты: цеолит (Ц), вермикулит (В), бентонит (Б), природную смесь бентонита (40-45%) с цеолитом (33-35%), залегающую на территории Белгородской области, а также синтетизируемый в предлагаемом компаунде ферроцианид никеля-калия. Количество сорбента в компаундах составляло 10% от массы цементов, при использовании ФЦНК других сорбентов в них не было.

Согласно ГОСТ 29114-91 выщелачивание в дистиллированной воде при температуре 25°С рекомендуют проводить в течение 1, 3, 7, 10, 14, 21, 28 дней, а далее через 10-14 дней. Испытания прекращают, когда скорость выщелачивания становится практически постоянной (предел точности измерений ±10%).

Для определения активности цезия-137 выщелаты передавали в колбочках на гамма-спектрометрические измерения, которые проводили на анализаторе с полупроводниковым германий-литиевым детектором.

В каждом контактном растворе определяли активность цезия и рассчитывали процент активности, перешедшей из образцов в растворы, и скорость его выщелачивания в (г/см2·сут) по формуле:

Rравновесная=a·m/A0·s·ν=K·a/A0·ν, г/см2·сут

где а - радиоактивность в аликвоте цезия-137, выщелоченного за интервал времени;

А0 - удельная радиоактивность нуклида в исходном образце, составляла (3-6)·105 Бк/образец за счет введения в компаунд «крепкого» раствора цезия-137;

s - открытая «геометрическая» поверхность образца, см2;

ν - продолжительность n-го периода выщелачивания, сутки;

m - масса образца;

K=m/s.

При проведении лабораторных экспериментов коэффициент К=m/s был равен приблизительно 1/2. Из анализа формулы скорости выщелачивания следует, что для получения ее с численным значением не более 1·10-3 надо, чтобы соотношение а0 не превышало 1/20. То есть за время испытаний (100 сут) из образцов должно выщелачиваться не более 20% от первоначальной активности: Rравновесная=1·10-3=1/2·20/100·1/100.

Результаты выщелачивания цезия-137 из компаундов различного состава, содержащих и не содержащих селективные сорбенты на цезий, приведены в табл.2, из анализа которых можно сделать следующие выводы:

- матрицы обоих цементов не являются барьером для цезия-137 (см. результаты по образцам 1.1 и 3.1), и теряют 85-98% активности;

- матрицы цементов, содержащие CaCl2 и шунгит (см. п.1.2, 3.2 и 3.3), обладают тем же недостатком: за 40 дней из образцов выходит 85-82% активности;

- при использовании портландцемента наиболее эффективно цезий сорбирует Б-Ц-глина, второй по эффективности является бентонитовая глина;

- при использовании МЦ наиболее эффективно цезий сорбирует синтезированный в матрице ферроцианид никеля-калия (ФЦНК), второй по эффективности является Б-Ц-глина, далее - бентонитовая глина; скорости выщелачивания составляли 2·10-5, 4,5·10-4 и 7,5·10-4 г/см2·сут соответственно.

При изготовлении цементных образцов с синтезом в них ферроцианида никеля осаждали не менее 95-97% цезия. Однако затем с первыми 6-7 выщелатами происходило вымывание цезия-137 на 80 и более процентов из-за растворения большей части образовавшегося соединения Cs4[Ni(CN)6], так как оно стойко только до величины pH не более 10.

Особенностью магнезиальных цементов является то, что при длительном контакте с водой (50-100 сут) величины pH в них составляют 6,5-6,8. В МЦ величина pH обусловливается количеством щелочи в ЖРО и, как правило, не превышает значений 10-10,5.

