×
18.07.2020
220.018.34b3

Результат интеллектуальной деятельности: Способ совместной гидропереработки растительного и нефтяного сырья

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу гидрогенизационной переработки растительного и нефтяного сырья. В качестве растительного компонента используют липидную фракцию, извлеченную из микроводорослей, или непищевые растительные масла, а в качестве нефтяного компонента используют прямогонную дизельную фракцию в смеси с легкими газойлями каталитического крекинга и коксования. Процесс совместной гидропереработки осуществляют в три стадии: на первой стадии сырье, состоящее из прямогонной дизельной фракции и смеси легких газойлей каталитического крекинга и коксования в соотношении 60,0-80,0:20,0-40,0% мас., соответственно, подвергают гидроочистке в присутствии кобальтмолибденового катализатора на основе оксида алюминия или алюмосиликата с получением гидрогенизата с содержанием серы в интервале 150-500 ppm. Далее на второй стадии гидропереработки сырье, состоящее из гидрогенизата первой стадии и растительного компонента в соотношении 80,0-95,0:5,0-20,0% мас., соответственно, подвергают процессу гидродеоксигенации совмещенному с гидродесульфуризацией в присутствии пакета катализаторов: массивного дисульфида молибдена в первом слое и никелькобальтмолибденового катализатора на основе оксида алюминия или алюмосиликата во втором слое. На третьей стадии процесса проводят каталитическую гидродепарафинизацию в присутствии цеолитсодержащего никельмолибденового катализатора. Полученный продукт подвергают стабилизации и фракцию 180-кк °С выводят как компонент дизельного топлива. Технический результат- производство дизельных топлив с улучшенными низкотемпературными свойствами. 3 з.п. ф-лы, 7 пр.

Изобретение относится к области нефтепереработки, а именно к области совместной гидропереработки растительного и нефтяного углеводородного сырья с целью получения компонента дизельного топлива с улучшенными низкотемпературными свойствами.

Производство биотоплив из растительного сырья является одним из интенсивно развивающихся направлений исследований сегодня, что связано с необходимостью снижения экологической нагрузки на окружающую среду и поиском альтернативной сырьевой базы для производства моторных топлив.

На сегодняшний день существует два способа переработки возобновляемого сырья: индивидуальная переработка растительных компонентов (переэтерификация или гидродеоксигенация триглицеридов жирных кислот и др.) и совместная переработка нефтяного и растительного сырья. Второй способ имеет ряд преимуществ по сравнению с первым в части отсутствия капитальных затрат на строительство новых технологических установок и меньшие эксплуатационные затраты, что приводит к меньшей себестоимости получаемых биотоплив. Ограничение на широкое использование биомассы в качестве компонента сырья установки гидроочистки обусловлено спецификой ее химического состава, а именно высоким содержанием кислородорганических и непредельных соединений, которые даже в мягких условиях ведения процесса, с одной стороны, приводят к быстрой дезактивации промышленных катализаторов [D. Kubicka, J. Ногасек // Appl. Catal. А. 2011. V. 394. P. 9-17], а, с другой стороны, к ингибированию кислород-содержащими соединениями целевых реакций удаления серы и гидрирования полициклических ароматических углеводородов. Поэтому для совместной переработки ископаемого и возобновляемого сырья необходима разработка оптимальной технологии, сочетающей в себе высокоактивные стабильные каталитические системы и эффективные технологические решения.

Известен способ получения дизельного топлива из возобновляемого сырья растительного происхождения [Патент РФ №2558948, 10.08.2015 г.].

Способ осуществляют путем одностадийной гидропереработки и изомеризации с использованием сырья растительного (биологического) происхождения, выбранного из растительных масел или липидов микроводорослей, в присутствии бифункционального гетерогенного катализатора. Катализатором является кристаллический силикоалюмофосфат с цеолитоподобной структурой, модифицированный металлом VIII группы Периодической таблицы, с дисперсностью введенного в состав катализатора металла - 14-60%, в количестве не более 10 мас. %. Предпочтительным является катализатор на основе силикоалюмофосфата со структурой SAPO-31. В способе используют смеси сырья растительного происхождения (жиры, масла, липиды микроводорослей) с гидроочищенным дизельным топливом. Процесс проводят при температуре не выше 400°С, давлении не более 10 МПа, массовой скорости подачи сырья не более 10 ч-1, объемном отношении водород/сырье не более 2000.

Технический результат - разбавление растительного сырья минеральным позволяет повысить стабильность действия бифункционального катализатора и увеличить время его работы.

