×
06.02.2020
220.017.ff32

Результат интеллектуальной деятельности: Способ управления судном при выполнении движения по заданной траектории

Вид РИД

Изобретение

Аннотация: Изобретение относится к водному транспорту и касается управления движением судна по величине поперечных смещений его носовой и кормовой точек от текущего положения линии пути при выполнении им движения по заданной траектории. Текущее положение линии пути определяется в виде прямой линии, проходящей через две точки на плоскости; при выходе судна на заданную траекторию движения одна из указанных точек - это центр тяжести судна, вторая - заданная исходная точка заданной траектории движения судна; при движении судна по заданной траектории движения линия пути задается на каждом этапе движения судна в виде секущей кривой заданной траектории. Координаты точек заданной траектории движения, через которые проходит линия пути на данном этапе движения судна по заданной траектории, определяются в зависимости от кривизны ЗТД на данном этапе движения, размерных характеристик судна и скорости его движения. Совершенствуется управление судном, выполняющим движение по заданной траектории, по величине поперечных смещений двух точек судна, носовой F и кормовой A, от текущего положения заданной линии пути, являющейся секущей кривой ЗТД, представленной аналитически в неподвижной координатной системе X,Y в виде функции у=f(х). Обеспечивается безопасность движения судна. 3 з.п. ф-лы, 6 ил.

Изобретение относится к водному транспорту и касается управления судном, выполняющим движение по заданной траектории по величине поперечных смещений двух точек судна, в частности, носовой F и кормовой A, от текущего положения заданной линии пути (ЛП), являющейся секущей кривой заданной траектории движения (ЗТД), представленной аналитически в неподвижной координатной системе X0,Y0 в виде функции у0=f(х0).

Известен способ управления движением объекта (судна) при выполнении им сближения с другим объектом, например, заданным точкой ЗТ, (RU 2356784, B63H 25/00) [2] по величинам поперечных смещений расположенных на диаметральной плоскости (ДП) судна носовой F и кормовой A точек от текущего положения траектории сближения (линии пути) (см. Фиг. 2), при котором рассчитывают поперечные смещения этих точек; для вычисления поперечных смещений носовой F и кормовой A точек судна их координаты в неподвижной координатной системе F(x0F, y0F), A(x0A, y0A) измеряют с помощью спутниковой навигационной системы (СНС) и с дифференциальными поправками, перекладку руля судна производят в зависимости от комбинации поперечных смещений носовой dF и кормовой dA точек судна относительно текущего положения траектории сближения, которое определяют используя заданную точку (ЗТ), как объект, с которым происходит сближение судна и центр тяжести (ЦТ) судна; текущее положение ЗТ и текущее положение ЦТ судна определяют текущее положение траектория сближения в виде прямой линии ЛП, соединяющей текущее положение ЗТ и текущее положение ЦТ судна G, текущие координаты ЦТ судна в неподвижной координатной систем рассчитывают по формулам:

(1)

где x0G, y0G – координаты ЦТ судна в неподвижной координатной системе (X0, Y0);

x0F , y0F – координаты носовой точки судна F в неподвижной координатной системе;

x0A , y0A – координаты кормовой точки судна А в неподвижной координатной системе;

xF , хА – абсцисса носовой F и кормовой A точки судна соответственно, в координатной системе (X, Y) связанной с судном (см. Фиг. 3);

xG – абсцисса центра тяжести судна в координатной системе, связанной с судном,

текущие координаты ЗТ определяют с помощью СНС и с дифференциальными поправками.

Однако, в этом способе управления судном, выполняющим сближение с ЗТ, есть определенный недостаток, препятствующий использованию его в управлении судном при движении по ЗТД, так как в алгоритме управления судном отсутствуют элементы управления, обеспечивающие условия безопасного движения по ЗТД, а именно, учет кривизны ЗТД на всех этапах движения, размерных характеристик судна и скорости его движения.

Задача, которую решает заявляемое изобретение, состоит в обеспечении условия безопасного движении судна по ЗТД.

Технический результат по величине поперечных смещений двух точек судна, носовой F и кормовой A, от текущего положения заданной линии пути (ЛП), являющейся секущей кривой заданной траектории движения (ЗТД), представленной аналитически в неподвижной координатной системе X0,Y0 в виде функции у0=f(х0).

