×
05.02.2020
220.017.fe35

Результат интеллектуальной деятельности: Оптический носитель информации на основе оксидных стекол

Вид РИД

Изобретение

Аннотация: Изобретение относится к области оптического материаловедения, в частности к оптическому носителю информации на основе оксидных стекол, и может быть использовано для записи и хранения информации. Изобретение позволяет упростить и удешевить технологический процесс изготовления оптического носителя информации при сохранении скорости записи информации. Это достигается применением оптического носителя информации на основе многокомпонентных оксидных стекол составов, мол. %: MeO (Me=Li, Na, K) в количестве 12-30, SiO в количестве 70-88; или состава: MeO (Me=Li, Na, K) в количестве 5-30, AlO в количестве 0,1-5, SiO в количестве 65-87,9; или состава: MeO (Me=Li, Na, K) в количестве 4-25, AlO в количестве 2-5, ВО в количестве 5-13, SiO в количестве 65-81.

Изобретение относится к области оптического материаловедения, в частности, к оптическому носителю информации на основе оксидных стекол и может быть использовано для записи и хранения информации.

Известен носитель на основе натриевоборатного стекла с очувствляющей примесью цинком или кадмием в количестве 0,1-5 мас. %. Запись на оптический носитель осуществляется воздействием мощного ультрафиолетового (УФ) излучения. При этом в облученных областях изменяются спектрально-люминесцентные характеристики, которые отвечают за процесс считывания информации. Недостатком данного оптического носителя является необходимость применения мощных источников УФ излучения, термическая стабильность до 400°С, длительность хранения записанных данных не менее 1,5 лет [патент SU 1714675 А1 Носитель оптической записи].

Известен способ трехмерной записи-считывания и оптический носитель - фоточувствительное цинкфосфатное стекло, допированное серебром [патент WO 2011148113 A3]. За счет облучения стекла импульсным источником лазерного излучения в объеме оптического носителя формируются нанокластеры серебра, изменяя спектр люминесценции модифицированной области. Недостатком изобретения является невысокая плотность записи и хранения информации, ограниченная 1 битом информации в одном пите, а также низкая термическая стабильность (ниже 450°С) оптического носителя по сравнению с многокомпонентными силикатными и боросиликатными стеклами.

Дальнейшее развитие технологии оптической записи информации привело к появлению работы [Zhang, Jingyu, et al. "Seemingly unlimited lifetime data storage in nanostructured glass." Physical review letters 112.3 (2014): 03390], где был продемонстрирован способ многоуровневой записи информации на оптическом носителе из кварцевого стекла с помощью фемтосекундного лазерного пучка и который тесно связаны с данным изобретением.

Наиболее близким по технической сущности и достигаемому результату является оптический носитель информации, представляющий собой оксидное кварцевое стекло (SiO2). Запись информации состоит в облучении кварцевого стекла сфокусированным пучком фемтосекундного лазера, которое приводит к образованию периодических наноструктур, называемых «нанорешетками». Нанорешетки обладают анизотропными свойствами, их двулучепреломление зависит от параметров лазерного пучка. При прохождении через нанорешетку луч света разделяется на две взаимно ортогонально-поляризованных компоненты - обыкновенную и необыкновенную, между которыми возникает фазовый сдвиг, выражаемый в нм. Нанорешетка имеет «медленную» ось, т.е. направление, вдоль которого показатель преломления для необыкновенного луча максимален. В работах [Shimotsuma, Yasuhiko, et al. "Self-organized nanogratings in glass irradiated by ultrashort light pulses." Physical review letters 91.24 (2003): 247405, Beresna, Martynas, et al. "Exciton mediated self-organization in glass driven by ultrashort light pulses." Applied Physics L 101.5 (2012): 053120.] отмечено, что ориентация «медленной» оси пита перпендикулярна плоскости поляризации пучка лазера, т.е. двулучепреломление поляризационно-зависимо. Также установлено, что фазовый сдвиг пита можно повысить путем увеличения количества или энергии лазерных импульсов. Таким образом, запись информации возможна в нескольких направлениях «медленной» оси и уровнях фазового сдвига дополнительно к трем пространственным измерениям оптического носителя. Это позволяет закодировать в пите более одного бита информации (т.е. реализуется принцип многоуровневой памяти) и увеличить плотность записи информации оптического носителя пропорционально числу записанных бит. Тем не менее, энергия импульса - один из параметров лазерного пучка, критический для формирования нанорешетки, лимитирует скорость записи информации. Механизм образования нанорешеток до сих пор не выяснен, а образование периодических наноструктур в объеме материала, обладающих значительным и достаточным для считывания пита фазовым сдвигом (более 10 нм), было показано только для кварцевого стекла. В прототипе минимальная энергия импульса, применяемая для формирования пита в объеме кварцевого стекла, составляла от 30 нДж, при этом скорость записи данных составляет 6 КБ/сек. Показано, что кварцевое стекло благодаря своим уникальным свойствам, в частности, высокой температуре стеклования (около 1200°С) обеспечивает высокую термическую стабильность оптической памяти - двулучепреломление нанорешеток при термообработке при 1000°С в течение 1 часа ослабевает не более, чем на 2%, что фактически означает сохранность данных и возможность их считывания после такой термообработки. Экстраполяция температурной зависимости времени жизни данных на низкие температуры показала, что при температуре 200°С информация может храниться в течение миллиардов лет, а при комнатной температуре - практически вечно. Однако производство кварцевого стекла является более дорогостоящим и технически сложным по сравнению с производством многокомпонентных стекол силикатной и боросиликатной систем, так как синтез проводится при температурах более 2000°С при использовании специального дорогостоящего оборудования, а также в силу сложности механической обработки готового стекла: шлифовки и полировки. Температура стеклования многокомпонентных стекол силикатной и боросиликатной систем лежит в диапазоне 500-800°С, что также обеспечивает достаточную для архивного хранения информации термическую стабильность и долговечность оптического носителя. Совокупность термических и физико-механических свойств силикатных и боросиликатных стекол существенно упрощает и удешевляет в сравнении с кварцевым стеклом технологический процесс изготовления оптического носителя информации. Так температура варки таких стекол лежит в диапазоне от 1400 до 1620°С, а сама варка проводится с использованием стандартных электрических печей. Микротвердость многокомпонентных стекол, напрямую связанная с процессом шлифовки и полировки носителя информации, значительно ниже в сравнении с микротвердостью кварцевого стекла. В то же время энергия лазерного импульса для записи информации в заявляемых многокомпонентных стеклах обеспечивает сравнимую с прототипом скорость процесса записи данных.