К недостаткам способа следует отнести необходимость использования гидроочищенного дизельного топлива для переработки в смеси с растительным сырьем, что требует либо проведения глубокой гидроочистки при жестких параметрах работы, либо не позволяет вовлекать в сырье гидроочистки большое количества низкокачественных газойлей вторичного происхождения.

Также известен способ совместной обработки дизельного топлива и растительного масла для получения гибридного дизельного биотоплива с низкой температурой помутнения [Патент РФ №2487923, 29.09.2009 г.].

Способ получения гибридного дизельного топливного продукта включает следующие стадии: объединение растительного масла с дизельной фракцией с образованием первой смеси с содержанием растительного масла не более 10 мас. %; гидроочистка первой смеси с образованием гидроочищенной второй смеси, содержащей дезоксигенированные триглицеридные компоненты, со степенью удаления серы не менее 95%; изомеризация гидроочищенной второй смеси в присутствии катализатора изомеризации с образованием третьей смеси, включающей гибридное дизельное топливо, имеющее пониженную температуру помутнения.

Технический результат - не требуется межкаскадного удаления H2S и NH3 между стадиями гидроочистки и изомеризации, образуется гибридный дизельный продукт с низкой температурой помутнения, повышение производительности при снижении общих производственных затрат.

К недостаткам данного способа следует отнести вовлечение в процесс пищевого растительного сырья с невысоким содержанием чего? (до 10% масс.). К недостаткам способа также следует отнести использование дорогих катализаторов на основе платины и палладия на стадии изомеризации, а также невозможность использовать сернистые и высокосернистые дизельные фракции, так как заявленная степень удаления серы (не менее 95%) не позволит получить продукт, удовлетворяющий современным спецификациям по остаточному содержанию серы.

Известен способ и катализатор гидропереработки для производства высококачественных дизельного и нефтяного топлив из сырья, которое содержит кислородсодержащие компоненты, полученные из возобновляемых органических материалов [Патент РФ №2495082, 23.07.2009 г.].

Способ производства углеводородного топлива из возобновляемого органического материала биологического происхождения включает следующие стадии:

1. Формирование исходного сырья путем комбинирования ископаемого углеводородного топлива с возобновляемым органическим материалом, где содержание возобновляемого органического материала составляет от 1 до 35 об. %;

2. Смешение исходного сырья из стадии (1) с обогащенным водородсодержащим газом и подача объединенного потока на стадию гидродеоксигенации путем контакта указанного объединенного потока с катализатором гидродеоксигенации. При этом катализатор гидродеоксигенации представляет собой нанесенный молибденовый катализатор с содержанием Мо от 0,1 до 20 мас. %, носитель выбран из ряда оксид алюминия, диоксид кремния, диоксид титана и их комбинации (указанный носитель имеет бимодальную пористую структуру с порами с диаметром более 50 нм, которые составляют по меньшей мере 2 об. % общего объема пор).

Кроме того, после гидродеоксигенации полученный продукт подвергается дополнительной гидроочистке и гидроизомеризации. В качестве возобновляемого органического материала используют животные жиры, талловое масло, рапсовое масло. Стадию гидродеоксигенации проводят при давлении водорода 1-200 бар (0,1-20 МПа), при температуре 50-350°С и при объемной скорости подачи сырья 0,1-10 ч-1. Стадии гидроочистки и гидроизомеризации проводят при давлении водорода 1-200 бар (0,1-20 МПа), при температуре 50-450°С и при объемной скорости подачи сырья 0,1-10 ч-1.

Технический результат - снижается склонность к образованию кокса вследствие низкого локального парциального давления водорода.

Недостатком указанного способа является вовлечение в процесс пищевого растительного сырья. К недостаткам также следует отнести, что при использовании высокосернистого сырья не удается получить продукт, соответствующий современным требованиям по содержанию серы.

Наиболее близким к заявляемому является способ гидрооблагораживания триглицеридов жирных кислот и прямогонной дизельной фракции на сульфидных катализаторах с целью получения низкосернистых углеводородных фракций [Патент РФ 2652991, 04.05.2018]

В соответствии с изобретением гидрооблагораживания триглицеридов жирных кислот в смеси с нефтяными фракциями осуществляется на сульфидных катализаторах MoS2/Al2O3 и NiMo/Al2O3 в две стадии. На первой стадии проводят гидроочистку прямогонной дизельной фракции в присутствии сульфидного NiMo/Al2O3 катализатора, затем полученную смесь углеводородов, водорода и сероводорода смешивают с триглицеридами жирных кислот и проводят реакцию гидродеоксигенации в присутствии сульфидного катализатора MoS2/Al2O3. Гидрооблагораживание сырья проводят при температуре 340°С, давлении водорода 4,0 МПа, объемной скорости расхода сырья - 1,1-1,25 ч-1, суммарном объемном соотношении водород/сырье - 510-600 Нм33.

