×
12.04.2023
223.018.48aa

Результат интеллектуальной деятельности: Катализатор для процесса гидроизомеризации бензолсодержащих бензиновых фракций

Вид РИД

Изобретение

Аннотация: Предложен катализатор для процесса гидроизомеризации бензолсодержащих бензиновых фракций, содержащий Pt в количестве 0,1-0,5 мас.% и Cl в количестве 0,1-0,5 мас.%, нанесенные на поверхность носителя, а также цеолит в количестве 10,0-30,0 мас.% и γ-AlO - остальное в качестве носителя, при этом выбран цеолит типа Y с силикатным модулем М = 30-80 в аммонийной или водородной форме. Технический результат - получение платиноцеолитного катализатора, содержащего цеолит типа Y, обеспечивающего улучшение показателей процесса гидроизомеризации: увеличение выхода катализата С, отношения метилциклопентан/циклогексан (МЦП/ЦГ), выхода изомеров гептана и доли ди-, триметилзамещенных (ДТМЗ) изомеров. 2 табл., 8 пр.

Изобретение относится к области нефтепереработки и может быть использовано для процесса гидроизомеризации бензолсодержащих бензиновых фракций (БСФ).

С 2016 года в России Техническим регламентом Таможенного союза допускается выпуск автобензинов соответствующих 5 классу. В рамках данного класса содержание бензола в товарном бензине ограничивается уровнем не более 1% об. Около 80% бензола, содержащегося во всех производимых бензинах, поступает с продуктом установки каталитического риформинга, доля бензола в котором превышает 5 об. %,

Существует несколько основных направлений для снижения содержания бензола в риформате:

1. Выделение бензола методами экстрактивной ректификации или экстракции из бензольной фракции риформата (Гайле А.А., Соловых И.А. Снижение содержания бензола в автомобильных бензинах методом экстрактивной ректификации // Известия Санкт-Петербургского государственного технологического института (технического университета), 2013, Т. 44, № 18, с. 32-42).

Главными недостатками данного метода являются серьезные эксплуатационные затраты (строительство нового оборудования для экстракции дорого, поэтому данный метод и применяют на крупных НПЗ, где уже существуют установки экстракции), снижение целевого продукта и потеря октанового числа (ОЧ) в бензине из-за удаления высокооктанового компонента - бензола.

2. Другим способом снижения содержания бензола в товарном бензине является процесс алкилирования бензола олефинами. Известна промышленная технология такого рода - процесс Alkymax фирмы UОР (Schipper P. H., Sapre A. V., Le Q. N. Chemical Aspects of Clean Fuels Pro duction // Chemical Reactor Technology for Environmentally Safe Reactors and Products / Ed. by H. I. Lasa, G. Dogu, A. Ravella. Dordrecht: Springer Netherlands, 1992. P. 147-182).

Алкилирование бензола - экономически оправданная альтернатива только при избытке пропан-пропиленовой фракции каталитического крекинга на предприятии. Кроме того, следует учитывать, что в этом процессе наряду с удалением бензола происходит некоторое увеличение суммы ароматических углеводородов. (Мириманян А., Вихман А., и др. О снижении содержания бензола в бензинах и риформатах, Нефтепереработка и нефтехимия, 2006, № 8, с. 11-14)

3. Наиболее простым способом переработки БСФ представляется процесс гидрирования. В известных промышленных процессах (BenSat - UOP, CDHydro - CDTech, Benfree - Axens и др.) бензол гидрируется до циклогексана в реакторах с неподвижным слоем катализатора с высокой селективностью и максимальным выходом целевого продукта. Процесс требует умеренных условий и количества водорода, незначительно превышающего стехиометрию. Серьезный недостаток гидрирования в том, что вследствие превращения бензола в циклогексан, продукт имеет меньшее октановое число, чем сырье.

Одним из наиболее перспективных процессов снижения содержания бензола в автобензине, считается гидроизомеризация (ГИ) бензолсодержащих бензиновых фракций (БСФ). Образующийся при гидроизомеризации бензола метилциклопентан характеризуется более высокими значениями октановых чисел (ИОЧ - 91, МОЧ - 81) по сравнению с циклогексаном (ИОЧ - 83, МОЧ - 77,3), хотя и уступает бензолу (ИОЧ - 113, МОЧ - 111,6). Однако за счет увеличения глубины изомеризации алканов снижения октанового числа гидроизомеризата по сравнению с сырьем можно избежать и даже добиться его прироста на несколько пунктов. Относительная простота технологического оформления, возможность снижения доли бензола до требующегося уровня и поддержание нужного ОЧ с сохранением выхода целевого продукта делает процесс гидроизомеризации БСФ привлекательным для внедрения на НПЗ.

