×
16.06.2023
223.018.7ce8

Результат интеллектуальной деятельности: Способ изготовления капиллярных колонок для газохроматографического разделения

Вид РИД

Изобретение

№ охранного документа
0002747017
Дата охранного документа
23.04.2021
Аннотация: Изобретение относится к аналитической химии и может быть использовано в капиллярной газовой хроматографии. Способ изготовления капиллярных колонок для газохроматографического разделения включает очищение капиллярной колонки, модифицирование неподвижной фазы, нанесение слоя неподвижной фазы на внутреннюю поверхность капиллярной колонки, при этом очищение колонки и нанесение слоя неподвижной фазы на капиллярную колонку осуществляется при помощи переходника, который представляет собой медицинский шприц без иглы, две съемные, насаженных друг на друга термоусадочные трубки длиной 15-20 мм, при этом одним концом трубка сжимается и насаживается плотно на шприц, вторая трубка одним концом приходится на первую трубку со шприцом, другим концом на капиллярную колонку диаметром 0,530 мм, обе трубки термоусаживаются под действием нагрева. Техническим результатом является создание способа изготовления капиллярных колонок с ровным и однородным покрытием внутренней стенки капилляра с удобным нанесением неподвижной фазы на внутреннюю поверхность. 2 з.п. ф-лы, 7 ил., 1 табл.

Способ относится к аналитической химии и применяется в капиллярной газовой хроматографии. Капиллярные колонки, с нанесенными на внутреннюю поверхность неподвижными жидкими фазами (НЖФ), используются для эффективного газохроматографичекого анализа многокомпонентных смесей в различных отраслях промышленности. Кварцевые капиллярные колонки имеют быстрое и высокоточное разделение многокомпонентных смесей, состоящих из веществ с близкой молекулярной массой в широком интервале температур. В качестве слоя неподвижной фазы для нанесения на внутреннюю стенку капиллярной колонки используют неподвижные жидкие фазы, которые являются хиральны, что способствует разделению энантиомеров. На сегодняшний день создание на капиллярных колонках НЖФ в лаборатории, которые способны в последующем адсорбировать молекулы оптически активных веществ - является одной из важнейших задач современной капиллярной газовой хроматографии.

Известны различные способы нанесения слоя неподвижной фазы на внутреннюю стенку колонок, примером может служить, способ нанесения НЖФ на основе полисилоксановых полимеров на поверхность капиллярных колонок (RU 172015 U1).

Наиболее близким по способу нанесения слоя неподвижной фазы на внутреннюю стенку колонки является способ равномерного нанесения по длине колонки слоя удерживающего вещества, который выполнен в виде неразрывной пленки с регулярной пористой структурой со средним диаметром в диапазоне 2-30 нанометров, а отклонение от среднего диаметра подчинено закону Гаусса с дисперсией не более 5 нанометров. При этом удерживающее вещество состоит либо из оксидов на основе кремния, алюминия, титана, либо из силоксанового сополимера, содержит либо углерод, либо полимер на основе дивинилбензола, сополимеры дивинилбензола и стирола, винилпиридина и дивинилбензола, стирола и этиленгликольдиметакрилата, причем материал капилляра, на который нанесен структурированный слой, служит кварц, стекло, металл (RU 2324175 C1).

Недостатком данного способа является сложность нанесения неподвижной фазы на внутреннюю поверхность капиллярной колонки, а также способ представляется затратным (дорогое оборудование).

Задачей является создание способа изготовления капиллярных колонок для газохроматографического разделения, при котором нанесение неподвижных фаз на внутреннюю поверхность капилляра будет наиболее удобным, а покрытие внутренней стенки капилляра - ровным и однородным.

Эта задача реализуется за счет следующего предлагаемого способа изготовления капиллярных колонок для газохроматографического разделения, который включает очищение капиллярной колонки, модифицирование неподвижной фазы, нанесение слоя неподвижной фазы на внутреннюю поверхность капиллярной колонки, и отличается тем, что очищение колонки и нанесение слоя неподвижной фазы на капиллярную колонку осуществляется при помощи переходника.