Технический результат - высокая эффективность процесса совместного гидрооблагораживания дизельных фракций и триглицеридов жирных кислот.

К недостаткам данного способа относится невозможность расширения сырьевой базы за счет использования высокосернистых газойлей вторичных процессов переработки, а также невозможность получения низкозастывающих углеводородных фракций.

Задачей настоящего изобретения является разработка способа гидрогенизационной переработки смесей непищевого растительного и нефтяного сырья с получением дизельного топлива с требуемыми низкотемпературными характеристиками, предусматривающего расширение сырьевой базы для получения дизельного топлива за счет вовлечения низкокачественных газойлей вторичных процессов.

Для решения поставленной задачи предлагается способ совместной гидрогенизационной переработки растительного и нефтяного сырья, который отличается тем, что процесс гидрогенизационной переработки осуществляют в три стадии: на первой стадии нефтяное сырье, содержащее до 40% низкокачественных газойлей вторичного происхождения, подвергают гидроочистке на нанесенном СоМо катализаторе с получением гидрогенизата с содержанием серы в интервале 150-500 ppm. На второй стадии гидрогенизат первой ступени смешивается с липидной фракцией, извлеченной из микроводорослей, или с растительным маслом непищевого назначения в количестве не более 20%, полученную смесь подвергают процессу гидродеоксигенации на пакете катализаторов, состоящем их массивного MoS2 и нанесенного триметаллического NiCoMo катализатора. На третьей стадии полученный продукт второй ступени подвергается процессу гидродепарафинизации на цеолитсодержащем NiMo катализаторе для достижения требуемых низкотемпературных характеристик.

Первую стадию гидропереработки осуществляют при давлении 4-7 МПа, температуре 330-380°С, объемной скорости подачи сырья 1,5-3,0 час-1, соотношении водородсодержащий газ /сырье - 600-1000 н.об./об.

Вторую стадию гидропереработки осуществляют при давлении 4-7 МПа, температуре 320-380°С, объемной скорости подачи сырья 0,5-1,5 час-1, соотношении водородсодержащий газ/сырье - 800-1200 н.об./об.

Третью стадии гидропереработки осуществляют при давлении 4-5 МПа, температуре 270-380°С, объемной скорости подачи сырья 2-3 час-1, соотношении водородсодержащий газ/сырье 800-1000 н.об./об.

Достоинством способа является возможность вовлечения в состав сырья сернистых и высокосернистых вторичных газойлей и одновременное исключение из состава сырья ценных пищевых масел и жиров - они заменяются непищевыми маслами и липидами, полученными из водорослей. Проведение гидроочистки на первой стадии до остаточного содержания серы в интервале 150-500 ppm позволяет, с одной стороны, вести процесс при более мягких условиях, с другой стороны, отсутствует необходимость дополнительно вводить осерняющий агент на вторую стадию для поддержания катализаторов в активной форме. Кроме того, использование MoS2 в качестве первого катализаторного слоя на второй стадии позволяет проводить процесс гидродеоксигенации преимущественно по маршруту прямого гидрирования без образования оксидов углерода, ингибирующих реакции гидродесульфуризации [D. Kubicka, L. Kaluza // Appl. Catal. A:Gen. 2010. V. 372. P. 199-208].

Техническим результатом настоящего изобретения является высокоэффективная технология, позволяющая перерабатывать смесь прямогонных дизельных фракций, низкокачественных газойлей вторичного происхождения и растительного сырья, для производства дизельных топлив с улучшенными низкотемпературными свойствами. Технический результат достигается за счет трехстадийной переработки сырья с применением нанесенного СоМо, массивного MoS2, нанесенного NiCoMo и цеолитсодержащего NiMo катализаторов.

Ниже приведены примеры конкретной реализации способа.

Пример 1

Гидрогенизационной переработке подвергают смесь прямогонной дизельной фракции (60% масс.) и легких газойлей каталитического крекинга (20% масс.) и коксования (20% масс.) с содержанием серы 10361 мг/кг). Далее гидрогенизат первой ступени с содержанием серы 155 мг/кг смешивают с липидной фракцией, извлеченной из микроводорослей, соотношение растительного сырья и гидрогенизата составляет 5:95% масс, соответственно. После гидродеоксигенации гидрогенизат 2 ступени подвергают гидродепарафинизации.