Для достижения указанного технического результата предлагается способ управления судном при движении по ЗТД по величинам поперечных смещений расположенных на ДП судна носовой F и кормовой A точек от текущего положения заданной ЛП, при котором рассчитывают поперечные смещения этих точек; для вычисления поперечных смещений носовой F и кормовой A точек судна их координаты в неподвижной координатной системе F(x0F, y0F), A(x0A, y0A) измеряют с помощью СНС и с дифференциальными поправками, перекладку руля судна производят в зависимости от комбинации поперечных смещений носовой dF и кормовой dA точек судна относительно текущего положения ЛП, которое определяют используя исходную заданную точку траектории (ЗТТ(1)) (см. Фиг. 4), как объект, с которым происходит сближение судна и ЦТ судна; положение ЗТТ(1) и текущее положение ЦТ судна определяют текущее положение ЛП, проходящей через две точки в виде прямой линии, соединяющей положение исходной ЗТТ(1) и текущее положение ЦТ судна G, текущие координаты ЦТ судна в неподвижной координатной системе рассчитывают по формулам (1), координаты исходной ЗТТ(1) определяют как координаты точки кривой, описывающей ЗТД уравнением у0=f(х0), дополнительно определяют положения ЛП(i) (i=1,2,…,n; n – количество этапов движения по ЗТД) на каждом этапе движения судна по ЗТД координатами двух заданных точек ЗТТ траектории, например, 1-ой ЗТТ(1)01, у01) и 2-ой ЗТТ(2)02, у02) (см. Фиг. 5). При этом координаты исходной (первой) ЗТТ(1) (см. Фиг. 1, позиция 1) соответствуют координатам точки ЗТД в момент начала движения судна по ЗТД. Координаты каждой следующей ЗТТ(i), например, позиция 2 (см. Фиг. 1) определяются как координаты точки пересечения двух кривых, а именно, кривой ЗТД, заданной аналитически в координатной системе X0, Y0 в виде функции у0=f(х0) и дуги окружности заданного радиуса R(i) (см. Фиг. 5) с центром, расположенным в предыдущей ЗТТ(i). Значение радиуса R(i) указанной окружности рассчитывается для каждой отдельной ЛП(i), это значение определяется исходя из кривизны ЗТД на данном этапе движения, размерных характеристик судна и скорости его движения.

Наличие полученных указанным способом данных, позволяет осуществлять движение судна по ЗТД, в несколько этапов, количество которых n определяется количеством секущих кривой ЗТД, определяющих положения ЛП(i) при движении судна от ЗТТ(i) до ЗТТ(i+1) до окончания движения по ЗТД:

I-ый этап – выход судна в первую ЗТТ (ЗТТ(1)) (см. Фиг. 4). Выбираем исходную (первую) ЗТТ(1), т.е. точку выхода судна на ЗТД, определяем ее координаты 01, у01) в неподвижной координатной системе X0,Y0. Рассчитываем по формулам (1) координаты ЦТ судна в неподвижной координатной системе G(x0G, y0G) на момент начала движения для выхода на ЗТД и координаты первой ЗТТ(1)01, у01), определяем начальное положение ЛП, по которой судно начинает движение для выхода в первую ЗТТ(1). При этом положение ЛП на плоскости X0,Y0 будет меняться в процессе сближения судна с первой ЗТТ(1), так как будет меняться положение ЦТ судна в процессе его движения в первую ЗТТ(1). В процессе движения судна в первую ЗТТ(1) по рассчитанной ЛП, управление судном осуществляется по отклонениям двух разнесенных по длине судна точек: носовой F(x0F, y0F) и кормовой А(x0A, y0A) (см. Фиг. 4).

II–ой этап - движение по ЛП(1) (см. Фиг. 5). До момента прихода в первую ЗТТ(1) рассчитываем первый радиус окружности R(1) с центром в первой ЗТТ(1) (в данном случае центр окружности имеет координаты х01, у01) и определяем координаты следующей ЗТТ(2)02, у02), как точки пересечения дуги окружности радиусом R(1) с кривой ЗТД. Строим первую секущую кривой ЗТД, то есть первую ЛП(1), которая будет проходить через первую ЗТТ(1) и вторую ЗТТ(2), являющуюся точкой пересечения дуги окружности заданного радиуса R(1) и кривой ЗТД.