Способ реализуется следующим образом:

1. Изготовление переходника на капиллярную колонку. В качестве насадки на капиллярную колонку, для последующих работ с ней используют переходник (фиг. 1, где 1 - шприц, 2 - блоки термоусадочных трубок, 3 - капиллярная колонка). Переходник который представляет собой медицинский шприц без иглы, две съемные, насаженные друг на друга термоусадочные трубки длиной 15-20 мм. Одна трубка приходится на шприц. Процесс термоусадки происходит очень быстро - достаточно нагреть трубку до нужной температуры, и потом просто подождать, когда она остынет до комнатной температуры. Используя поток теплого воздуха, одним концом трубка сжимается и насаживается плотно на шприц. Вторая трубка одним концом приходится на предыдущий блок со шприцом, другим концом на капиллярную колонку диаметром 0,530 мм, термоусаживается под действием нагрева. Две сьемные трубки необходимы для удобства последующего промывания колонки.

2. Очищение капиллярной колонки. Очищение капиллярной колонки заключается в промывке колонки ионизированной водой, с использованием переходника. После, подсоединяют один блок термоусадочной трубки одним концом к капиллярной колонке, а другим к полимерной трубке, соответствующего диаметра, а полимерную трубку, в свою очередь, подсоединяют к вакуумному мембранному насосу LABOPORT KNF N 86 KN.18 для удаления жидкости с внутренней поверхности. Оставляют на режиме «вдув» на 8 часов.

3. Модифицирование неподвижной фазы. В качестве слоя неподвижной фазы используют модифицированную циануровую кислоту (2,4,6-тригидрокси-1,3,5-триазин), модифицирование которой проводят из водного раствора путем испарения растворителя при 60°С в соответствии со следующей методикой: в воду объемом 50 мл, подвергнутой дополнительной очистке на деионизаторе ДВ-10UV (ЦветХром, Россия) доведенной до температуры 60°С, добавляют 0,995 г измельченной циануровой кислоты. После внесения навески, с помощью магнитной мешалки включают перемешивание раствора со скоростью 100 оборотов. Далее, как все кристаллы циануровой кислоты растворяют, снижают температуру до комнатной, и оставляют раствор на двое суток со скоростью перемешивания 500 оборотов.

4. Нанесение слоя неподвижной фазы на внутреннюю поверхность капиллярной колонки. При помощи переходника капиллярную колонку промывают подготовленным модифицированным раствором циануровой кислоты в течение часа. Затем, один блок термоусадочной трубки подсоединяют одним концом к одному концу капиллярной колонке, а другим к полимерной трубке, соответствующего диаметра. Полимерную трубку, в свою очередь, подсоединяют к вакуумному мембранному насосу LABOPORT KNF N 86 KN.18 для удаления раствора с внутренней части колонки с сохранением неподвижной фазы на внутренней поверхности капиллярной колонки. Для сохранения неподвижной фазы внутри капиллярной колонки, на трубку, подсоединенную к капиллярной колонки натягивают в 2-3 слоя кусочек марли произвольного размера. Другой конец колонки, который является свободным, закупоривают клеем «Титан», для того, чтобы сорбент сохранялся не поверхности колонки. Оставляют на режиме «вдув» на 8 часов.

5. Контроль качества. Для подтверждения наличия слоя неподвижной фазы на поверхности колонки, способного к разделению оптически активных веществ, устанавливают колонку в хроматограф. Исследование проводят на газовом хроматографе Хромос-ГХ-1000 (Россия) с пламенно-ионизационным детектором при скорости газа-носителя гелия 3 мл/мин в широком диапазоне температур - от 80 до 120°С. Изучают энантиоселективность следующих аналитов: 2-хлорбутана, 2-бромпентана, 1,2-дихлорпропана и 2-пропанола.

