×
23.05.2023
223.018.6c03

Результат интеллектуальной деятельности: Способ активации порошка алюминия

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии и предназначено для получения порошка активированного алюминия, используемого в качестве энергетической добавки в различных композициях. Способ активации порошка алюминия, включающий пропитку исходного порошка алюминия гелем, полученным путем плавления оксида ванадия (V) с последующим добавлением расплава в дистиллированную воду при перемешивании, фильтрацию и сушку, в котором после добавления расплава в дистиллированную воду осуществляют выдержку при температуре не более 100°С в течение 1,5-2,0 часов, пропитывают исходный порошок алюминия гелем при соотношении гель (г): порошок алюминия (г) = 0,34-4,2:1 и дополнительно осуществляют термообработку при температуре 300-310°С в течение 0,5–0,6 часа. Технический результат - обеспечение снижения температуры начала горения при нагревании на воздухе. 4 пр.

Изобретение относится к порошковой металлургии и предназначено для получения порошка активированного алюминия, используемого в качестве энергетической добавки в различных композициях.

Известен способ ударно-волновой активации порошка тугоплавкого металла, включающий ударно-волновую обработку порошка, в котором перед обработкой в порошок вводят 15-25об.% бензина (патент BY 14559; МПК B22F 1/00, C04D 41/80; 2011 год).

Недостатками известного способа являются: загрязнение активируемого порошка элементами стальной оснастки; образование прочных конгломератов размером до 5 мм.

Известен способ получения порошка активированного алюминия, включающий образование насыпного слоя порошкового материала, активирование его путем подачи восходящим газовым потоком из насыпного слоя в зону действия центробежных сил, создаваемых ротором центробежного классификатора, рециркуляцию части порошкового материала путем возвращения крупной фракции из зоны действия центробежных сил в насыпной слой и выведение мелкой фракции материала газовым потоком из центра зоны действия центробежных сил, при этом в качестве порошкового материала используют тонкодисперсный порошок алюминия, а процесс осуществляют циклически, для чего активацию порошкового алюминия осуществляют в высокоскоростной струе сжатого газа в течение 2-3 упомянутых рециркуляций при рабочем давлении газа 4-8 кг/см2, величине центробежного ускорения (10-12)·103 м/с2, затем величину рабочего давления газа уменьшают до 2-3 кг/см2, величину центробежного ускорения уменьшают до (6-8)·103 м/с2 и выводят мелкую фракцию порошкового алюминия в течение 1-2 рециркуляций, после чего описанный процесс повторяют (патент RU 2371284; МПК D22F 1/00, B22F 9/04, B02C 23/12, B02C 25/00, G05D 16/00; 2009 год).

Недостатками известного способа являются: сложность и высокая энергоемкость оборудования; сложность процесса, включающего до трех рециркуляций с отбором мелкой фракции металла на каждом цикле активации; использование большого объема инертного газа (аргона) при рабочем давлении до 8 кг/см2; содержание активного металла не более 95%; содержание балластной сорбированной влаги до 5.5%.

Известен способ активации металлических порошков, в частности порошка алюминия, полученных электрическим взрывом проволоки в среде водорода, гелия, аргона, в котором порошки дополнительно выдерживают в органическом растворителе, например, гексане или толуоле (патент RU2086355, МПК B22F 1/00, 1997 год).

Недостатками известного способа являются: использование пожароопасных, токсичных органических соединений (гексана, толуола) в качестве растворителей для пропитки порошков; длительность выдержки порошков металлов в органическом растворителе до 24 ч.; остаточное количества растворителя в порошке на уровне 0.8%. Кроме того, известный способ эффективен только для порошка, полученного электровзрывом проволок в атмосфере водорода.

Известен способ активации порошка алюминия, включающий пропитку исходного порошка активатором на основе оксидного соединения ванадия, при этом в качестве активатора используют гель, содержащий 4,0-8,2 г/л ванадия и полученный путем плавления оксида ванадия (V) или оксида ванадия (V) и карбоната лития или натрия или оксида ванадия (V) и борной кислоты или их смеси с последующим добавлением расплава к дистиллированной воде при интенсивном перемешивании и выдержке, при соотношении гель (мл): порошок алюминия (г)=1÷2:1, а затем полученную массу фильтруют на вакуумном фильтре и просушивают при температуре 50 - 60°C в течение 0,5 - 1 ч. (патент RU 2509790; МПК C09K 8/60, B22F 1/00, C01F 7/42; 2014 год) (прототип).

Недостатком известного способа является высокая температура начала горения при нагревании на воздухе (1000оС).

Таким образом, перед авторами стояла задача разработать способ активации порошка алюминия, обеспечивающий снижение температуры начала горения при нагревании на воздухе.