Таблица 2
Компонентный состав отверждаемых смесей при омоноличивании ЖРО и химическая устойчивость полученных образцов
Компонентный состав цементного компаунда Удаленная из образца активность, % Усредненная скорость выщелачивания, г/см2·сут
1.1. ЖРО+цемент 98 5·10-3
1.2. ЖРО+CaCl2+цемент 85 4·10-3
1.3. ЖРО+CaCl2+цемент+ФЦНК 82 4·10-3
1.4. ЖРО+цемент+CaCl2 23 1,1·10-3
1.5. ЖРО+цемент+CaCl2 5,4 2,7·10-4*
1.6. ЖРО+цемент+CaCl2+Б-Ц 1,2 6·10-5
3.1. ЖРО+МЦ 85 4·10-3
3.2. ЖРО+CaCl2+МЦ 83 4·10-3
3.3. ЖРО+CaCl2+шунгит+МЦ 82 4·10-3
3.3. ЖРО+Ц+CaCl2+шунгит+МЦ 40 2·10-3
3.4. ЖРО+В+CaCl2+шунгит+МЦ 49 3·10-3
3.4. ЖРО+Б+CaCl2+шунгит+МЦ 15 7,5·10-4
3.5. ЖРО+CaCl2+шунгит+МЦ+Б 24 1,2·10-3
3.6. ЖРО+Б-Ц+CaCl2+шунгит+МЦ 9 4,5·10-4
3.7. ЖРО+ФЦНК+CaCl2+шунгит+МЦ 0,4 2·10-5

При проведении процесса цементирования после введения в смеситель установки ЖРО необходимо замерять pH и при необходимости, как это и предписано предложенным способом, снижать его до значений 9,7-9,9 концентрированными растворами соляной кислоты.

Следует обратить внимание на результаты экспериментов п.3.4 и 3.5. Они в полтора раза различаются количеством активности, вышедшей из компаундов, несмотря на одинаковый компонентный состав из-за того, что в п.3.5 бентонит был введен в приготавливаемую смесь последним компонентом, а в п.3.4 он предварительно вводился в ЖРО. Условия сорбции цезия-137 во втором эксперименте были значительно лучше. Поэтому для получения требуемых параметров качества МЦ следует строго соблюдать последовательность ввода компонентов и временные характеристики процесса.

В литературе указаны оптимальные условия соосаждения цезия-137 с осадком ФЦНК, а также влияние органических комплексообразующих и ПАВ на этот процесс только для нескольких растворов. Для высокосолевых ЖРО спецпрачечных они отсутствуют. Поэтому за основу были взяты методические указания ЛТИ им.Ленсовета, согласно которым для эффективного соосаждения цезия-137 концентрация ФЦНК в ЖРО должна составлять 0,002-0,005 моль/л. Коч по цезию может достигать 103. Но если ЖРО содержат, например, оксалат-ионы в количествах 10-100 мг/л, то Кочистки уменьшается, как минимум, на порядок (в 10 раз). В такой сложной смеси, какой является ЖРО, только экспериментально можно определить оптимальные концентрации ферроцианида калия и нитрата никеля, которые надо создать, чтобы на 95-97% соосадить микроколичества цезия с осадком ФРНК. В вышеописанных экспериментах с получением ФЦНК ее концентрация составляла 0,002 моль/л.

Пример 3. Обеспечение максимальной степени наполнения МЦ сухими радиоактивными солями ЖРО спецпрачечных.

В экспериментах в качестве ЖРО использовались реальные кубовые остатки (КО) от установки дистилляции ЖРО. Количества ингредиентов магнезиальных компаундов, используемых в эксперименте, полученная степень наполнения и поведение образцов приведены в табл.3.

Таблица 3
Состав и свойства МК с высоким содержанием сухих солей
ПМК-87, г MgCl2 ЖРО, *г Степень наполнения компаунда солями, % Поведение МК вводе
7 3 10 30 разрушился
11 35 стоек
13 37 стоек
*) - для точного вычисления степени наполнения компаундов сухими солями одновременно отбирали 2 параллельные пробы ЖРО, одну высушивали до постоянной массы, а вторую использовали для цементирования; масса сухого остатка в пробе 3 была равна 5,6 г при массе ЦК после сушки 15 г. Шунгит брали в количестве 0,2% от массы реагентов МК; для синтеза ФЦНК брали 0,5 мл 14% раствора ферроцианида калия и 0,75 мл 13% раствора хлорида никеля (мольное соотношение указанных реактивов составляло 1:1,5). Масса бентонитовой глины - 1% от массы реагентов ПМК+MgCl2.