Первую стадию гидрогенизационной переработки - гидродесульфуризацию, осуществляют при давлении 5 МПа, температуре 360°С, объемной скорости подачи сырья 1,5 ч-1, соотношении водородсодержащий газ (ВСГ) /сырье - 700 н.об./об., в присутствии алюмокобальтмолибденового катализатора гидроочистки. Полученный гидрогенизат направляют на вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку.

Вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку осуществляют при давлении - 5 МПа, температуре - 350°С, объемной скорости подачи сырья 1,5 ч-1, соотношении ВСГ/сырье - 1000 н.об./об., в присутствии каталитической системы, состоящей из пакета катализаторов: массивного дисульфида молибдена в первом слое и никелькобальтмолибденового катализатора на основе оксида алюминия во втором слое. Полученный гидрогенизат направляют на третью стадию процесса - каталитическую гидродепарафинизацию.

Третью стадию процесса - каталитическую гидродепарафинизацию осуществляют при давлении - 4 МПа, температуре - 270°С, объемной скорости подачи сырья 3,0 ч-1, соотношении ВСГ/сырье - 800 н.об./об., в присутствии никельмолибденового катализатора на цеолитсодержащем носителе.

Полученный продукт подвергают стабилизации и фракцию 180°С - КК выводят в качестве компонента дизельного топлива с температурой помутнения минус 35,3°С, содержанием серы 9 мг/кг.

Пример 2

Гидрогенизационной переработке подвергают смесь прямогонной дизельной фракции (80% масс.) и легкого газойля каталитического крекинга (20% масс.) с содержанием серы 7895 мг/кг). Далее гидрогенизат первой ступени с содержанием серы 276 мг/кг смешивают с техническим рапсовым маслом, соотношение растительного сырья и гидрогенизата составляет 15:85% масс, соответственно. После гидродеоксигенации гидрогенизат 2 ступени подвергают гидродепарафинизации.

Первую стадию гидрогенизационной переработки - гидродесульфуризацию, осуществляют при давлении 4,5 МПа, температуре 340°С, объемной скорости подачи сырья 2,5 ч-1, соотношении водородсодержащий газ (ВСГ)/сырье - 600 н.об./об., в присутствии алюмокобальтмолибденового катализатора гидроочистки. Полученный гидрогенизат направляют на вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку.

Вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку осуществляют при давлении - 4,5 МПа, температуре - 340°С, объемной скорости подачи сырья 0,5 ч-1, соотношении ВСГ/сырье - 900 н.об./об., в присутствии каталитической системы, состоящей из пакета катализаторов: массивного дисульфида молибдена в первом слое и никелькобальтмолибденового катализатора на основе алюмосиликата во втором слое. Полученный гидрогенизат направляют на третью стадию процесса - каталитическую гидродепарафинизацию.

Третью стадию процесса - каталитическую гидродепарафинизацию осуществляют при давлении - 4 МПа, температуре - 290°С, объемной скорости подачи сырья 2,0 ч-1, соотношении ВСГ/сырье - 800 н.об./об., в присутствии никельмолибденового катализатора на цеолитсодержащем носителе.

Полученный продукт подвергают стабилизации и фракцию 180°С - КК выводят в качестве компонента дизельного топлива с температурой помутнения минус 36°С и содержанием серы 8 мг/кг.

Пример 3

Гидрогенизационной переработке подвергают смесь прямогонной дизельной фракции (80% масс.) и легкого газойля замедленного коксования (20% масс.) с содержанием серы 10635 мг/кг). Далее гидрогенизат первой ступени с содержанием серы 160 мг/кг смешивают с липидной фракцией, извлеченной из микроводорослей, соотношение растительного сырья и гидрогенизата составляет 10:90% масс, соответственно. После гидродеоксигенации гидрогенизат 2 ступени подвергают гидродепарафинизации.

Первую стадию гидрогенизационной переработки - гидродесульфуризацию, осуществляют при давлении 4,5 МПа, температуре 350°С, объемной скорости подачи сырья 2 ч-1, соотношении водородсодержащий газ (ВСГ) /сырье - 600 н.об./об., в присутствии алюмокобальтмолибденового катализатора гидроочистки. Полученный гидрогенизат направляют на вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку.

Вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку осуществляют при давлении - 4,5 МПа, температуре - 330°С, объемной скорости подачи сырья 1,0 ч-1, соотношении ВСГУсырье - 800 н.об./об., в присутствии каталитической системы, состоящей из пакета катализаторов: массивного дисульфида молибдена в первом слое и никелькобальтмолибденового катализатора на основе оксида алюминия во втором слое. Полученный гидрогенизат направляют на третью стадию процесса - каталитическую гидродепарафинизацию.

Третью стадию процесса - каталитическую гидродепарафинизацию осуществляют при давлении - 4.5 МПа, температуре - 280°С, объемной скорости подачи сырья 2,0 ч-1, соотношении ВСГ/сырье - 800 н.об./об., в присутствии никельмолибденового катализатора на цеолитсодержащем носителе.

Полученный продукт подвергают стабилизации и фракцию 180°С - КК выводят в качестве компонента дизельного топлива с температурой помутнения минус 35,5°С, содержанием серы 8 мг/кг.

Пример 4

Гидрогенизационной переработке подвергают смесь прямогонной дизельной фракции (80% масс.) и легкого газойля каталитического крекинга (40% масс.) с содержанием серы 7621 мг/кг. Далее гидрогенизат первой ступени с содержанием серы 351 мг/кг смешивают с непищевым нерафинированным пальмовым маслом, соотношение растительного сырья и гидрогенизата составляет 20:80% масс. соответственно. После гидродеоксигенации гидрогенизат 2 ступени подвергают гидродепарафинизации.

Первую стадию гидрогенизационной переработки - гидродесульфуризацию, осуществляют при давлении 5 МПа, температуре 340°С, объемной скорости подачи сырья 2,0 ч-1, соотношении водородсодержащий газ (ВСГ) /сырье - 700 н.об./об., в присутствии алюмокобальтмолибденового катализатора гидроочистки. Полученный гидрогенизат направляют на вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку.

Вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку осуществляют при давлении - 5 МПа, температуре - 350°С, объемной скорости подачи сырья 0,5 ч-1, соотношении ВСГ/сырье - 800 н.об./об., в присутствии каталитической системы, состоящей из пакета катализаторов: массивного дисульфида молибдена в первом слое и никелькобальтмолибденового катализатора на основе алюмосиликата во втором слое. Полученный гидрогенизат направляют на третью стадию процесса - каталитическую гидродепарафинизацию.

Третью стадию процесса - каталитическую гидродепарафинизацию осуществляют при давлении - 5 МПа, температуре - 270°С, объемной скорости подачи сырья 2.5 ч-1, соотношении ВСГ/сырье - 800 н.об./об., в присутствии никельмолибденового катализатора на цеолитсодержащем носителе.

Полученный продукт подвергают стабилизации и фракцию 180°С - КК выводят в качестве компонента дизельного топлива с температурой помутнения минус 37,8°С, содержанием серы 7 мг/кг.

Пример 5

Гидрогенизационной переработке подвергают смесь прямогонной дизельной фракции (80% масс.) и легкого газойля замедленного коксования (40% масс.) с содержанием серы 13101 мг/кг). Далее гидрогенизат первой ступени с содержанием серы 197 мг/кг смешивают с липидной фракцией, извлеченной из микроводорослей, соотношение растительного сырья и гидрогенизата составляет 20:80% масс, соответственно. После гидродеоксигенации гидрогенизат 2 ступени подвергают гидродепарафинизации.

Первую стадию гидрогенизационной переработки - гидродесульфуризацию, осуществляют при давлении 5 МПа, температуре 360°С, объемной скорости подачи сырья 1,5 ч-1, соотношении водородсодержащий газ (ВСГ) /сырье - 700 н.об./об., в присутствии алюмокобальтмолибденового катализатора гидроочистки. Полученный гидрогенизат направляют на вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку.

Вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку осуществляют при давлении - 5 МПа, температуре - 340°С, объемной скорости подачи сырья 1,0 ч-1, соотношении ВСГ/сырье - 1200 н.об./об., в присутствии каталитической системы, состоящей из пакета катализаторов: массивного дисульфида молибдена в первом слое и никелькобальтмолибденового катализатора на основе оксида алюминия во втором слое. Полученный гидрогенизат направляют на третью стадию процесса - каталитическую гидродепарафинизацию.

Третью стадию процесса - каталитическую гидродепарафинизацию осуществляют при давлении - 4 МПа, температуре - 270°С, объемной скорости подачи сырья 2,0 ч-1, соотношении ВСГ/сырье - 800 н.об./об., в присутствии никельмолибденового катализатора на цеолитсодержащем носителе.

