×
27.04.2019
219.017.3cd7

Результат интеллектуальной деятельности: СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И СПОСОБ ПОЛУЧЕНИЯ НИЗКОЗАСТЫВАЮЩИХ БАЗОВЫХ МАСЕЛ ИЗ ПРЯМОГОННОГО ВАКУУМНОГО ГАЗОЙЛЯ С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к катализаторам нефтеперерабатывающей и нефтехимической промышленности и может быть применено при производстве катализаторов депарафинизации и их использовании в нефтеперерабатывающей и нефтехимической промышленности для получения низкозастывающих базовых масел из высококипящих нефтяных фракций. Предлагаемый пористый катализатор готовят на основе цеолита алюмосиликатного либо галлийалюмосиликатного состава, выбранного из ряда ZSM-5, ZSM-11, либо их смеси, обработанного растворами органических или неорганических кислот, гранулированного с оксидом алюминия в качестве связующего, с последующей сушкой и прокалкой и подвергнутого дополнительной обработке перегретым водяным паром при температуре выше 650°С в течение не менее 5 ч. Способ получения базовых масел с низкой температурой застывания депарафинизацией прямогонного вакуумного газойля (350-530°С) проводят при температурах реакции не ниже 330°С, давлении не более 0,3 МПа и массовых расходах сырья 2-4 ч. В качестве катализатора используют твердый пористый катализатор, приготовленный описанным выше способом. Технический результат - упрощение способа приготовления катализатора, увеличение выхода базовых масел с низкой температурой застывания из прямогонного вакуумного газойля и увеличение длительности межрегенерационного пробега катализатора. 2 н. и 2 з.п. ф-лы, 11 табл., 9 пр.

Изобретение относится к катализаторам нефтеперерабатывающей и нефтехимической промышленности и может быть применено при производстве катализаторов депарафинизации и их использовании в нефтеперерабатывающей и нефтехимической промышленности для получения низкозастывающих базовых масел из высококипящих нефтяных фракций.

В последние годы резко возрастают требования к качеству смазочных масел для различных областей техники, в частности, к их вязкостным свойствам. Уже давно необходимы масла с индексом вязкости выше 120. Удовлетворить потребность в них, применяя простые традиционные процессы, практически невозможно, поскольку пределом экономически эффективного производства базовых масел для этих процессов является индекс вязкости 110-115, причем только в случае использования высококачественного сырья [Petrol Informs, 1973, v. 52, №5, p. 113; Джилберт Д.Б., Уокер Д. VIII Мировой нефтяной конгресс. Дискуссионный симпозиум №12, М., Изд. Нац. Комитета СССР по нефти, 1971.]

Известны способы переработки высококипящих (Ткип=200-500°С) нефтяных фракций и углеводородного сырья, содержащего парафины нормального строения С1040 [Патент США №3891540, 1975, МПК C10G 37/06; С01В 33/28; Патент США №3972983, 1976, МПК С01В 033/28; Патент США №4983274, 1991, МПК C10G 11/00; Патент RU №2148611, 2000, МПК C10G 49/08, С07С 5/13, С07С 5/27; Патент RU №2152426, 2000, МПК C10G 47/16, C10G 65/02].

Общей чертой всех вышеуказанных способов является наличие в процессе депарафинизации сырья предварительной стадии гидроочистки, а также стадий крекинга и изомеризации нормальных парафинов, которые протекают на бифункциональных цеолитсодержащих катализаторах.

Известен способ депарафинизации углеводородного сырья, содержащего высокомолекулярные парафины нормального строения [Патент США №3894938, 1975, МПК C10G 37/00], согласно которому процесс проводят сначала на катализаторе на основе цеолита ZSM-5, а затем продукт целиком, либо жидкую его часть подвергают гидроочистке на катализаторе CoMo/Al2O3.