После изготовления компаундов их сначала выдерживали 30 сут (для созревания) в сухой среде, затем проверяли на устойчивость в водной среде в течение 50 сут, а далее сушили до постоянной массы и затем с помощью лабораторного гидравлического пресса определили механическую прочность образцов серий 2 и 3, которая была на уровне 5,5-5,0 МПа соответственно. Степень наполнения компаундов сухими солями для эксперимента 3 достигала 37% при минимально допустимой прочности образца на сжатие.

Из этого эксперимента пересчитаем реальные концентрации всех ингредиентов, входящих в состав магнезиального компаунда, из расчета омоноличивания 1 кг реальных КО, содержащих в среднем от 440 до 460 г сухих радиоактивных солей.

В КО надо ввести дополнительно около 90 г MgCl2 и 90 г CaCl2 (10-20% от массы сухих солей). С учетом кристаллизационной воды значения указанных масс надо умножить примерно на 2. Следовательно, вводимая масса воды с реагентами составит около 180 г.

В создаваемый компаунд для связывания всей воды необходимо будет добавить 440-450 г ПМК-87, содержащего до 83% MgO. В пересчете на 100% вещество масса окиси магния составит около 367 г. Следовательно, массу компонентов МЦ будем считать, равной 367+90=457 г. Рекомендуемые добавки в компаунд порошкообразного шунгита должны составлять 0,3-0,5 мас.% от массы компонентов МЦ (1,4-2,3 г), а бентонитовой глины - 0,5-1% (2,3-4,6 г) на 1 кг КО. Масса синтезированного селективного сорбента ФЦНК в МЦ должна составлять около 2,7 г на 440 г сухих радиоактивных солей (0,006 мас.%). Если будут цементироваться КО с солесодержанием не 600, а, например, 150-200 г/л, то для эффективной сорбции цезия-137 будет достаточно создать концентрацию ФЦНК, равную 0,002 мас.% от массы радиоактивных сухих солей.

Таким образом, достигается надежное омоноличивание ЖРО, содержащих до 30% органических веществ, со степенью включения сухих радиоактивных солей 35-37%. Предлагаемый в изобретении композиционный материал, основными компонентами которого являются широко распространенные минералы и реагенты, выпускаемые отечественной промышленностью, позволяет отверждать ЖРО сложного химического состава, которые в настоящее время не подлежат цементированию. Способ применения заявляемого композиционного материала для иммобилизации ЖРО не требует высоких энергетических затрат и осуществляется при любых положительных температурах на оборудовании, применяющемся при обычном цементировании.

Источник поступления информации: Роспатент

Showing 11-20 of 30 items.
20.01.2014
№216.012.97ec

Электролизер для насыщения расплава cacl кальцием

Электролизер относится к цветной металлургии и может быть использован для непрерывного электролитического способа получения титана, циркония, урана, бериллия и других редких металлов. Электролизер содержит металлический корпус с анодным и насыщающим отделениями и металлической диафрагмой,...
Тип: Изобретение
Номер охранного документа: 0002504591
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9d13

Система автономного электроснабжения

Изобретение относится к области энергообеспечения и электроэнергетики и может быть использовано для электроснабжения потребителей, как при наличии, так и отсутствии централизованной системы энергообеспечения. Технический результат заключается в осуществлении управления режимами напряжения при...
Тип: Изобретение
Номер охранного документа: 0002505917
Дата охранного документа: 27.01.2014
10.06.2014
№216.012.cbfb

Устройство для удаления воздушных пробок из магистрального нефтепровода

Устройство для удаления воздушных пробок из магистрального нефтепровода содержит соединенные с нефтепроводом и связанные между собой отделитель и аккумулирующую емкость, сбросной вентиль с датчиком предельного давления воздуха. Отделитель выполнен в виде наклонно размещенного с подъемом в...
Тип: Изобретение
Номер охранного документа: 0002517990
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cc02