Полученный продукт подвергают стабилизации и фракцию 180°С - КК выводят в качестве компонента дизельного топлива с температурой помутнения минус 37,6°С, содержанием серы 8 мг/кг.

Пример 6

Гидрогенизационной переработке подвергают смесь прямогонной дизельной фракции (80% масс.) и легких газойлей каталитического крекинга (10% масс.) и коксования (10% масс.) с содержанием серы 9265 мг/кг). Далее гидрогенизат первой ступени с содержанием серы 232 мг/кг смешивают с непищевым нерафинированным соевым маслом, соотношение растительного сырья и гидрогенизата составляет 15:85% масс, соответственно. После гидродеоксигенации гидрогенизат 2 ступени подвергают гидродепарафинизации.

Первую стадию гидрогенизационной переработки - гидродесульфуризацию, осуществляют при давлении 6 МПа, температуре 360°С, объемной скорости подачи сырья 2,3 ч-1, соотношении водородсодержащий газ (ВСГ) /сырье - 800 н.об./об., в присутствии алюмокобальтмолибденового катализатора гидроочистки. Полученный гидрогенизат направляют на вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку.

Вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку осуществляют при давлении - 6 МПа, температуре - 360°С, объемной скорости подачи сырья 1,2 ч-1, соотношении ВСГ/сырье - 1100 н.об./об., в присутствии каталитической системы, состоящей из пакета катализаторов: массивного дисульфида молибдена в первом слое и никелькобальтмолибденового катализатора на основе алюмосиликата во втором слое. Полученный гидрогенизат направляют на третью стадию процесса - каталитическую гидродепарафинизацию.

Третью стадию процесса - каталитическую гидродепарафинизацию осуществляют при давлении - 4 МПа, температуре - 290°С, объемной скорости подачи сырья 2,5 ч-1, соотношении ВСГ/сырье - 800 н.об./об., в присутствии никельмолибденового катализатора на цеолитсодержащем носителе.

Полученный продукт подвергают стабилизации и фракцию 180°С - КК выводят в качестве компонента дизельного топлива с температурой помутнения минус 36,7°С, содержанием серы 6 мг/кг.

Пример 7

Гидрогенизационной переработке подвергают смесь прямогонной дизельной фракции (70% масс.) и легких газойлей каталитического крекинга (15% масс.) и коксования (15% масс.) с содержанием серы 9813 мг/кг). Далее гидрогенизат первой ступени с содержанием серы 412 мг/кг смешивают с смешивают с липидной фракцией, извлеченной из микроводорослей, соотношение растительного сырья и гидрогенизата составляет 10:90% масс, соответственно. После гидродеоксигенации гидрогенизат 2 ступени подвергают гидродепарафинизации.

Первую стадию гидрогенизационной переработки - гидродесульфуризацию, осуществляют при давлении 5 МПа, температуре 330°С, объемной скорости подачи сырья 3,0 ч-1, соотношении водородсодержащий газ (ВСГ) /сырье - 700 н.об./об., в присутствии алюмокобальтмолибденового катализатора гидроочистки. Полученный гидрогенизат направляют на вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку.

Вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку осуществляют при давлении - 5 МПа, температуре - 360°С, объемной скорости подачи сырья 1,1 ч-1, соотношении ВСГ/сырье - 1000 н.об./об., в присутствии каталитической системы, состоящей из пакета катализаторов: массивного дисульфида молибдена в первом слое и никелькобальтмолибденового катализатора на основе оксида алюминия во втором слое. Полученный гидрогенизат направляют на третью стадию процесса - каталитическую гидродепарафинизацию.

Третью стадию процесса - каталитическую гидродепарафинизацию осуществляют при давлении - 4 МПа, температуре - 270°С, объемной скорости подачи сырья 2 ч-1, соотношении ВСГ/сырье - 800 н.об./об., в присутствии никельмолибденового катализатора на цеолитсодержащем носителе.