Наиболее близким к предлагаемому изобретению является способ депарафинизации нефтяных фракций путем проведения стадий крекинга и изомеризации парафинов нормального строения без дополнительной подачи водорода при сохранении высокого содержания изопарафинов в продуктах реакции [Патент РФ №2343183, C10G 35/00, 2009,]. Поставленная задача решается тем, что в указанном способе депарафинизации высококипящих нефтяных фракций проводится контактирование углеводородного сырья с катализатором при повышенных температурах, при этом в качестве катализатора используется цеолит структурного типа ZSM-5, смешанный с декатионированной формой природного цеолита типа клиноптилолит-гейландит и затем модифицированный никелем. Контактирование проводят при температуре 360-440°С, объемной скорости подачи сырья 0,5-3 ч-1 и атмосферном давлении. В указанном способе депарафинизации используют высокоактивный цеолит типа ZSM-5 в Н-форме, к которому добавляют 90-98 мас. % природного цеолита типа клиноптилолит-гейландит, обработанного 25%-ным водным раствором NH4Cl. В качестве катализатора используют композиционный катализатор, дополнительно модифицированный никелем в количестве 1,5-2,5 мас. %.

Недостатками способа являются низкая активность, которая проявляется в незначительном снижении температуры застывания базового масла, использование комплексного катализатора (ZSM-5, смешанный с природным цеолитом - клиноптилолит-гейландит) усложняющего технологию его приготовления, а также низкая каталитическая стабильность (длительность межрегенерационного периода работы).

Предлагаемое изобретение решает задачу создания эффективного процесса получения базовых масел с низкой температурой застывания из прямогонного вакуумного газойля.

Технический результат - упрощение способа приготовления катализатора, увеличение выхода базовых масел с низкой температурой застывания из прямогонного вакуумного газойля и увеличение длительности межрегенерационного пробега катализатора.

Поставленная задача решается предлагаемым способом приготовления катализатора.

Катализатор для получения базовых масел с низкой температурой застывания в процессе депарафинизации прямогонного вакуумного газойля с пределами выкипания 350-530°С готовят на основе цеолита алюмосиликатного либо галлийалюмосиликатного состава, выбранного из ряда ZSM-5, ZSM-11, либо их смеси, обработанного растворами органических или неорганических кислот, гранулированного с оксидом алюминия в качестве связующего, с последующей сушкой и прокалкой и подвергнутого дополнительной обработке перегретым водяным паром при температуре выше 650°С в течение не менее 5 ч.

Задача решается также способом получения базовых масел с низкой температурой застывания, который осуществляют депарафинизацией прямогонного вакуумного газойля (350-530°С) при температуре не ниже 330°С, давлении не более 0.3 Мпа и массовых расходах сырья 2-4 ч-1. А в качестве катализатора используют твердый пористый катализатор, приготовленный описанным выше способом

Существенными отличительными признаками предлагаемого способа от прототипа является то, что указанный пористый катализатор, используемый для производства базовых масел с низкой температурой застывания из прямогонного вакуумного газойля, не содержит природного цеолита клиноптилолит-гейландит, не содержит никаких модифицирующих металлов и предварительно подвергается обработке перегретым водяным паром при температуре выше 650°С в течение не менее 5 ч.

Задача решается также способом переработки прямогонного вакуумного газойля при температурах реакции не ниже 330°С, давлении не более 0.3 Мпа и массовых расходах сырья 2-4 ч-1. А в качестве катализатора используют твердый пористый катализатор, описанный выше, и предварительно подвергнутый обработке перегретым водяным паром при температуре выше 650°С в течение не менее 5 час.

Предварительная обработка перегретым водяным паром при температуре выше 650°С в течение не менее 5 ч приводит, во-первых, к уменьшению общей кислотности катализатора и, как следствие, к увеличению выхода фракции базовых масел с низкой температурой застывания за счет уменьшения доли реакций крекинга, а, во-вторых, к удалению активных центров коксообразования с внешней поверхности пористого катализатора и, как следствие, к увеличению длительности межрегенерационного пробега катализатора.

В процессе переработки прямогонного вакуумного газойля в присутствии указанного катализатора происходит селективное превращение парафинов нормального строения с образованием как изомерных углеводородов, так и более легких углеводородов вследствие крекинга.