Моментом окончания сближения судна с первой ЗТТ(1), равно как и моментом начала движения судна по первой ЛП(1), является момент выхода носовой точки F на первую ЛП(1). Этот момент фиксируется выполнением условия равенства нулю расстояния dF от носовой точки судна F до ЛП(1). Аналогичным образом определяется (фиксируется) момент начала движения по всем следующим линиям пути ЛП(i).

Алгоритм управления движением судна по ЗТД на всех следующих этапах аналогичный алгоритму, применяемому на II–ом этапе. При этом выходом судна с ЗТД считается момент прихода его ЦТ в конечную точку ЗТД, т.е. в заданную точку траектории ЗТТ(n).

Отличительными признаками предлагаемого способа от указанного выше известного, наиболее близкого к нему, являются следующие:

дополнительно определяют положения ЛП(i) на каждом этапе движения судна по ЗТД координатами двух заданных точек траектории ЗТТ, например, 1-ой ЗТТ(1)01, у01) и 2-ой ЗТТ(2)02, у02) (см. Фиг. 5). При этом координаты исходной (первой) ЗТТ(1) (см. Фиг. 1, позиция 1, Фиг. 4) соответствуют координатам точки ЗТД в момент начала движения судна по ЗТД. Координаты каждой следующей ЗТТ, например, позиция 2 (см. Фиг. 1) определяются как координаты точки пересечения двух кривых, а именно, кривой ЗТД, заданной аналитически в координатной системе X0, Y0 в виде функции у0=f(х0) и дуги окружности заданного радиуса R(i) (см. Фиг. 5) с центром, расположенным в предыдущей ЗТТ. Значение радиуса R(i) указанной окружности рассчитывается для каждой отдельной ЛП(i), это значение определяется исходя из кривизны ЗТД на данном участке движения, размерных характеристик судна и скорости его движения.

Наличие полученных указанным способом данных, позволяет осуществлять движение судна по ЗТД, в несколько этапов, количество которых (n) определяется количеством секущих кривой ЗТД, определяющих положения ЛП(i) (i=1,2,…,n) при движении судна от ЗТТ(i) до ЗТТ(i+1) до окончания движения по ЗТД:

I-ый этап – выход судна в первую ЗТТ (ЗТТ(1)).

II–ой этап - движение по ЛП(1) (см. Фиг. 5).

Алгоритм управления движением судна по ЗТД на всех следующих этапах аналогичный алгоритму, применяемому на II–ом этапе. При этом выходом судна с ЗТД считается момент прихода его ЦТ в конечную точку ЗТД, т.е. в заданную точку траектории ЗТТ(n).

Использование предлагаемого алгоритма управления судном, осуществляющим движение по ЗТД позволяет соблюсти условия безопасного выполнения движения судна по ЗТД с учетом кривизны ЗТД на всех этапах движения судна, размерных характеристик судна и скорости его движения.

Предлагаемый способ управления судном при движении по ЗТД иллюстрируется чертежами, представленных на Фиг. 1-6, где:

Фиг. 1 - Общая схема движения судна по заданной траектории,

Фиг. 2 - Сближение судна с заданной точкой ЗТ,

Фиг. 3 - Определение текущих координат ЦТ судна x0G, y0G ,

Фиг. 4 - Сближение с первой (исходной) заданной точкой траектории,

Фиг. 5 - Определение координат заданной точки траектории ЗТТ(2) и положения первой линии пути ЛП(1),

Фиг. 6 - Определение координат заданной точки траектории ЗТТ(3) и положения второй линии пути ЛП(2).

Предлагаемый способ осуществляется следующим способом. В пределах контура судна, в его ДП выбирают две точки, одна из которых находится в носу F, другая - в корме A (см. Фиг. 3), относительно мидель-шпангоута судна. Расстояние между точками F и A выбирают в зависимости от технической возможности размещения в указанных точках приемных антенн СНС. Чем больше это расстояние, тем качественней работа системы управления движением судна, осуществляющего движение по ЗТД.