Поставленная задача решена в способе активации порошка алюминия, включающем пропитку исходного порошка алюминия гелем, полученным путем плавления оксида ванадия (V) с последующим добавлением расплава в дистиллированную воду при перемешивании, фильтрацию и сушку, в котором после добавления расплава в дистиллированную воду осуществляют выдержку при температуре не более 100оС в течение 1,5-2,0 часов, пропитывают исходный порошок алюминия гелем при соотношении гель(г): порошок алюминия(г) = 0,34÷4,2:1, и дополнительно осуществляют термообработку при температуре 300-310оС в течение 0,5 – 0,6 часа.

В настоящее время из патентной и научно-технической литературы не известен способ активации порошка алюминия в предлагаемых условиях, а именно включающий упаривание гелеобразного раствора, полученного добавлением оксида ванадия (V) в дистиллированную воду, путем его выдержки при температуре не более 100оС, и дополнительную термообработку полученного после пропитки продукта, а также характеризующийся определенным соотношением исходного порошка алюминия и используемого для его пропитки геля в широком интервале значений.

Исследования, проведенные авторами, позволили установить, что использование геля высокой концентрации (содержание V2O5 составляет 5,5-6,0 мас.% в отличие от способа-прототипа, в котором содержание в геле V2O5 составляет ⁓ 0,2 мас.%) ведет к снижению температуры начала горения на 200-250оС, что значительно улучшает рабочие характеристики материала. Снижение температуры начала горения обусловлено разрушением барьерного оксидного слоя на поверхности частиц алюминия и взаимодействия активатора с Al по термитному типу, сопровождающемуся выделением тепла и инициирующего процесс горения металла. При этом становится возможным при пропитке использование соотношения порошок алюминия и геля, содержащего V2O5, в широком интервале значений. Однако при уменьшении соотношения менее, чем 0,34:1, наблюдается повышение температуры эффективного горения порошка алюминия. При увеличении соотношения более, чем 4,2:1, наблюдается отсутствие влияния на температуру эффективного горения, т.е. теряется эффект дальнейшей активации. Кроме того, проведение дополнительной термообработки при температуре 300-310оС в течение 0,5 – 0,6 часа также способствует снижению температуры начала горения за счет улучшения контакта активатора с поверхностным слоем частиц алюминия.

Предлагаемый способ может быть осуществлен следующим образом. Берут пентоксид ванадия V2O5 квалификации "ос.ч.", нагревают в платиновом тигле до температуры 650-750°C и выдерживают до образования гомогенного расплава, который добавляют к дистиллированной воде при интенсивном перемешивании при интенсивном перемешивании, после чего выдерживают при температуре не более 100оС в течение 1,5-2,0 часов. Полученным продуктом с содержанием оксида ванадия V2O5 5,5-6,0 мас.% пропитывают порошок алюминия, например, марки АСД-4 (S=0,8075 м2/г) со сферической формой частиц в соотношении гель (г):алюминий (г) = 0,34÷4,2:1 и перемешивают в течение 5-10 мин, а затем полученную массу вакуумируют на вакуумном фильтре и просушивают при температуре 50-60°С в течение 0,5-1 ч. После чего осуществляют термообработку при температуре 300-310оС в течение 0,5 – 0,6 часа. Температуру начала горения при нагревании на воздухе определяют методом дифференциального термического анализа (ДТА).

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Берут 10 г пентоксида ванадия V2O5 квалификации "ос.ч.", нагревают в платиновом тигле до температуры 750°C и выдерживают до образования гомогенного расплава, который выливают в стакан емкостью 1000 мл с дистиллированной водой (900 мл) при интенсивном перемешивании и выдерживают в течение 0,5 часа также при интенсивном перемешивании. Затем выдерживают при температуре 70оС в течение 2,0 часов. 3,36 г полученного продукта с содержанием пентоксида ванадия 5,5 мас.% пропитывают 9,8 г порошка алюминия марки АСД-4 (S=0,8075 м2/г) со сферической формой частиц и содержанием активного металла 98,7%, что соответствует соотношению гель (г):алюминий (г) = 0,34:1, и перемешивают в течение 5 мин, затем полученную массу помещают в вакуумный фильтр, после чего сушат на воздухе при температуре 80°C в течение 1 часа и окончательно нагревают при температуре 300оС в течение 0,5 часа. Получают активированный порошок алюминия, содержащий 2,0 мас.% пентоксида ванадия. Точка эффективного горения порошка на воздухе составляет 798оС, Δ Т = 202оС (относительно прототипа).