Процесс гидроизомеризации (ГИ) имеет различные варианты реализации, зависящие от типа используемого сырья, количества стадий в процессе и используемого катализатора. Это приводит к возможности широкого варьирования рабочих параметров процесса ГИ (US №5246567, C10G 69/08, 1992; US № 5003118, C10G 65/08, 1989; RU №2387669, C10G 59/00, 2010; RU №2 498853, C10G 35/095, 2013). Соответственно, различаются и условия проведения процесса ГИ: температура, давление, объемная скорость и концентрация водорода. Подбор оптимальных параметров необходим для минимизации вклада процессов раскрытия циклов и расщепления парафиновых углеводородов.

Катализаторами процесса гидроизомеризации бензолсодержащих фракций являются бифункциональные системы, которые обеспечивают полное гидрирование бензола до циклогексана, а также эффективно проводят изомеризацию последнего в метилциклопентан. В качестве кислотных компонентов в катализаторах гидроизомеризации бензолсодержащих фракций используются анион-модифицированные оксиды циркония и алюминия (Hammache, S. Characteristics of the Active Sites on Sulfated Zirconia for n-Butane Isomerization // Journal of Catalysis, 2003, № 2, P. 258- 266; Busto M., Grau J. M., Canavese S. and Vera C. R. Simultaneous Hydroconversion of n-Hexane and Benzene over Pt/WO3- ZrO2 in the Presence of Sulfur Impurities // Energy Fuels, 2009, № 2, P. 599-606.), гетерополикислоты (Miyaji A., Okuhara T. Skeletal Isomerization of n-Heptane and Hydroisomerization of Benzene over Bifunctional Heteropoly Compounds // Catalysis Today, 2003, Т. 81, Р.43-49), а также относительно часто встречающиеся цеолиты (Tsai K.-Y., Wang I., Tsai T.-C. Zeolite Supported Platinum Catalysts for Benzene Hydrogenation and Naphthene Isomerization // Catal. Today, 2011, V. 166, № 1, p. 73-78). В качестве гидрирующего агента в превращении бензола можно использовать металлы VIII группы периодической таблицы. Наиболее популярными являются платина, палладий, рутений, родий и никель.

В подавляющем большинстве случаев катализаторы гидроизомеризации бензола не запатентованы напрямую, а косвенно упоминаются в патентах на способы производства компонентов автобензинов (US 5246567, US 5830345, US 5350504, JP 3464079 B2, RU 2676706 C1, CN 109046444 A, ES 2732235 A2, RU 2658018 C1, CN 105567304 A, CN 103429710 A, JPH 1036295 A, US 3631117 A).

Известны способы приготовления катализаторов для процесса ГИ, которые состоят в смешении цеолита с гидроксидом алюминия, формовке экструзией, термообработке полученного носителя и адсорбционном нанесении платины или платины с промоторами с последующей сушкой, прокаливанием и восстановлением катализатора.

Например, известен способ приготовления катализатора ГИ, описанный в патенте научно-производственной фирмы «Олкат» (RU №2287369, B01J 37/02, 2006). Данный способ описывает приготовление платинового катализатора на основе смеси цеолита морденит и оксида алюминия. В качестве цеолитного компонента используют морденит с силикатным модулем (SiO2/Al2O3) М=20-30, при содержании его в катализаторе 20-30% мас.. или морденит с силикатным модулем М=10, при содержании его в катализаторе не более 10% мас. Предлагаемый катализатор в реакции превращения модельного сырья бензол/гептан (соотношение 25/75% мас.) при температурах 230-330°С обеспечивает почти полное превращение бензола в циклогексан (ЦГ) и далее частично в метилциклопентан (МЦП), при этом выход катализата составлял 95-98% мас.

Недостатками данного способа является фиксированное содержание платины в катализаторе 0,3% мас., и восстановление катализатора при температуре не ниже 500°С. Кроме того остаточное содержание бензола в катализате достигает до 0,5% мас., а соотношение МЦП/ЦГ находится в пределах 1,6-2,8. Так же в патенте не приведены результаты превращения н-гептана, изомеризация которого существенно влияет на октановое число конечного продукта.