С целью упрощения способа переработки прямогонного вакуумного газойля (ВГ), а также увеличения выхода фракции базовых масел с низкой температурой застывания, вакуумный газойль был разбавлен прямогонным бензином. Состав полученного сырья (плотность 0,863 г/см3) в мас. %: прямогонный бензин/ВГ - 20/80.

Сущность изобретения иллюстрируется следующими примерами и таблицами.

Пример 1 (прототип).

Сырьем процесса получения низкозастывающих базовых масел является прямогонный вакуумный газойль (350-530°С) смешанный с прямогонным бензином (НК-150) в массовом соотношении 80/20. Температура застывания сырья +7°С, фракционный состав сырья приведен в таблице 1. Температура застывания масляной фракции, содержащейся в сырье (350-470°С), составляет +5°С.

Композиционный катализатор содержит 10 мас. % цеолита структурного типа ZSM-5 и 90 мас. % природного цеолита типа клиноптилолит-гейландит. Природный цеолит - клиноптилолит-гейландит измельчают в шаровой мельнице в течение 4 ч, затем двукратно обрабатывают 25%-ным водным раствором NH4Cl (10 мл раствора на 1 г цеолита) при 90°С 2 ч, промывают водой, сушат при 110°С и прокаливают при 440°С в течение 6 ч.

Композиционный катализатор для испытаний готовят путем смешивания в вибрационной мельнице КМ-1 в течение 2 ч синтетического и природного цеолитов, взятых в количественном соотношении, соответственно, 10,0 и 90,0 мас. %, прессования в таблетки и отбора фракции 0,25-0,8 мм.

10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 340°С и атмосферном давлении начинают подачу сырья с весовой скоростью подачи 3 ч-1. Фракционный состав катализата (продуктов реакции) через 7 ч после начала реакции приведен в таблице 2. Температура застывания масляной фракции - минус 2°С.

Пример 2. Сырье процесса по примеру 1.

30 г порошка галлийалюмосиликата со структурой ZSM-11 кипятят в присутствии водного раствора азотной кислоты в течение 6 ч, а затем в водном растворе нитрата лантана в течение 8 ч. Полученный образец сушат при 100°С, гранулируют с 20% оксида алюминия в качестве связующего и прокаливают при 550°С, затем подвергают обработке перегретым водяным паром при температуре 650°С в течение 7 ч, после чего готовят фракцию 0.2-0.8 мм.

10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 340°С и атмосферном давлении начинают подачу сырья с весовой скоростью подачи 3 ч-1.

Фракционный состав катализата (продуктов реакции) через 7 ч после начала реакции приведен в таблице 3. Температура застывания масляной фракции - минус 27°С.

Пример 3. Сырье процесса по примеру 1.

Катализатор готовят в соответствии с примером 2. 10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 340°С и давлении 0,3 Мпа начинают подачу сырья с весовой скоростью подачи 2 ч-1.

Фракционный состав катализата (продуктов реакции) через 7 ч после начала реакции приведен в таблице 4. Температура застывания масляной фракции - минус 29°С.

Пример 4. Сырье процесса по примеру 1.

Катализатор готовят в соответствии с примером 2. 10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 340°С и давлении 0,3 Мпа начинают подачу сырья с весовой скоростью подачи 4 ч-1.

Фракционный состав катализата (продуктов реакции) через 7 ч после начала реакции приведен в таблице 5. Температура застывания масляной фракции - минус 22°С.

Пример 5. Сырье процесса по примеру 1.

30 г порошка алюмосиликата со структурой ZSM-5 кипятят в присутствии водного раствора азотной кислоты в течение 6 ч, а затем в водном растворе нитрата лантана в течение 8 ч. Полученный образец сушат при 100°С, гранулируют с 20% оксида алюминия в качестве связующего и прокаливают при 550°С, затем подвергают обработке перегретым водяным паром при температуре 650°С в течение 7 ч, после чего готовят фракцию 0.2-0.8 мм.

10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 340°С и атмосферном давлении начинают подачу сырья с весовой скоростью подачи 3 ч-1.