Пример 2. Берут 10 г пентоксида ванадия V2O5 квалификации "ос.ч.", нагревают в платиновом тигле до температуры 750°C и выдерживают до образования гомогенного расплава, который выливают в стакан емкостью 1000 мл с дистиллированной водой (900 мл) при интенсивном перемешивании и выдерживают в течение 0,5 часа также при интенсивном перемешивании. Затем выдерживают при температуре 80оС в течение 1,50 часов. 8,4 г полученного продукта с содержанием пентоксида ванадия 6,0 мас.% пропитывают 9,5 г порошка алюминия марки АСД-4 (S=0,8075 м2/г) со сферической формой частиц и содержанием активного металла 98,7%, что соответствует соотношению гель (мл):алюминий (г) = 0,88:1 , и перемешивают в течение 5 мин, затем полученную массу помещают в вакуумный фильтр, после чего сушат на воздухе при температуре 80°C в течение 1 часа и окончательно нагревают при температуре 310оС в течение 0,5 часа. Получают активированный порошок алюминия, содержащий 5,0 мас.% пентоксида ванадия. Точка эффективного горения порошка на воздухе составляет 784оС, Δ Т = 216оС (относительно прототипа).

Пример 3. Берут 10 г пентоксида ванадия V2O5 квалификации "ос.ч.", нагревают в платиновом тигле до температуры 750°C и выдерживают до образования гомогенного расплава, который выливают в стакан емкостью 1000 мл с дистиллированной водой (900 мл) при интенсивном перемешивании и выдерживают в течение 0,5 часа также при интенсивном перемешивании. Затем выдерживают при температуре 70оС в течение 2,0 часов. 16,8 г полученного продукта с содержанием пентоксида ванадия 6,0 мас.% пропитывают 9,0 г порошка алюминия марки АСД-4 (S=0,8075 м2/г) со сферической формой частиц и содержанием активного металла 98,7%, что соответствует соотношению гель (г):алюминий (г)= 1,87:1 , и перемешивают в течение 5 мин, затем полученную массу помещают в вакуумный фильтр, после чего сушат на воздухе при температуре 80°C в течение 1 часа и окончательно нагревают при температуре 300оС в течение 0,6 часа. Получают активированный порошок алюминия, содержащий 10,0 мас.% пентоксида ванадия. Точка эффективного горения порошка на воздухе составляет 776оС, Δ Т = 224оС (относительно прототипа).

Пример 4. Берут 10 г пентоксида ванадия V2O5 квалификации "ос.ч.", нагревают в платиновом тигле до температуры 750°C и выдерживают до образования гомогенного расплава, который выливают в стакан емкостью 1000 мл с дистиллированной водой (900 мл) при интенсивном перемешивании и выдерживают в течение 0,5 часа также при интенсивном перемешивании. Затем выдерживают при температуре 75оС в течение 2,0 часов. 33,6 г полученного продукта с содержанием пентоксида ванадия 5,5 мас.% пропитывают 8 г порошка алюминия марки АСД-4 (S=0,8075 м2/г) со сферической формой частиц и содержанием активного металла 98,7%, что соответствует соотношению гель (г):алюминий (г)= 4,2:1 , и перемешивают в течение 5 мин, затем полученную массу помещают в вакуумный фильтр, после чего сушат на воздухе при температуре 80°C в течение 1 часа и окончательно нагревают при температуре 300оС в течение 0,5 часа. Получают активированный порошок алюминия, содержащий 20,0 мас.% пентоксида ванадия. Точка эффективного горения порошка на воздухе составляет 757оС, Δ Т = 243оС (относительно прототипа).

Таким образом, предлагаемый авторами способ активации порошка алюминия обеспечивает снижение температуры начала горения при нагревании на воздухе за счет получения и использования геля, содержащего оксид ванадия (V), высокой концентрации, а также операции дополнительной термообработки.

Способ активации порошка алюминия, включающий пропитку исходного порошка алюминия гелем, полученным путем плавления оксида ванадия (V) с последующим добавлением расплава в дистиллированную воду при перемешивании, фильтрацию и сушку, отличающийся тем, что после добавления расплава в дистиллированную воду осуществляют выдержку при температуре не более 100°С в течение 1,5-2,0 часов, пропитывают исходный порошок алюминия гелем при соотношении гель (г): порошок алюминия (г) = 0,34-4,2:1 и дополнительно осуществляют термообработку при температуре 300-310°С в течение 0,5–0,6 часа.
Источник поступления информации: Роспатент

Показаны записи 51-60 из 99.
24.11.2018
№218.016.a0ba

Германат редкоземельных элементов в наноаморфном состоянии

Изобретение может быть использовано в электронике. Германат редкоземельных элементов состава CaLaEuGeO, где 0,05≤х≤0,15, в наноаморфном состоянии используют в качестве люминофора белого цвета свечения. Предложенное изобретение позволяет расширить номенклатуру люминофоров белого свечения,...
Тип: Изобретение
Номер охранного документа: 0002673287
Дата охранного документа: 23.11.2018
26.12.2018
№218.016.ab38