Наиболее близким техническим решением являются катализаторы, описанные в работе «Isomerization of n-Heptane on Platinum-Zeolite Catalysts in the Presence of Cyclohexane and Benzene», Belopukhov E.A., Kalashnikov I. M., Smolikov M.D., Shkurenok V. A., Kir’yanov D.I., Belyi A.S. ( Russian Journal of Applied Chemistry, 2017, № 12 (90), p. 1931-1938). В ней приведены результаты испытания катализаторов на основе цеолитов MOR и BEA в реакции превращения модельного сырья бензол-гептан. Способ приготовления катализаторов включает смешение порошков цеолита и связующего - гидроксида алюминия, пластификацию путем пептизации раствором уксусной кислоты, гранулирование, нанесение платины и восстановление катализатора при 350°С. Показано, что при температурах 270-300°С катализаторы обеспечивают полное гидрирование бензола до циклогексана (ЦГ) и его частичную изомеризацию до метилциклопентана (МЦП), при этом конверсия гептана составляет 70-80%. В результате достигается отношение МЦП/ЦГ более 3,0, а выход изогептанов 55-63% мас. (в пересчете на гептан). В этих условиях зафиксирован низкий выход катализата С5+ на уровне 87-91% мас.

В работе «Isomerization of n-heptane on zeolite-supported platinum catalysts», Kalashnikov I. M., Belopukhov E.A., Smolikov M.D., Kir’yanov D.I., Belyi A.S. (AIP Conference Proceedings, 2018, 2007, p. 1-8) приведены результаты испытаний катализаторов на основе цеолитов Y, BEA, MOR и ZSM-5 в реакции изомеризации гептана. Показано, что в заданных условиях испытаний при температурах 270-320°С катализаторы обеспечивают конверсию гептанов на уровне 75-85%, при этом селективность измеризации гептанов, для катализаторов на основе цеолита типа Y (М = 30-80) составила 83-88 , а для остальных катализаторов 72-80%. В результате, катализатор на основе цеолита Y обеспечивает выход изогептанов на уровне 64-68 % мас. и максимальный выход катализата С5+ на уровне 88-92% мас. Таким образом, катализатор на основе цеолита типа Y является перспективным для процесса гидроизомеризации БСФ.

Техническим результатом настоящего изобретения является получение платиноцеолитного катализатора, содержащего цеолит типа Y, обеспечивающего улучшение показателей процесса гидроизомеризации: увеличение выхода катализата С5+, отношения метилциклопентан/циклогексан (МЦП/ЦГ), выхода изомеров гептана и доли ди, три-метил замещенных (ДТМЗ) изомеров.

Поставленные задачи решены следующим образом. Катализатор для процесса гидроизомеризации бензолсодержащих бензиновых фракций содержит платину, хлор, цеолит и гамма оксид алюминия при следующем содержании компонентов, мас. %: платина - 0,1-0,5; хлор - 0,1-0,5; цеолит - 10,0-30,0; γ - Al2O3 - остальное. В качестве цеолита выбран цеолит типа Y, доля которого варьируется в интервале от 10 до 30% мас. относительно готового катализатора. При этом цеолит типа Y имеет силикатный модуль М =30-80 в водородной или аммонийной форме.

Способ приготовления катализатора включает смешение порошков цеолита и связующего - гидроксида алюминия, пластификацию путем пептизации раствором уксусной кислоты, гранулирование, нанесение платины и восстановление катализатора. После нанесения платины в количестве от 0,1 до 0,5% мас. проводится сушка катализатора при 120°С и его восстановление при температуре 350°С. Закрепление хлора происходит совместно с нанесением платины из молекулы Н2PtCl6 в количестве 0,1-0,5% мас.

В качестве гидрооксида алюминия используют псевдобемит марки Pural SB1 компании Sasol Germany GmbH. В качестве цеолитного компонента используют цеолиты Y фирмы Zeolyst International.

Химический состав приготовленных катализаторов представлен в таблице 1.

Катализаторы испытывали в проточной установке с использованием модельной смеси бензола и гептана в соотношении 20/80% мас. соответственно. Условия испытаний: давление 1,5 МПа, объемная скорость подачи сырья 2,0 ч-1, соотношение H2/сырье - 3 моль/моль и температура 290-330°°C.