Координаты точек F, A в неподвижной координатной системе определяют непрерывно с высокой точностью (±1,0 м), это стало возможным с введением в СНС береговых станций, вычисляющих и передающих на суда дифференциальные поправки [1]. Используя значения координат точек судна F(x0F, y0F), A(x0A, y0A) в неподвижной координатной системе, а также координаты тех же точек в подвижной системе координат X,Y, связанной c судном F(xF, yF), A(xA, yA), рассчитывают координаты ЦТ судна в связанной с ним подвижной координатной системе G (xG, yG) по формулам (1). Координаты исходной (первой) ЗТТ(1) определяют используя аналитическое выражение для кривой ЗТД, заданной функцией у0=f(х0).

Зная координаты первой ЗТТ(1)(х01, у01) и текущие координаты ЦТ судна G (x0G, y0G), определяют текущее положение ЛП, проходящей через первую заданную точку ЗТТ(1) и ЦТ судна G. После этого определяют поперечные смещения точек F и A от найденной указанным способом ЛП по формулам:

(2)

Непрерывно определяемые значения координат точек F и A, позволяют непрерывно вычислять текущие координаты ЦТ судна G, поперечные смещения dF и dA точек F и A судна от текущего положения ЛП. Причем, поперечное смещение рассматриваемой точки относительно текущего положения ЛП считается положительным, если она смещается вправо от ЛП и отрицательным, если она смещается влево.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например, руля судна, по закону:

, (3)

где kF, kA – коэффициенты усиления по перечным смещениям носовой и кормовой точек судна от текущего положения ЛП. Это положительные величины, причем kF больше kA. Угол перекладки руля α считается положительным при его перекладке в сторону правого борта судна.

Находим координаты ЗТТ(2)02, у02), которые определяются как координаты точки пересечения двух кривых, а именно, кривой ЗТД, заданной аналитически в координатной системе X0, Y0 в виде функции у0=f(х0) и дуги окружности заданного радиуса R(1) с центром, расположенным в ЗТТ(1)01, у01). Значение радиуса R(1) окружности рассчитывается для нахождения положения ЛП(1), это значение определяется исходя из кривизны ЗТД на данном этапе движения, размерных характеристик судна и скорости его движения. Строим ЛП(1), которая проходит через две ЗТТ, а именно, через ЗТТ(1)01, у01) и ЗТТ(2)02, у02).

Момент выхода судна в ЗТТ(1), соответствует моменту выхода носовой точки судна F на первую ЛП(1). Этот момент фиксируется выполнением условия равенства нулю отклонения точки F (dF=0) от ЛП(1). Судно переходит к сближению с ЗТТ(2)02, у02) по ЛП(1).

Непрерывно определяемые значения координат точек судна F и A, позволяют непрерывно вычислять их поперечные смещения dF и dA от ЛП(1) :

(4)

Причем, поперечное смещение рассматриваемой точки относительно положения ЛП(1) считается положительным, если она смещается вправо от ЛП(1) и отрицательным, если она смещается влево.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например, руля судна, по закону:

(5)

где kF, kA – коэффициенты усиления по перечным смещениям носовой и кормовой точек судна от текущего положения ЛП(1). Это положительные величины, причем kF больше kA. Угол перекладки руля α считается положительным при его перекладке в сторону правого борта судна.

Находим координаты ЗТТ(3)03, у03) (см. Фиг. 6), которые определяются как координаты точки пересечения двух кривых, а именно, кривой ЗТД, заданной аналитически в координатной системе X0, Y0 в виде функции у0=f(х0) и дуги окружности заданного радиуса R(2) с центром, расположенным в ЗТТ(2)02, у02). Значение радиуса R(2) окружности рассчитывается для ЛП(2), оно определяется исходя из кривизны ЗТД на данном этапе движения, размерных характеристик судна и скорости его движения. Строим ЛП(2), которая проходит через две заданные точки траектории ЗТТ, а именно, через ЗТТ(2)02, у02) и ЗТТ(3)03, у03).

Момент выхода судна в ЗТТ(2), соответствует моменту выхода носовой точки судна F на вторую ЛП(2). Этот момент фиксируется выполнением условия равенства нулю отклонения носовой точки судна F (dF=0) от ЛП(2). Судно переходит к сближению с ЗТТ(3)03, у03) по ЛП(2).