Фракционный состав катализата (продуктов реакции) через 7 ч после начала реакции приведен в таблице 6. Температура застывания масляной фракции - минус 30°С.

Пример 6. Сырье процесса по примеру 1.

Катализатор готовят в соответствии с примером 5. 10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 340°С и давлении 0,3 Мпа начинают подачу сырья с весовой скоростью подачи 2 ч-1.

Фракционный состав катализата (продуктов реакции) через 7 ч после начала реакции приведен в таблице 7. Температура застывания масляной фракции - минус 27°С.

Пример 7. Сырье процесса по примеру 1.

Катализатор готовят в соответствии с примером 5. 10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 340°С и давлении 0,3 Мпа начинают подачу сырья с весовой скоростью подачи 4 ч-1.

Фракционный состав катализата (продуктов реакции) через 7 ч после начала реакции приведен в таблице 8: Температура застывания масляной фракции - минус 24°С.

Пример 8. Сырье процесса по примеру 1.

Катализатор готовят в соответствии с примером 2. 10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 320°С и давлении 0,3 Мпа начинают подачу сырья с весовой скоростью подачи 2 ч-1.

Фракционный состав катализата (продуктов реакции) через 7 ч после начала реакции приведен в таблице 9. Температура застывания масляной фракции - минус 20°С.

Пример 9. Сырье процесса по примеру 1.

Катализатор готовят в соответствии с примером 5. 10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 360°С и давлении 0,3 Мпа начинают подачу сырья с весовой скоростью подачи 2 ч-1.

Фракционный состав катализата (продуктов реакции) через 7 ч после начала реакции приведен в таблице 10. Температура застывания масляной фракции - минус 38°С.

Для определения длительности межрегенерационного периода катализаторы испытывались при давлении 0,3 МПа и весовой скорости подачи 3 ч-1 в режиме с подъемом температуры в интервале 320-430°С. Сырьем служил прямогонный вакуумный газойль (350-530°С) смешанный с прямогонным бензином (НК-150) в массовом соотношении 80/20 по примеру 1. Подъем температуры осуществлялся при снижении температуры застывания дизельной фракции выше минус 25°С (для прототипа - минус 1). Результаты приведены в таблице 11.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 19.
22.06.2019
№219.017.8ea0

Катализатор защитного слоя для процесса гидроочистки кремнийсодержащего углеводородного сырья

Изобретение относится к катализаторам защитного слоя, располагаемым перед основным катализатором гидроочистки углеводородного сырья для предотвращения его отравления соединениями кремния, содержащимися в сырье гидроочистки. Описан катализатор, содержащий молибден и никель в форме...
Тип: Изобретение
Номер охранного документа: 0002692082
Дата охранного документа: 21.06.2019
05.07.2019
№219.017.a5c0

Катализатор изомеризации н-бутана в изобутан, способ его приготовления и процесс получения изобутана с использованием данного катализатора

Настоящее изобретение относится к катализатору для процесса изомеризации н-бутана в изобутан, включающему в свой состав оксид металла III-IV групп, анион кислородсодержащей кислоты, причем он представляет собой каталитический комплекс общей формулы ZrO*aAn, где: х=1-2, у=2-3, An - анион серной...
Тип: Изобретение
Номер охранного документа: 0002693464
Дата охранного документа: 03.07.2019
05.07.2019
№219.017.a5da

Каталитический элемент для гетерогенных высокотемпературных реакций

Изобретение относится к каталитическому элементу для гетерогенных высокотемпературных реакций, включающему двухступенчатую каталитическую систему, состоящую из каталитических и улавливающих сеток - 1 ступень и высокопрочного термостабильного распределителя потока регулярной сотовой структуры -...
Тип: Изобретение
Номер охранного документа: 0002693454
Дата охранного документа: 03.07.2019
17.08.2019
№219.017.c12e