Разделение двух соседних пиков характеризуют разрешением Rs. Разрешение является мерой полноты разделения двух веществ. Разрешение двух хроматографических пиков (Rs) принимает во внимание не только места их расположения, но и учитывает величины ширины пиков на половине их высот w0.5(1) и w0.5(2):

Согласно таблице 1, для 2-хлорбутана наилучшее разделение наблюдалось (на фиг. 2) при температуре 95°С, фактор селективности α=1.31, и разрешение Rs=0.20. 2-бромпентан разделяется наилучшим образом на (фиг. 3) при температуре 105°С, при вкалываемом объеме парообразной пробы 4 мкл с фактором селективности α=1.52, и разрешением Rs=0.29. Для 2-пентанола наилучшее разделение (фиг. 4) при температуре 110°С при факторе селективности α=1.40, и разрешении Rs=0.24. Наилучшее разделение для 1,2-дибромпропана наблюдалось при температуре 110°С, с фактором селективности α=1.63 и разрешением (Rs)=0.16 (фиг. 5).

Соответствующие значения разрешений Rs для энантиомеров приведены в таблице 1.

Для контроля качества работы при помощи скальпеля нарезают несколько кусочков колонки. Исследуемые материалы капиллярной колонки направляют в Институт проблем сверхпластичности металлов РАН. Используют для анализа несколько образцов колонки. Нарезают несколько кусочков капиллярной колонки в длину 5 см. Одну - не модифицированную, другую - модифицированную раствором циануровой кислоты. При помощи скальпеля нарезают колонки вдоль и подготавливают их для изучения методом растровой электронной микроскопии. На исследуемые образцы капиллярной колонки (модифицированной и исходной) наносят токопроводящее покрытие в виде пленки металла. При помощи микроскопа Tescan Mira 3 LMH обнаруживают, что в случае исходного образца излом по виду представляет собой аморфный материал (фиг. 6). Во втором образце, модифицированной капиллярной колонки (фиг. 7), излом отличается тем, что в нем присутствует многоступенчатый скол, который характерен для хрупкого разрушения поликристаллического материала.

Таким образом, доказано, что во втором образце в результате диффузионных процессов произошло взаимодействие циануровой кислоты и материала капилляра, в результате чего аморфная структура материала капилляра перешла в поликристаллическое состояние.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 48.
27.07.2019
№219.017.b9e1

Атомно-силовой микроскоп с кантилевером с флуоресцентной квантовой точкой для измерения антигруппировки фотонов

Изобретение относится к области приборостроения, преимущественно к измерительной технике. Технический результат изобретения заключается в появлении возможности у АСМ, использующего кантилеверы с флуоресцентными квантовыми точками на острие зонда кантилевера, измерять антигруппировку фотонов....
Тип: Изобретение
Номер охранного документа: 0002695759
Дата охранного документа: 25.07.2019
03.08.2019
№219.017.bcd3

Способ обработки нефтеводяной эмульсии импульсным магнитным полем и устройство для его осуществления

Изобретение относится к нефтяной промышленности и может быть использовано при добыче и подготовке нефти. Описан способ обработки нефтеводяной эмульсии импульсным магнитным полем, включающим обработку нефтеводяной эмульсии импульсным магнитным полем, причем импульсное магнитное поле создается...
Тип: Изобретение
Номер охранного документа: 0002696282
Дата охранного документа: 01.08.2019
02.10.2019
№219.017.cbec

Способ получения стеарата кальция

Изобретение относится к нефтехимическому синтезу, а именно к способу получения стеарата кальция, используемого как стабилизатор пластических масс на основе поливинилхлорида, перхлорвиниловой смолы и искусственных кож. Кроме того, стеарат кальция используется как сиккатив в производстве...
Тип: Изобретение
Номер охранного документа: 0002701563
Дата охранного документа: 30.09.2019
02.10.2019
№219.017.cf13