Способ наземной прокладки нефте- и газопроводов через скально-гористую местность

Изобретение относится к строительству трубопроводов. В способе трубопровод устанавливают на стойки, шарнирно закрепленные на основании с возможностью поворота. В верхней части каждой стойки закрепляют разъемный бандаж с горизонтальным болтовым фланцевым соединением нижнего и верхнего элементов,...
Тип: Изобретение
Номер охранного документа: 0002517997
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d932

Способ комплексной переработки мартит-гидрогематитовой руды

Изобретение может быть использовано при получении железооксидных пигментов. Способ комплексной переработки мартит-гидрогематитовой руды включает грохочение руды, магнитную сепарацию с получением магнитной и немагнитной фракций, измельчение, гидравлическую классификацию, сгущение и сушку....
Тип: Изобретение
Номер охранного документа: 0002521380
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d9c2

Способ наземной прокладки нефте- и газопроводов через скально-гористую местность

Изобретение относится к строительству трубопроводов. В способе трубопровод устанавливают на стойки, шарнирно закрепленные на основаниях. В верхней части каждой стойки закрепляют охватывающий трубопровод разъемный бандаж с горизонтальным болтовым фланцевым соединением нижнего и верхнего...
Тип: Изобретение
Номер охранного документа: 0002521524
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.dfa0

Способ рафинирования чернового свинца от меди

Изобретение относится к рафинированию чернового свинца, аккумуляторного лома, вторичного свинца и свинцовых вторичных сплавов. Способ рафинирования чернового свинца от меди включает грубое обезмеживание ликвацией и тонкое обезмеживание при температуре расплава 335-345°C, осуществляемое...
Тип: Изобретение
Номер охранного документа: 0002523034
Дата охранного документа: 20.07.2014
10.11.2014
№216.013.040b

Способ получения синтетического карналлита

Изобретение относится к области цветной металлургии. Способ получения синтетического карналлита включает очистку и концентрирование хлормагниевых растворов, их смешение с твердым измельченным калиевым электролитом магниевых электролизеров, нагрев с выделением газов и охлаждение смеси при...
Тип: Изобретение
Номер охранного документа: 0002532433
Дата охранного документа: 10.11.2014
10.12.2014
№216.013.0df4

Производные 7h(7r)-трис[1,2,5]оксадиазоло[3,4-b:3',4'-d:3",4"-f]азепина и способ их получения

Изобретение относится к области химии полициклических конденсированных гетероциклических соединений, более конкретно к 7R-замещенным производным трис[1,2,5]оксадиазоло[3,4-b:3′,4′-d:3′′,4′′-f]-азепина общей формулы (1), где R - H, NH группа, алкильный заместитель: метил, замещенный алкильный...
Тип: Изобретение
Номер охранного документа: 0002534989
Дата охранного документа: 10.12.2014
10.04.2015
№216.013.3fce

Способ удаления ядерного топлива из контуров исследовательских и энергетических ядерных реакторов

Изобретение относится к средствам удаления двуокиси урана, используемой в качестве ядерного топлива, из теплоносителя первого и основных контуров исследовательских и энергетических ядерных реакторов. В заявленном способе обработку контуров проводят оксалатно-перекисными растворами с величиной...
Тип: Изобретение
Номер охранного документа: 0002547822
Дата охранного документа: 10.04.2015
Showing 11-20 of 48 items.
27.10.2013
№216.012.7a9d

Обратимая электротурбодетандерная установка

Изобретение относится к области газовой промышленности и энергетики, в частности к установкам перекачки природного газа и энергетическим установкам, утилизирующим энергию избыточного давления природного газа. Обратимая электротурбодетандерная установка содержит электрическую машину,...
Тип: Изобретение
Номер охранного документа: 0002497051
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7eba