Аналогичным образом определяются положения ЛП(i) на всех следующих этапах движения судна по ЗТД, вплоть до выхода судна в конечную точку ЗТД ЗТТ(n), что будет соответствовать совпадения текущих координат ЦТ судна G(x0G, y0G) и координат конечной точки ЗТД ЗТТ(n)(x0n, y0n).

Алгоритм управления движением судна по ЗТД на всех следующих этапах аналогичный алгоритму, применяемому на II–ом этапе. При этом выходом судна с ЗТД считается момент прихода его ЦТ в ЗТТ(n).

В результате применения данного изобретения достигается возможность получения технического результата – повышение безопасности управления судном при движении по ЗТД, таким образом, предлагаемый способ управления судном при движении по ЗТД соответствует критерию патентоспособности «промышленная применимость».

Список литературы.

1. Липкин И.А. Спутниковые навигационные системы. - М.: Вузовская книга, 2001. – 215 с.

2. Пат. 2356784 Российская Федерация, МПК7 В63Н 25/00 (2006.01). Способ управления движением объекта при выполнении им сближения с другим подвижным объектом / Юдин Ю.И., Пашенцев С.В.; заявитель и патентообладатель Мурм. гос. техн. ун-т. - № 2006111031/11; заявл. 05.04.2006; опубл. 27.05.2009, Бюл. № 15. – 6 с.: ил.


Способ управления судном при выполнении движения по заданной траектории
Способ управления судном при выполнении движения по заданной траектории
Способ управления судном при выполнении движения по заданной траектории
Способ управления судном при выполнении движения по заданной траектории
Способ управления судном при выполнении движения по заданной траектории
Источник поступления информации: Роспатент

Показаны записи 1-10 из 13.
13.01.2017
№217.015.8a77

Устройство определения количества активных входов в любых сочетаниях из десяти возможных

Изобретение относится к автоматике и может быть использовано в системах анализа текущего состояния контролируемого объекта для последующего принятия решения по изменению его управляемого статуса. Технический результат заключается в обеспечении учета точного количества активных входов из десяти...
Тип: Изобретение
Номер охранного документа: 0002604347
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.a6e9

Динамическое устройство для очистки выхлопных газов судового двигателя

Предлагаемое изобретение относится к машиностроению, а именно к двигателестроению и, в частности, к устройствам для очистки и шумоглушения выхлопных газов судовых двигателей. Динамическое устройство для очистки выхлопных газов судового двигателя содержит соединенные между собой по газу...
Тип: Изобретение
Номер охранного документа: 0002608094
Дата охранного документа: 13.01.2017
13.02.2018
№218.016.21f7

Способ контроля процесса сгорания тяжелого топлива в судовом дизеле в эксплуатации

Изобретение относится к системе судового энергетического оборудования, в частности к способам анализа отработавших газов. Технический результат заключается в возможности определения оптимального режима нагрузки дизеля и контроля процесса горения топлива на основе полученных параметров, а именно...
Тип: Изобретение
Номер охранного документа: 0002641780
Дата охранного документа: 22.01.2018
04.04.2018
№218.016.2fca

Способ и устройство для комплексной очистки выхлопных газов судового двигателя

Изобретение относится к устройствам для очистки и шумоглушения выхлопных газов судовых двигателей. Предложены способ комплексной очистки выхлопных газов судового двигателя и устройство для его осуществления. Способ включает смешение выхлопных газов с озоном без примесей оксидов азота в...
Тип: Изобретение
Номер охранного документа: 0002644601
Дата охранного документа: 13.02.2018
02.02.2019
№219.016.b675

Способ и система контроля местоположения судна с помощью нечеткой логики

Контроль местоположения судна включает получение навигационных параметров, поступающих в блок входной информации, а затем в блок обработки информации, при этом используют нечеткую логику: в созданной матрице каждой ячейке присваивают координаты Х и У, после чего ее подвергают нечеткой...
Тип: Изобретение
Номер охранного документа: 0002678762
Дата охранного документа: 31.01.2019
29.03.2019
№219.016.ee8b