Способ получения изовалериановой кислоты

Изобретение относится к области органического синтеза, а именно к способу получения изовалериановой кислоты - (СH)CHCHCOOH, каталитическим окислением изоамилового спирта водным раствором пероксида водорода в присутствии бифункционального металлокомплексного катализатора, выполняющего функции...
Тип: Изобретение
Номер охранного документа: 0002697582
Дата охранного документа: 15.08.2019
01.09.2019
№219.017.c54a

Способ получения тетраалкилортосиликатов из кремнезёма

Изобретение относится к способам получения тетраалкилортосиликатов. Предложен способ получения тетраалкилортосиликатов прямым синтезом из кремнеземсодержащего материала и алифатического спирта, в котором растворен катализатор, при этом процесс проводят в реакторе проточно-циркуляционного типа с...
Тип: Изобретение
Номер охранного документа: 0002698701
Дата охранного документа: 29.08.2019
26.10.2019
№219.017.dacf

Способ получения тетраметилортосиликата из кремнезёма

Изобретение относится к способу получения тетраметилортосиликата, осуществляемому в реакторе проточно-каскадного типа, синтезом из кремнеземсодержащего материала и метилового спирта, в котором растворен катализатор, при этом образующуюся в результате реакции воду удаляют из реакционной смеси с...
Тип: Изобретение
Номер охранного документа: 0002704140
Дата охранного документа: 24.10.2019
26.10.2019
№219.017.dade

Способ получения никотиновой кислоты

Изобретение относится к способу получения никотиновой кислоты путём прямого газофазного окисления 3-пиколина кислородом или обогащённым кислородом воздухом, в котором 3-пиколин, кислород, воду и газы рецикла подают в реактор, состоящий из трубок с неподвижным слоем гранулированного...
Тип: Изобретение
Номер охранного документа: 0002704139
Дата охранного документа: 24.10.2019
26.10.2019
№219.017.dae1

Способ переработки тяжелого нефтяного сырья на защитном слое бифункционального катализатора

Изобретение раскрывает способ переработки тяжелого нефтяного сырья на защитном слое катализатора, в котором тяжелое нефтяное сырье пропускают через неподвижный слой катализатора при температуре 300-600°С, скорости подачи сырья через катализатор 0,2-2 г-сырья/г-катализатора/ч, в присутствии...
Тип: Изобретение
Номер охранного документа: 0002704123
Дата охранного документа: 24.10.2019
26.10.2019
№219.017.dae2

Способ получения никотиновой кислоты

Изобретение относится к способу получения никотиновой кислоты путём прямого газофазного окисления 3-пиколина кислородом воздуха, в котором 3-пиколин, воздух, воду и газы рецикла подают в реактор, состоящий из трубок с неподвижным слоем гранулированного катализатора, омываемых хладагентом. При...
Тип: Изобретение
Номер охранного документа: 0002704138
Дата охранного документа: 24.10.2019
26.10.2019
№219.017.daed

Способ получения никотиновой кислоты

Изобретение относится к способу получения никотиновой кислоты путём прямого газофазного окисления 3-пиколина кислородом воздуха, в котором 3-пиколин, воздух, воду и газы рецикла подают в реактор, состоящий из трубок с неподвижным слоем гранулированного катализатора, омываемых хладагентом. При...
Тип: Изобретение
Номер охранного документа: 0002704137
Дата охранного документа: 24.10.2019
Показаны записи 1-10 из 19.
10.08.2015
№216.013.6afe

Способ получения дизельного топлива из возобновляемого сырья растительного происхождения (варианты)

Изобретение относится к способам получения дизельного топлива, углеводородного состава, преимущественно изомерного строения. Способ осуществляют путем одностадийной гидропереработки и изомеризации с использованием сырья растительного (биологического) происхождения, выбранного из растительных...
Тип: Изобретение
Номер охранного документа: 0002558948
Дата охранного документа: 10.08.2015
20.11.2015
№216.013.9149

Способ каталитической переработки легкого углеводородного сырья

Изобретение относится к способам каталитической переработки легкого углеводородного сырья, в частности к переработке углеводородных фракций С, и может найти применение в нефтегазовой, нефтеперерабатывающей и нефтехимической промышленности. Предложен способ, включающий нагрев легкого...
Тип: Изобретение
Номер охранного документа: 0002568809
Дата охранного документа: 20.11.2015
10.04.2016
№216.015.3159