Результаты каталитических испытаний предлагаемых катализаторов приведены в таблице 2. В качестве основных показателей определяли отношение МЦП/ЦГ, выход изомеров гептана, долю ДТМЗ изомеров и выход катализата С5+. Сравнение проводили в условиях достижения конверсии гептана 75%. В качестве прототипа - образца сравнения использовался катализатор на основе цеолита BEA, который показал лучшие каталитические свойства по результатам предыдущих исследований. Во всех случаях бензол в катализате не обнаруживается (менее 0,1% мас.).

Ниже представлены примеры синтеза катализаторов, характеризующих их химический состав, способ приготовления и каталитические свойства.

ПРИМЕР 1

Используют синтетический цеолит типа Y в аммонийной форме с силикатным модулем равным 80 (производства компании «Zeolyst International»). Соотношение цеолит/связующее равно 30/70% мас.

Так же используют 91 г порошка псевдобемита марки Pural SB1, произведенного компанией Sasol (Германия) по алкоголятной технологии или 70 г в пересчете на прокаленное вещество (потеря при прокаливании (далее - ППП) при 500°С = 23%).

Сухие порошки смешивают в течение 10 минут для гомогенизации, а затем подвергают пептизации за счет постепенного приливания водного раствора уксусной кислоты (84 мл воды и 12,3 мл ледяной уксусной кислоты). После чего продукт перемешивают до состояния однородной пластичной массы, пригодной для экструдирования.

Полученные после экструзии гранулы (размером 1,5-2 см и диаметром 1,5-2 мм) сушат и прокаливают при 500°С в муфельной печи. Получают около 100 г носителя (30% мас. цеолита типа Y).

Соответственно этому для приготовления 100 г носителя берут 33 г цеолита типа Y. В пересчете на прокаленное вещество 30 г (ППП при 500°С = 10%).

Далее наносят на готовый носитель платину в количестве 0,3% мас. Для этого 100 г носителя вакуумируют в течении 10 минут и далее смачивают водой в количестве 300 мл для заполнения пор водой и более равномерного распределения платины в порах. Далее берут 100 мл водного пропиточного раствора, содержащего 5,5 мл Н2PtCl6 и 33 мл 1Н уксусной кислоты для конкуренции. Закрепление хлора происходит совместно с нанесением платины из молекулы Н2PtCl6 в количестве 0,3% мас.

Пропитку проводят в течение 2 часов. Первый час при перемешивании без внешнего обогрева и еще 1 час на водяной бане при температуре 75°С. При окончании операции избыток раствора сливают, гранулы высушивают в сушильном шкафу 120°С.

Перед испытанием катализатор восстанавливают в токе водорода при 350°С в течении 1 часа.

Результаты каталитических испытаний: температура опыта 308°С, соотношение МЦП/ЦГ = 3,7, выход изогептанов (в пересчете на гептан) = 65,2% мас., соотношение ДТМЗ/ΣС7 = 25,2%, выход катализата 93,0% мас.

ПРИМЕР 2

Для приготовления катализатора проводят те же операции с теми же компонентами что и в примере 1. Изменяется только соотношение цеолит/связующее. В данном примере соотношение равно 10/90% мас.

В результате для приготовления 100 г носителя используют 11 г цеолита типа Y. В пересчете на прокаленное вещество 10 г (ППП при 500°С = 10%). Гидроксида алюминия берут 117 г или 90 г в пересчете на прокаленное вещество (ППП при 500°С = 23%). Для смешения используют водный раствор кислоты, состоящего из 118 мл воды и 16 мл ледяной уксусной кислоты.

Результаты каталитических испытаний: температура опыта 319°С, соотношение МЦП/ЦГ = 3,6, выход изогептанов (в пересчете на гептан) = 64,9% мас., соотношение ДТМЗ/ΣС7 = 25,0%, выход катализата 92,7% мас.

ПРИМЕР 3

В данном примере использует те же компоненты, что и в примере 1, в тех же количествах, за исключением используемого цеолита. В данном случае в качестве цеолита используют цеолит типа Y в водородной форме с силикатным модулем равным 30 (производства компании «Zeolyst International»), с сохранением соотношения цеолит/связующее равным 30/70% мас.

Соответственно этому для приготовления 100 г носителя используют 33 г цеолита Y. В пересчете на прокаленное вещество 30 г (ППП при 500°С = 10%).