Способ контроля технического состояния судового дизель-генератора в эксплуатации

Изобретение относится к системе судового энергетического оборудования, в частности к средствам диагностики виброакустических параметров энергетического оборудования, и может быть использовано для установления причин и норм вибрации судовых дизель-генераторов. Согласно предлагаемому способу...
Тип: Изобретение
Номер охранного документа: 0002682839
Дата охранного документа: 21.03.2019
30.05.2019
№219.017.6b61

Устройство гомогенизатора гидродинамической обработки тяжелого топлива для судовых дизелей

Изобретение относится к устройству гомогенизатора для подготовки к использованию гомогенной смеси тяжелого топлива RMG380 и RMG500 (IS08217-17) в топливной системе судовых дизелей. Предложено устройство гомогенизатора гидродинамической обработки тяжелого топлива для судовых дизелей, состоящее...
Тип: Изобретение
Номер охранного документа: 0002689493
Дата охранного документа: 28.05.2019
16.08.2019
№219.017.c0d3

Способ спектральной диагностики оптических осей и типов колебательных центров в кристаллах с водородными связями

Изобретение относится к области измерительной техники и касается способа спектральной диагностики оптических осей и типов колебательных центров в кристаллах с водородными связями. Способ включает в себя измерение для исследуемого кристалла термостимулированных токов деполяризации и получение...
Тип: Изобретение
Номер охранного документа: 0002697425
Дата охранного документа: 14.08.2019
18.10.2019
№219.017.d740

Способ отслеживания запланированного маршрута морского подвижного объекта

Изобретение относится к области судовождения, в частности к системам управления, обеспечивающим автоматическое управление движением морского подвижного объекта (МПО) по маршруту. Управление МПО при движении по запланированному маршруту выполняется на основе иерархического принципа: по боковому...
Тип: Изобретение
Номер охранного документа: 0002703338
Дата охранного документа: 16.10.2019
05.02.2020
№220.017.fe5a

Система поддержки принятия решений с модульной структурой для операторов судов двойного действия

Изобретение относится к системам информационной поддержки принятия решений для операторов судов двойного действия с использованием процедуры сбора, накопления, передачи и централизации диагностических и функциональных параметров, прогноза развития аварийных ситуаций. Система оснащена...
Тип: Изобретение
Номер охранного документа: 0002713077
Дата охранного документа: 03.02.2020
Показаны записи 1-5 из 5.
20.06.2015
№216.013.5640

Способ управления движущимся судном

Способ управления движущимся судном. При данном способе в пределах контура судна в его диаметральной плоскости (ДП) выбирают на носу и корме судна точки, относительно которых производят непрерывные измерения координат с высокой точностью (±1м) и непрерывно вычисляют смещения этих точек от...
Тип: Изобретение
Номер охранного документа: 0002553610
Дата охранного документа: 20.06.2015
25.08.2017
№217.015.bb12

Способ управления движущимся судном

Изобретение относится к способу управления движущимся судном. Для управления движущимся судном размещают антенны спутниковой навигационной системы в определенных точках судна, определяют непрерывно их координаты, а также поперечные и продольные отклонения от определенной оси, вырабатывают...
Тип: Изобретение
Номер охранного документа: 0002615849
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bb23

Способ управления движением буксирной системы

Изобретение относится к способу управления движением буксирной системы. Для управления движением буксирной системы определяют непрерывно значение координат в определенных точках в пределах контура буксирующего судна, вычисляют поперечные смещения от заданной линии положения диаметральной...
Тип: Изобретение
Номер охранного документа: 0002615846
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bb7d

Способ управления движущимся судном

Изобретение относится к способу управления движущимся судном. Для управления движущимся судном определяют непрерывно координаты двух максимально удаленных друг от друга точек в пределах контура судна, одна из которых расположена к носу судна, а другая - к его корме, определяют поперечные и...
Тип: Изобретение
Номер охранного документа: 0002615848
Дата охранного документа: 11.04.2017
23.02.2020
№220.018.04cb

Способ управления судном при выполнении им швартовной операции к борту судна партнёра

Изобретение относится к водному транспорту и касается управления швартующимся судном при выполнении им швартовной операции к борту судна партнёра по величине поперечных смещений двух точек от текущего положения траектории сближения при выполнении им швартовной операции к судну партнёра....
Тип: Изобретение
Номер охранного документа: 0002714994
Дата охранного документа: 21.02.2020
+ добавить свой РИД