Полученный продукт подвергают стабилизации и фракцию 180°С - КК выводят в качестве компонента дизельного топлива с температурой помутнения минус 37,3°С, содержанием серы 8 мг/кг.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 191.
20.01.2018
№218.016.1e75

Способ очистки отходящих газов окисления изопропилбензола

Изобретение относится к нефтехимической и нефтеперерабатывающей промышленности. Способ очистки отходящих газов окисления изопропилбензола заключается в извлечении изопропилбензола с помощью низкотемпературной конденсации, причем для создания низких температур используют энергию отходящих газов...
Тип: Изобретение
Номер охранного документа: 0002640781
Дата охранного документа: 11.01.2018
13.02.2018
№218.016.2035

Вертикальный стальной резервуар

Изобретение относится к области строительства, в частности к сооружению стальных вертикальных резервуаров, расположенных в сейсмически опасных районах и районах с повышенными требованиями к защите окружающей среды. Техническим результатом изобретения является увеличение эксплуатационной...
Тип: Изобретение
Номер охранного документа: 0002641353
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.267d

Цифровой модулятор для преобразования частоты

Изобретение относится к области импульсной техники и может быть использовано в преобразователях частоты для управления электродвигателями переменного тока. Технический результат заключается в формировании различных законов регулирования напряжения в функции частоты силового преобразователя и...
Тип: Изобретение
Номер охранного документа: 0002644070
Дата охранного документа: 07.02.2018
17.02.2018
№218.016.2bb0

Способ получения (s)-3-(аминометил)-5-метилгексановой кислоты

Изобретение относится к способу получения (S)-3-(аминометил)-5-метилгексановой кислоты формулы I, используемой в терапии ряда нейропатических заболеваний, путем энантиоселективного присоединения диэтилмалоната к 4-метил-1-нитропентену-1 с последующим восстановлением и кислотным гидролизом...
Тип: Изобретение
Номер охранного документа: 0002643373
Дата охранного документа: 01.02.2018
17.02.2018
№218.016.2df0

Способ производства съедобных пленок из яблочного сырья

Изобретение относится к пищевой промышленности, преимущественно к съедобным пленкам из яблочного сырья. Способ производства съедобных пленок из яблочного сырья характеризуется тем, что у яблок удаляют несъедобные части, обрабатывают водяным паром в течение 10-30 мин, к полученной массе...
Тип: Изобретение
Номер охранного документа: 0002643722
Дата охранного документа: 05.02.2018
04.04.2018
№218.016.31d3

Сборный резец для контурного точения

Сборный резец содержит державку, имеющую державочную часть и головку с гнездом для установки режущей пластины, прихват и расположенный в выступе головки со стороны державочной части резьбовой механизм с возможностью взаимодействия его упорного винта с одним из торцов пластины для ее перемещения...
Тип: Изобретение
Номер охранного документа: 0002645236
Дата охранного документа: 19.02.2018
04.04.2018
№218.016.33d2

Расплавляемый электролит для химического источника тока

Изобретение относится к области электротехнической промышленности, в частности к разработке расплавляемых электролитов для химических источников тока на основе солей лития и рубидия. Расплавляемый электролит для химического источника тока включает хлорид лития и хлорид рубидия, в качестве...
Тип: Изобретение
Номер охранного документа: 0002645763
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3ebd

Способ работы маневренной регенеративной парогазовой теплоэлектроцентрали и устройство для его осуществления

Изобретение относится к энергетике. В способе работы маневренной регенеративной парогазовой теплоэлектроцентрали и устройстве для его реализации теплоту газов, расширенных в газовой турбине, используют для регенеративного подогрева сжатого воздуха и сетевой воды теплосети. При этом в...
Тип: Изобретение
Номер охранного документа: 0002648478
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.4183

Буксовый подшипниковый узел колес железнодорожного транспорта

Буксовый подшипниковый узел колес железнодорожного транспорта содержит двухрядный блок роликовых подшипников качения, воспринимающий радиальную и осевую нагрузку при движении транспортного средства. Подшипник с цилиндрическими роликами устанавливают с внешней стороны буксы. Подшипник с...
Тип: Изобретение
Номер охранного документа: 0002649106
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.43b5

Способ изготовления образца для испытания на внецентренное сжатие

Изобретение относится к области строительства, в частности к способу изготовления образцов для испытания на внецентренное сжатие. Сущность: осуществляют высверливание на верхней и нижней опорной поверхности четырехугольной призмы симметричных парных сферических лунок для центрирующих элементов,...
Тип: Изобретение
Номер охранного документа: 0002649609
Дата охранного документа: 04.04.2018
Показаны записи 31-40 из 57.
13.06.2019
№219.017.8107

Способ гидрогенизационного облагораживания углеводородного сырья

Изобретение относится к способам гидрогенизационной переработки углеводородного сырья в присутствии каталитической системы и может быть использовано в нефтеперерабатывающей промышленности. Предлагается способ гидрогенизационного облагораживания углеводородного сырья при повышенных температуре и...
Тип: Изобретение
Номер охранного документа: 0002691067
Дата охранного документа: 10.06.2019
13.06.2019
№219.017.8124