Результаты каталитических испытаний: выход катализата 92,7% мас., соотношение МЦП/ЦГ = 3,5, выход и-С7 (в пересчете на н-С7) = 64,5% мас., соотношение ДТМЗ/ΣС7 = 24,7%, температура опыта 291°С.

Результаты каталитических испытаний: температура опыта 291°С, соотношение МЦП/ЦГ = 3,5, выход изогептанов (в пересчете на гептан) = 64,5% мас., соотношение ДТМЗ/ΣС7 = 24,7%, выход катализата 92,7% мас.

ПРИМЕР 4

Для приготовления катализатора проводят те же операции с теми же компонентами что и в примере 3. Приготовление катализатора отличается от предыдущего примера тем, что изменяется количество нанесенной платины на носитель. В данном случае платину наносят в количестве 0,1% мас. В результате чего используют 100 мл водного пропиточного раствора, содержащего 1,9 мл Н2PtCl6 и 33 мл 1Н уксусной кислоты для конкуренции. Закрепление хлора происходит совместно с нанесением платины из молекулы Н2PtCl6 в количестве 0,1% мас.

Результаты каталитических испытаний: температура опыта 295°С, соотношение МЦП/ЦГ = 3,5, выход изогептанов (в пересчете на гептан) = 64,1% мас., соотношение ДТМЗ/ΣС7 = 24,5%, выход катализата 93,3% мас.

ПРИМЕР 5

В данном примере, так же как и в примере 4 изменяется количество нанесенного металла. На носителе закрепляется 0,5% мас. платины. Для этого используют 10 мл водного пропиточного раствора, содержащего 9,2 мл Н2PtCl6 и 33 мл 1Н уксусной кислоты для конкуренции. Закрепление хлора происходит совместно с нанесением платины из молекулы Н2PtCl6 в количестве 0,5% мас.

Результаты каталитических испытаний: температура опыта 290°С, соотношение МЦП/ЦГ = 3,8, выход изогептанов (в пересчете на гептан) = 65,3% мас., соотношение ДТМЗ/ΣС7 = 24,9%, выход катализата 93,1% мас.

ПРИМЕР 6

В данном примере, так же как и в примере 4 и 5 изменяется количество нанесенного металла. Приготовление катализатора отличается количеством нанесенной платины на носитель. В данном случае платину наносят в количестве 0,05% мас. В результате чего используют 100 мл водного пропиточного раствора, содержащего 0,6 мл Н2PtCl6 и 33 мл 1Н уксусной кислоты для конкуренции. Закрепление хлора происходит совместно с нанесением платины из молекулы Н2PtCl6 в количестве 0,05% мас.

Результаты каталитических испытаний: температура опыта 299°С, соотношение МЦП/ЦГ = 3,0, выход изогептанов (в пересчете на гептан) = 61,6% мас., соотношение ДТМЗ/ΣС7 = 23,7%, выход катализата 93,2% мас.

ПРИМЕР 7

Данный пример использует те же компоненты, что и в примере 1, в тех же количествах, за исключением соотношения цеолит/связующее. В данном случае соотношение цеолит/связующее равно 5/95% мас.

Соответственно этому для приготовления 100 г носителя используют 6 г цеолита типа Y или в пересчете на прокаленное вещество 5 г (ППП при 500°С = 10%). Гидроксида алюминия берут 123 г или 95 г в пересчете на прокаленное вещество (ППП при 500°С = 23%). Для смешения используют водный раствор кислоты, состоящего из 115 мл воды и 17 мл ледяной уксусной кислоты.

Результаты каталитических испытаний: температура опыта 325°С, соотношение МЦП/ЦГ = 2,9, выход изогептанов (в пересчете на гептан) = 62,4% мас., соотношение ДТМЗ/ΣС7 = 23,9%, выход катализата 91,1% мас.

ПРИМЕР 8

В данном примере, так же как и в примере 7 изменяется соотношение цеолит/связующее. Соотношение цеолит/связующее в носителе равно 40/60% мас.

Соответственно этому для приготовления 100 г носителя берут 44 г цеолита типа Y или в пересчете на прокаленное вещество 40 г (ППП при 500°С = 10%). Гидроксида алюминия берут 78 г или 60 г в пересчете на прокаленное вещество (ППП при 500°С = 23%). Для смешения используют водный раствор кислоты, состоящего из 72 мл воды и 11 мл ледяной уксусной кислоты.