Способ подготовки скважинной продукции газоконденсатного месторождения

Изобретение относится к газовой промышленности и может быть использовано для транспортировки газов по трубопроводам. Скважинную продукцию газоконденсатного месторождения (I) сепарируют (1) с получением газа входной сепарации (II), водного конденсата (III) и углеводородного конденсата (IV),...
Тип: Изобретение
Номер охранного документа: 0002580136
Дата охранного документа: 10.04.2016
25.08.2017
№217.015.ab99

Катализатор гидродеоксигенации алифатических кислородсодержащих соединений и гидроизомеризации н-парафинов и способ его приготовления

Изобретение относится к катализаторам для процесса гидродеоксигенации алифатических кислородсодержащих соединений и одновременной гидроизомеризации н-алканов, который в качестве активного компонента содержит фосфид никеля и/или молибдена в количестве 2.5-10.0 мас. % при следующем атомном...
Тип: Изобретение
Номер охранного документа: 0002612303
Дата охранного документа: 06.03.2017
19.01.2018
№218.016.0d2b

Катализатор гидроизомеризации н-алканов и способ его приготовления

Изобретение относится к области химии, а именно к катализаторам, предназначенным для процесса гидроизомеризации н-алканов, а также прямогонных и гидроочищенных дизельных фракций, и может быть использовано в нефтеперерабатывающей промышленности. Описан катализатор для процесса гидроизомеризации...
Тип: Изобретение
Номер охранного документа: 0002632890
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0d4b

Катализатор гидроизомеризации н-алканов и способ его приготовления

Изобретение относится к области химии, а именно к катализаторам, предназначенным для процесса гидроизомеризации н-алканов, а также прямогонных и гидроочищенных дизельных фракций, и может быть использовано в нефтеперерабатывающей промышленности. Описан катализатор для процесса гидроизомеризации...
Тип: Изобретение
Номер охранного документа: 0002632911
Дата охранного документа: 11.10.2017
13.02.2018
№218.016.21b1

Установка каталитической ароматизации легкого углеводородного сырья и способ ее работы

Изобретение относится к установке каталитической ароматизации легкого углеводородного сырья, включающей расположенные на линии подачи сырья по меньшей мере один блок каталитической переработки и блок выделения концентрата ароматических углеводородов с линией подачи циркулирующего газа в блок...
Тип: Изобретение
Номер охранного документа: 0002641692
Дата охранного документа: 22.01.2018
28.07.2018
№218.016.7630

Блок каталитической ароматизации легких углеводородов и способ его работы

Изобретение относится к блоку каталитической ароматизации легких углеводородов, включающему нагреватель, каталитический реактор, рекуперационный теплообменник, отличающемуся тем, что в реакторе расположены по меньшей мере одна зона катализа и по меньшей мере одна зона окисления, разделенные...
Тип: Изобретение
Номер охранного документа: 0002662442
Дата охранного документа: 26.07.2018
16.03.2019
№219.016.e1d8

Способ приготовления катализатора и способ получения дизельного топлива с использованием этого катализатора

Изобретение относится к способу получения дизельного топлива с низкой температурой застывания, а именно зимнего и/или арктического дизельного топлива из летнего дизельного топлива. Описан способ приготовления катализатора для получения дизельного топлива в процессе депарафинизации дизельных...
Тип: Изобретение
Номер охранного документа: 0002681949
Дата охранного документа: 14.03.2019
27.04.2019
№219.017.3e0a

Катализатор, способ его приготовления и способ получения ароматических углеводородов

Изобретение относится к процессам переработки легких углеводородов в более ценные продукты - ароматические углеводороды, а также к способам приготовления катализатора получения ароматических углеводородов. Настоящий катализатор получения ароматических углеводородов в процессе ароматизации...
Тип: Изобретение
Номер охранного документа: 0002333033
Дата охранного документа: 10.09.2008
+ добавить свой РИД