Система оптимального управления турбоагрегатом

Изобретение относится к области управления турбоагрегатами, в частности нефтеперекачивающими, водоотливными и компрессорными установками, включающими центробежные или осевые машины, и предназначено для обеспечения их работы с максимально возможным коэффициентом полезного действия независимо от...
Тип: Изобретение
Номер охранного документа: 0002498115
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7ebb

Система автоматического управления турбоагрегатом

Изобретение относится к области управления турбоагрегатами, в частности нефтеперекачивающими, водоотливными и компрессорными установками. Система автоматического управления турбоагрегатом содержит центробежный насос, электродвигатель, устройство для изменения частоты вращения ротора...
Тип: Изобретение
Номер охранного документа: 0002498116
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f4b

Стенд для исследований параметров промежуточного линейного привода ленточного конвейера

Стенд содержит опорную раму (1), на которой закреплен своими концами отрезок ленты (2), имитирующей ленту промежуточного линейного привода, опирающийся на две желобчатые опоры (3, 4). На верхней поверхности ленты над желобчатыми опорами закреплены сменные поперечные перегородки, каждая из...
Тип: Изобретение
Номер охранного документа: 0002498260
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.8037

Энергосберегающая система управления асинхронным электроприводом

Изобретение относится к области электротехники и может быть использовано в системах управления электроприводами общепромышленного применения. Технический результат - снижение энергопотребления частотно-регулируемого асинхронного электропривода при снижении нагрузок двигателя ниже номинальных....
Тип: Изобретение
Номер охранного документа: 0002498496
Дата охранного документа: 10.11.2013
27.11.2013
№216.012.8549

Производные 4н-бис[1,2,5]оксадиазоло[3,4-b:3',4'-f]азепин-8,9-диамина и способ их получения

Изобретение относится к области химии полициклических конденсированных гетероциклических соединений, более конкретно к 4-R производным 4H-бис[1,2,5]-оксадиазоло[3,4-b:3',4'-f]азепин-8,9-диамина общей формулы (I), где R - H, NH группа, алкильный заместитель или замещенный алкильный заместитель....
Тип: Изобретение
Номер охранного документа: 0002499799
Дата охранного документа: 27.11.2013
20.01.2014
№216.012.9754

Способ автоматического управления гидроциклоном

Изобретение относится к способам автоматического управления процессами разделения материала по крупности в гидроциклонах. Способ автоматического управления гидроциклоном путем изменения расхода песков, который изменяют в зависимости от соотношения расходов пульпы на сливе и песках гидроциклона,...
Тип: Изобретение
Номер охранного документа: 0002504439
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.993c

Устройство для индукционного нагрева нефтепродуктов

Устройство содержит индукционный нагреватель, магнитопроводный экран, теплоизоляционный кожух, индукционную обмотку, охватывающую цилиндрическую емкость, выпрямитель переменного тока и инвертор, соединенный с индукционной обмоткой и блоком управления инвертором, датчики температуры входного и...
Тип: Изобретение
Номер охранного документа: 0002504927
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9d13

Система автономного электроснабжения

Изобретение относится к области энергообеспечения и электроэнергетики и может быть использовано для электроснабжения потребителей, как при наличии, так и отсутствии централизованной системы энергообеспечения. Технический результат заключается в осуществлении управления режимами напряжения при...
Тип: Изобретение
Номер охранного документа: 0002505917
Дата охранного документа: 27.01.2014
27.03.2014
№216.012.aeb4

Способ устранения высотных перепадов стыков железнодорожных рельсов и устройство для его осуществления

Изобретение относится к железнодорожному транспорту, а именно к устранению разностей высот головок рельс в зоне их стыковочных узлов. Способ устранения высотных перепадов заключается в том, что с каждой головки рельса в зоне стыка, в случае его превышения над смежным рельсом, удаляется верхний...
Тип: Изобретение
Номер охранного документа: 0002510439
Дата охранного документа: 27.03.2014
+ добавить свой РИД