Результаты каталитических испытаний: температура опыта 301°С, соотношение МЦП/ЦГ = 3,4, выход изогептанов (в пересчете на гептан) = 64,3% мас., соотношение ДТМЗ/ΣС7 = 24,1%, выход катализата 90,2% мас.

Таким образом, предлагаемые катализаторы (таблица 2, примеры 1-5) обеспечивают при температуре 290-325°С соотношение МЦП/ЦГ в пределах 3,5-3,8, выход суммы изогептанов (на гептан) более 64% мас., соотношение ДТМЗ/ΣС7 более 24,5%, а выход катализата не менее 92,5% мас. Снижение содержания платины до 0,05% мас. (пример 6) приводит к снижению отношения МЦП/ЦГ до 3,0, а выход суммы изогептанов (на гептан) и соотношения ДТМЗ/ΣС7 до 61,5% мас. и 23,7% соответственно. Снижение доли цеолита менее 10% мас. (пример 7) приводит к снижению отношения МЦП/ЦГ менее 3,0, выход суммы изогептанов (на гептан) и соотношения ДТМЗ/ΣС7 менее 62,5% мас. и менее 24,0% соответственно при снижении выхода катализата до 91,1% мас. Увеличение доли цеолита более 30% мас. (примеры 8) приводят к снижению выхода катализата до 90,2% мас. Следует отметить, что использование цеолита BEA (прототип) приводит к снижению отношения МЦП/ЦГ до 2,9, выход суммы изогептанов (на гептан) и соотношения ДТМЗ/ΣС7 до 63,0% мас. и 22,0% соответственно при снижении выхода катализата до 90,4% мас.

Таблица 1. Химический состав катализаторов
Силикатный модуль цеолита Y (% мас.)
(SiO2/Al2O3)
Состав носителя, % мас. Содержание в катализаторе, % мас.
Цеолит Y γ Al2O3
Pt Cl
1 80 30 70 0,3 0,3
2 80 10 90 0,3 0,3
3 30 30 70 0,3 0,3
4 30 30 70 0,1 0,1
5 30 30 70 0,5 0,5
6 30 30 70 0,05 0,05
7 80 5 95 0,3 0,3
8 80 40 60 0,3 0,3

Таблица 2. Результаты каталитических испытаний
Пример T, °С МЦП/ЦГ Σ и-С7, % мас. ДТМЗ/ΣС7, % Выход катализата, % мас.
1 предлагаемый 308 3,7 65,2 25,2 93,0
2 предлагаемый 319 3,6 64,9 25,0 92,9
3 предлагаемый 291 3,5 64,5 24,7 92,7
4 предлагаемый 295 3,5 64,1 24,5 93,3
5 предлагаемый 290 3,8 65,3 24,9 93,1
6 для сравнения 299 3,0 61,6 23,7 93,2
7 для сравнения 325 2,9 62,4 23,9 91,1
8 для сравнения 301 3,4 64,3 24,1 90,2
прототип 265 2,9 63,0 22,0 90,4

Катализатор для процесса гидроизомеризации бензолсодержащих бензиновых фракций, содержащий Pt в количестве 0,1-0,5 мас.% и Cl в количестве 0,1-0,5 мас.%, нанесенные на поверхность носителя, а также цеолит в количестве 10,0-30,0 мас.% и γ-AlO - остальное в качестве носителя, при этом выбран цеолит типа Y с силикатным модулем М = 30-80 в аммонийной или водородной форме.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 19.
27.04.2019
№219.017.3cd7

Способ приготовления катализатора и способ получения низкозастывающих базовых масел из прямогонного вакуумного газойля с использованием этого катализатора

Изобретение относится к катализаторам нефтеперерабатывающей и нефтехимической промышленности и может быть применено при производстве катализаторов депарафинизации и их использовании в нефтеперерабатывающей и нефтехимической промышленности для получения низкозастывающих базовых масел из...
Тип: Изобретение
Номер охранного документа: 0002686311
Дата охранного документа: 25.04.2019
22.06.2019
№219.017.8ea0

Катализатор защитного слоя для процесса гидроочистки кремнийсодержащего углеводородного сырья

Изобретение относится к катализаторам защитного слоя, располагаемым перед основным катализатором гидроочистки углеводородного сырья для предотвращения его отравления соединениями кремния, содержащимися в сырье гидроочистки. Описан катализатор, содержащий молибден и никель в форме...
Тип: Изобретение
Номер охранного документа: 0002692082
Дата охранного документа: 21.06.2019
05.07.2019
№219.017.a5c0