Способ получения фотокаталитически активной пленки

Изобретение относится к области получения фотокаталитически активных полупроводниковых пленок. Предложен способ получения фотокаталитически активной пленки, включающий осаждение ионов Cu в виде оксида меди или гидроксида меди из раствора неорганической соли меди на подложку. Осаждение ведут из...
Тип: Изобретение
Номер охранного документа: 0002675808
Дата охранного документа: 25.12.2018
18.01.2019
№219.016.b0ee

Стоматологический гель для реминерализации твердых тканей зубов и способ реминерализации твердых тканей зубов

Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для реминерализации твердых тканей зубов с целью профилактики и лечения кариеса в стадии пятна, гиперестезии твердых тканей зуба. Предлагаемый стоматологический гель содержит в качестве гидрофильной основы...
Тип: Изобретение
Номер охранного документа: 0002677231
Дата охранного документа: 16.01.2019
08.02.2019
№219.016.b84c

Способ модифицирования порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам модифицирования порошков алюминия. Порошок алюминия пропитывают модификатором, представляющим собой гель, полученный растворением формиата железа состава Fe(HCOO)·2HO в смеси дистиллированной воды и глицерина,...
Тип: Изобретение
Номер охранного документа: 0002679156
Дата охранного документа: 06.02.2019
21.02.2019
№219.016.c51a

Способ получения лигатуры на основе алюминия

Изобретение относится к области металлургии и может быть использовано для производства алюминиевых лигатур, применяемых для модифицирования сплавов. Способ включает приготовление и расплавление смеси, содержащей фторид натрия, фторид калия, соединение редкого металла и алюминий,...
Тип: Изобретение
Номер охранного документа: 0002680330
Дата охранного документа: 19.02.2019
23.02.2019
№219.016.c6da

Способ очистки вод, загрязненных тритием

Изобретение относится к области сорбционных технологий дезактивации воды и водных растворов и может быть использовано для обработки природной воды. Способ очистки воды, загрязнённой тритием, включает ее обработку природной или синтетической гуминовой кислотой в жидком или порошкообразном...
Тип: Изобретение
Номер охранного документа: 0002680507
Дата охранного документа: 21.02.2019
23.02.2019
№219.016.c6ee

Способ получения порошка оксида кобальта

Изобретение может быть использовано для получения катодных и анодных материалов литий-ионных аккумуляторов. Cпособ получения порошка оксида кобальта CoO включает нагревание исходной смеси кобальта азотнокислого 6-водного и гелирующего агента с последующим отжигом полученного порошка. Исходная...
Тип: Изобретение
Номер охранного документа: 0002680514
Дата охранного документа: 21.02.2019
03.03.2019
№219.016.d280

Способ получения мезопористого углерода

Изобретение может быть использовано в качестве электродного материала в химических источниках тока, носителя катализаторов и сорбента медицинского назначения. Металлорганическое соединение - глицеролат цинка состава Zn(СНО) - термообрабатывают в инертной атмосфере при 500-750°С. Полученный...
Тип: Изобретение
Номер охранного документа: 0002681005
Дата охранного документа: 01.03.2019
29.03.2019
№219.016.ede3

Способ получения магнетита

Изобретение относится к области металлургии и может быть использовано для получения магнетита в целях повышения эффективности переработки красных шламов, являющихся отходами глиноземного производства. Способ получения магнетита включает обработку красного шлама в присутствии гидроксида кальция,...
Тип: Изобретение
Номер охранного документа: 0002683149
Дата охранного документа: 26.03.2019
30.03.2019
№219.016.f909

Биоактивный композиционный материал для замещения костных дефектов и способ его получения

Изобретение относится к области биологически активных фармацевтических и медицинских материалов с повышенной механической прочностью, такие материалы могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани, а также в качестве носителя...
Тип: Изобретение
Номер охранного документа: 0002683255
Дата охранного документа: 27.03.2019
Показаны записи 21-21 из 21.
15.05.2023
№223.018.59f9

Способ получения нанопорошка триоксида ванадия

Изобретение относится к химической промышлености и нанотехнологии и может быть использовано при производстве высокоэнергетических литиевых батарей, химических источников тока, датчиков, электрохимических и оптических устройств, катализаторов окисления органических и неорганических веществ. В...
Тип: Изобретение
Номер охранного документа: 0002761849
Дата охранного документа: 13.12.2021
+ добавить свой РИД