Способ получения катализатора деметаллизации нефтяных фракций

Изобретение относится к нефтеперерабатывающей промышленности, в частности к катализаторам гидрооблагораживания нефтяных фракций. Предлагается способ получения катализатора деметаллизации нефтяных фракций путем предварительного приготовления носителя катализатора осаждением гидроксида алюминия...
Тип: Изобретение
Номер охранного документа: 0002691069
Дата охранного документа: 10.06.2019
13.06.2019
№219.017.812f

Способ подготовки катализаторов гидрогенизационных процессов к окислительной регенерации

Изобретение относится к способу подготовки катализаторов гидроочистки к окислительной регенерации путем обработки пассивированного сульфидного катализатора, содержащего NiO, VO, FeO, смесью бутилцеллозольва и нефраса, в которой растворен комплексообразователь, выбранный из щавелевой, винной или...
Тип: Изобретение
Номер охранного документа: 0002691078
Дата охранного документа: 10.06.2019
13.06.2019
№219.017.8130

Катализатор для гидрогенизационной конверсии глицерина в простые спирты, способ его приготовления и способ гидрогенизационной конверсии глицерина в простые спирты с использованием этого катализатора

Изобретение относится к технологии переработки и касается катализатора для гидрогенизационной конверсии глицерина в простые спирты, способа его приготовления и способа гидрогенизационной конверсии глицерина в простые спирты с использованием этого катализатора. Предложенный катализатор содержит...
Тип: Изобретение
Номер охранного документа: 0002691068
Дата охранного документа: 10.06.2019
13.06.2019
№219.017.813b

Способ совместного извлечения мышьяка и хлора из нефтяных дистиллятов

Изобретение относится к области нефтепереработки и нефтехимии, а именно, к удалению отравляющих соединений для катализаторов нефтепереработки из нефтяных фракций, и может быть использовано на нефтеперерабатывающих предприятиях при очистке нефтяных фракций от примесей для последующего получения...
Тип: Изобретение
Номер охранного документа: 0002691072
Дата охранного документа: 10.06.2019
13.06.2019
№219.017.8178

Способ получения каталитически-сорбционного материала и способ извлечения мышьяка в его присутствии

Изобретение относится к области нефтепереработки и нефтехимии, а именно к удалению мышьяка и его соединений из нефтяных фракций, и может быть использовано на нефтеперерабатывающих предприятиях при очистке нефтяных фракций от примесей для последующего получения дизельного топлива и других...
Тип: Изобретение
Номер охранного документа: 0002691070
Дата охранного документа: 10.06.2019
14.07.2019
№219.017.b412

Катализатор глубокой гидроочистки вакуумного газойля и способ его приготовления

Изобретение относится к области производства катализаторов гидроочистки. Описан катализатор гидроочистки вакуумного газойля, состоящий из MoO, WO и NiO, содержание в прокаленном катализаторе MoO составляет 1,5-7,5 мас. %, WO - 15-25 мас. %, NiO - 3-5 мас. %, остальное – носитель. Носитель...
Тип: Изобретение
Номер охранного документа: 0002694370
Дата охранного документа: 12.07.2019
06.09.2019
№219.017.c7c6

Катализатор защитного слоя и способ его использования

Изобретение относится к области химии, в частности к катализаторам защитного слоя для гидроочистки тяжелых нефтяных фракций. Катализатор состоит из трех слоев, расположенных с возрастанием общего содержания оксидов металлов в каждом последующем слое, при этом первый по ходу движения защитный...
Тип: Изобретение
Номер охранного документа: 0002699225
Дата охранного документа: 04.09.2019
06.09.2019
№219.017.c7c7

Способ гидрогенизационного облагораживания остаточного нефтяного сырья

Изобретение относится к области нефтепереработки. Изобретение касается способа гидрогенизационного облагораживания остаточного нефтяного сырья на стационарных слоях катализаторов, включающий стадии: гидродеметаллизации нефтяного сырья, последующего гидрогенизационного обессеривания и...
Тип: Изобретение
Номер охранного документа: 0002699226
Дата охранного документа: 04.09.2019
08.09.2019
№219.017.c934

Жидкий органический носитель водорода, способ его получения и водородный цикл на его основе

Изобретение относится к области водородной энергетики, органической химии и катализа, в частности к разработке составов химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования. Описан жидкий органический носитель...
Тип: Изобретение
Номер охранного документа: 0002699629
Дата охранного документа: 06.09.2019
+ добавить свой РИД