Катализатор изомеризации н-бутана в изобутан, способ его приготовления и процесс получения изобутана с использованием данного катализатора

Настоящее изобретение относится к катализатору для процесса изомеризации н-бутана в изобутан, включающему в свой состав оксид металла III-IV групп, анион кислородсодержащей кислоты, причем он представляет собой каталитический комплекс общей формулы ZrO*aAn, где: х=1-2, у=2-3, An - анион серной...
Тип: Изобретение
Номер охранного документа: 0002693464
Дата охранного документа: 03.07.2019
05.07.2019
№219.017.a5da

Каталитический элемент для гетерогенных высокотемпературных реакций

Изобретение относится к каталитическому элементу для гетерогенных высокотемпературных реакций, включающему двухступенчатую каталитическую систему, состоящую из каталитических и улавливающих сеток - 1 ступень и высокопрочного термостабильного распределителя потока регулярной сотовой структуры -...
Тип: Изобретение
Номер охранного документа: 0002693454
Дата охранного документа: 03.07.2019
17.08.2019
№219.017.c12e

Способ получения изовалериановой кислоты

Изобретение относится к области органического синтеза, а именно к способу получения изовалериановой кислоты - (СH)CHCHCOOH, каталитическим окислением изоамилового спирта водным раствором пероксида водорода в присутствии бифункционального металлокомплексного катализатора, выполняющего функции...
Тип: Изобретение
Номер охранного документа: 0002697582
Дата охранного документа: 15.08.2019
01.09.2019
№219.017.c54a

Способ получения тетраалкилортосиликатов из кремнезёма

Изобретение относится к способам получения тетраалкилортосиликатов. Предложен способ получения тетраалкилортосиликатов прямым синтезом из кремнеземсодержащего материала и алифатического спирта, в котором растворен катализатор, при этом процесс проводят в реакторе проточно-циркуляционного типа с...
Тип: Изобретение
Номер охранного документа: 0002698701
Дата охранного документа: 29.08.2019
26.10.2019
№219.017.dacf

Способ получения тетраметилортосиликата из кремнезёма

Изобретение относится к способу получения тетраметилортосиликата, осуществляемому в реакторе проточно-каскадного типа, синтезом из кремнеземсодержащего материала и метилового спирта, в котором растворен катализатор, при этом образующуюся в результате реакции воду удаляют из реакционной смеси с...
Тип: Изобретение
Номер охранного документа: 0002704140
Дата охранного документа: 24.10.2019
26.10.2019
№219.017.dade

Способ получения никотиновой кислоты

Изобретение относится к способу получения никотиновой кислоты путём прямого газофазного окисления 3-пиколина кислородом или обогащённым кислородом воздухом, в котором 3-пиколин, кислород, воду и газы рецикла подают в реактор, состоящий из трубок с неподвижным слоем гранулированного...
Тип: Изобретение
Номер охранного документа: 0002704139
Дата охранного документа: 24.10.2019
26.10.2019
№219.017.dae1

Способ переработки тяжелого нефтяного сырья на защитном слое бифункционального катализатора

Изобретение раскрывает способ переработки тяжелого нефтяного сырья на защитном слое катализатора, в котором тяжелое нефтяное сырье пропускают через неподвижный слой катализатора при температуре 300-600°С, скорости подачи сырья через катализатор 0,2-2 г-сырья/г-катализатора/ч, в присутствии...
Тип: Изобретение
Номер охранного документа: 0002704123
Дата охранного документа: 24.10.2019
26.10.2019
№219.017.dae2

Способ получения никотиновой кислоты

Изобретение относится к способу получения никотиновой кислоты путём прямого газофазного окисления 3-пиколина кислородом воздуха, в котором 3-пиколин, воздух, воду и газы рецикла подают в реактор, состоящий из трубок с неподвижным слоем гранулированного катализатора, омываемых хладагентом. При...
Тип: Изобретение
Номер охранного документа: 0002704138
Дата охранного документа: 24.10.2019
Показаны записи 1-10 из 11.
20.08.2015
№216.013.6fa6

Способ приготовления катализатора для риформинга бензиновых фракций

Изобретение относится к способу приготовления катализатора для риформинга бензиновых фракций. Данный способ включает обработку носителя раствором соединения олова, сушку и прокалку, с последующей пропиткой водным раствором платинохлористоводородной кислоты, сушкой и прокалкой. При этом носитель...
Тип: Изобретение
Номер охранного документа: 0002560152
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6faf