Нефтегазовый сепаратор со сбросом воды

Изобретение относится к нефтедобывающей промышленности и может быть использовано для разделения продукции скважин на нефть и воду. Обеспечивает повышение производительности сепаратора, эффективности и качества разделения. Нефтегазовый сепаратор со сбросом воды содержит горизонтальный...
Тип: Изобретение
Номер охранного документа: 0002700747
Дата охранного документа: 19.09.2019
03.10.2019
№219.017.d18e

Способ количественного определения протеолитической активности ферментов по гидролизу субстрата, иммобилизованного в полиакриламидном геле

Изобретение относится к области биохимии. Способ определения протеолитической активности ферментов по гидролизу субстрата, иммобилизованного в полиакриламидном геле, включающий приготовление геля, инкубацию образцов в контакте с гелем, окрашивание геля кумасси и фотографирование геля,...
Тип: Изобретение
Номер охранного документа: 0002701734
Дата охранного документа: 01.10.2019
26.10.2019
№219.017.db71

Способ получения ациклических и циклических полиэтиленполиаминов

Изобретение относится к получению ациклических и гетероциклических полиэтиленполиаминов, которые находят широкое применение в производстве сукцинимидных присадок, аминных отвердителей для эпоксидных смол, полимеров, комплексообразователей, лекарственных и антигельминтных препаратов, ингибиторов...
Тип: Изобретение
Номер охранного документа: 0002704261
Дата охранного документа: 25.10.2019
30.10.2019
№219.017.dbce

Способ получения 1,4-бутилендиамина и полибутиленполиаминов

Изобретение относится к получению 1,4-бутилендиамина и полибутиленполиаминов, применяемых в производстве полиамидов, физиологически активных полиаминов - спермина, спермидина и т.д. Предложен способ получения 1,4-бутилендиамина и полибутиленполиаминов на основе 1,4-бутилендиамина и аммиака в...
Тип: Изобретение
Номер охранного документа: 0002704316
Дата охранного документа: 28.10.2019
19.11.2019
№219.017.e3d1

Устройство для изготовления полимерных сшитых трехмерных прототипов

Изобретение относится к устройствам для изготовления трехмерных прототипов. Техническим результатом является создание трехмерных прототипов с использованием в качестве расходного материала реактопластов или растворов полимеров с возможностью осуществления построения трехмерных прототипов без...
Тип: Изобретение
Номер охранного документа: 0002706322
Дата охранного документа: 15.11.2019
08.12.2019
№219.017.eb54

Способ получения стеарата кальция из дистиллерной жидкости содового производства

Изобретение относится к области переработки дистиллерной жидкости, образующейся в производстве кальцинированной соды по аммиачному методу, и к способу получения стеарата кальция, используемого для стабилизации пластических масс на основе поливинилхлорида, перхлорвиниловой смолы и искусственных...
Тип: Изобретение
Номер охранного документа: 0002708091
Дата охранного документа: 04.12.2019
01.02.2020
№220.017.fceb

Устройство и способ очистки сточных вод от фенола

Изобретение относится к устройствам для подготовки и обеззараживания воды и может быть использовано для очистки промышленных сточных вод от фенола. Устройство для очистки сточных вод от фенола включает вертикально установленный реактор цилиндрической формы, снабженный двумя боковыми...
Тип: Изобретение
Номер охранного документа: 0002712565
Дата охранного документа: 29.01.2020
Показаны записи 1-1 из 1.
16.06.2023
№223.018.7cf3

Способ изготовления капиллярных колонок

Изобретение относится к аналитической химии и может быть использовано в газовой хроматографии. Способ изготовления капиллярных колонок включает винилизацию капиллярной колонки, нанесение слоя неподвижной фазы на внутреннюю поверхность капиллярной колонки, при этом винилизация включает...
Тип: Изобретение
Номер охранного документа: 0002747046
Дата охранного документа: 23.04.2021
+ добавить свой РИД