Носитель, способ его приготовления (варианты), способ приготовления катализатора риформинга (варианты) и способ риформинга бензиновых фракций

Изобретение относится к способу приготовления носителя Sn(Zr)-γ-AlO для катализатора риформинга бензиновых фракций, при этом носитель готовят осаждением раствора азотнокислого алюминия водным раствором аммиака, с последующими стадиями фильтрации суспензии и промывки осадка, его пептизации...
Тип: Изобретение
Номер охранного документа: 0002560161
Дата охранного документа: 20.08.2015
29.12.2017
№217.015.fb77

Способ получения высокооктанового компонента бензина

Настоящее изобретение относится к способу получения высокооктанового компонента бензина и может быть использовано в нефтеперерабатывающей промышленности. Способ включает каталитический риформинг фракции 85-180°С, выделение из риформата низкооктановой бензолсодержащей фракции, гидроизомеризацию...
Тип: Изобретение
Номер охранного документа: 0002640043
Дата охранного документа: 26.12.2017
20.01.2018
№218.016.10c7

Катализатор изомеризации легких бензиновых фракций и способ его приготовления

Изобретение относится к способу приготовления катализатора для низкотемпературной изомеризации легких бензиновых фракций, применяемых для производства высокооктановых компонентов моторных топлив. Способ приготовления катализатора для изомеризации легких бензиновых фракций включает...
Тип: Изобретение
Номер охранного документа: 0002633756
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.1830

Катализатор для риформинга бензиновых фракций и способ его приготовления

Изобретение относится к способам приготовления катализаторов для риформинга бензиновых фракций, применяемого в нефтеперерабатывающей промышленности для производства высокооктановых компонентов моторных топлив. Описан катализатор для риформинга бензиновых фракций, содержащий платину, рений, хлор...
Тип: Изобретение
Номер охранного документа: 0002635353
Дата охранного документа: 13.11.2017
09.06.2018
№218.016.5bf0

Способ неокислительной конверсии метана

Изобретение относится к способу неокислительной конверсии метана в реакторе идеального смешения, включающему активацию метана на алюмоплатиновом катализаторе при Т 20-550°С, с последующей подачей н-пентана. Способ характеризуется тем, что температура подачи пентана 480-550°С, а алюмоплатиновый...
Тип: Изобретение
Номер охранного документа: 0002655927
Дата охранного документа: 30.05.2018
23.02.2019
№219.016.c62f

Катализатор для риформинга бензиновых фракций и способ его приготовления

Изобретение относится к области производства катализаторов риформинга бензиновых фракций. Описан катализатор риформинга бензиновых фракций, содержащий платину, рений, галоген-хлор или хлор и фтор и носитель - поверхностное соединение дегидратированного моносульфатоцирконата алюминия общей...
Тип: Изобретение
Номер охранного документа: 0002289475
Дата охранного документа: 20.12.2006
19.06.2019
№219.017.85c8

Способ получения массивного катализатора гидропереработки нефтяных фракций

Изобретение относится к области нефтепереработки, в частности к способу получения массивного катализатора гидропереработки нефтяных фракций. Описан способ получения массивного катализатора гидропереработки нефтяных фракций, представляющего собой композицию, в состав которой входят компоненты в...
Тип: Изобретение
Номер охранного документа: 0002346742
Дата охранного документа: 20.02.2009
19.06.2019
№219.017.86f4

Способ получения компонентов моторных топлив

Изобретение относится к области производства высокооктановых компонентов моторных топлив и водорода из бензиновых фракций нефтяного и газоконденсатного происхождения и C-С - углеводородных газов. Способ включает совместную переработку С-С - углеводородных газов и бензиновых фракций с массовым...
Тип: Изобретение
Номер охранного документа: 0002388794
Дата охранного документа: 10.05.2010
19.06.2019
№219.017.88a7

Способ получения компонентов моторных топлив (экоформинг)

Изобретение относится к производству экологических высокооктановых компонентов моторных топлив из бензиновых фракций или бензиновых фракций и С-С-углеводородных газов. Изобретение касается способа получения компонентов моторных топлив путем гидрооблагораживания жидких продуктов процессов...
Тип: Изобретение
Номер охранного документа: 0002417251
Дата охранного документа: 27.04.2011
+ добавить свой РИД