Задачей настоящего изобретения является удешевление и упрощение процесса изготовления оптического носителя при сохранении скорости записи информации.

Поставленная задача решается использованием для изготовления оптического носителя многокомпонентных стекол составов:

Микротвердость синтезированных стекол определялась по методу Виккерса.

Для создания питов в объеме полированного с двух сторон оптического носителя из многокомпонентного стекла применялась установка, в которой излучение ближнего ИК диапазона длиной волны 1030 нм с фемтосекундного лазера ослабляется до значений 30-60 нДж энергии импульса с помощью оптического аттенюатора, проходит через фазовую пластину λ/2, угол поворота которой определяет ориентацию линейной поляризации лазерного пучка, и систему зеркал, попадает на объектив или линзу и фокусируется в объеме стекла. Величина энергии импульса лазерного излучения измерялась после фокусирующего объектива. Для записи питов применялось от 256 до 262144 импульсов.

Перемещение оптического носителя осуществлялось с помощью моторизованного трехкоординатного стола. Минимальная глубина фокусировки лазерного пучка составляла 20 мкм во избежание возможности образования трещин. При лазерном воздействии на кварцевое стекло образовывались питы - локальные области диаметром около 1,5 мкм, обладающие локальным поляризационно-зависимым двулучепреломлением. Для регистрации фазового сдвига и ориентации «медленной» оси двулучепреломляющих питов применялась система Abrio Microbirefringence [Retardance measurement system and method US 7372567 B2] на базе оптического поляризационного микроскопа Olympus ВХ51.

В приведенных далее примерах применялся оксид натрия. Правомерность обобщения на оксиды лития и калия следует из полного сходства используемых для достижения заявляемого технического результата свойств этих соединений.

Достижение заявляемого технического результата подтверждается следующими примерами.

Пример 1

В многокомпонентном стекле состава 15Na2O-85SiO2 на глубине 30 мкм сфокусированными фемтосекундными лазерными импульсами длительностью 600 фс с частотой повторения 200 кГц и энергией от 30 до 60 нДж формируются массивы питов с ориентацией «медленной» оси 0° и 90° относительно первоначального направления поляризации лазерного излучения, с фазовым сдвигом в диапазоне 10-45 нм. Число импульсов варьируется от 512 до 256144 импульса на пит. На двулучепреломление записанных нанорешеток не влияет термообработка при 400°С в течение 2 ч. Температура стеклования стекла данного состава 485°С, варка стекла осуществляется в электрической печи в платиновом тигле при температуре 1560°С. Введение 15 мол. % щелочного оксида в состав кварцевого стекла позволяет снизить микротвердость с 10,5 до 4,5 ГПа. Максимальная скорость записи информации составляет 12 КБ/сек.

Пример 2

В многокомпонентном стекле состава 12Na2O-88SiO2 на глубине 30 мкм сфокусированными фемтосекундными лазерными импульсами длительностью 600 фс с частотой повторения 200 кГц и энергией от 30 до 60 нДж формируются массивы питов с ориентацией «медленной» оси 0 и 90° относительно первоначального направления поляризации лазерного излучения, с фазовым сдвигом в диапазоне 10-45 нм. Число импульсов варьируется от 512 до 256144 импульса на пит. На двулучепреломление записанных нанорешеток не влияет термообработка при 400°С в течение 2 ч. Температура стеклования стекла данного состава 528°С, варка стекла осуществляется в электрической печи в платиновом тигле при температуре 1620°С. Введение 12 мол. % щелочного оксида в состав кварцевого стекла позволяет снизить микротвердость с 10,5 до 5,0 ГПа. Максимальная скорость записи информации составляет 12 КБ/сек.

Пример 3

В многокомпонентном стекле состава 30Na2O-70SiO2 на глубине 30 мкм сфокусированными фемтосекундными лазерными импульсами длительностью 600 фс с частотой повторения 200 кГц и энергией 45 нДж формируются массивы питов с ориентацией «медленной» оси 0° и 90° относительно первоначального направления поляризации лазерного излучения, с фазовым сдвигом в диапазоне 10-25 нм. Число импульсов варьируется от 1024 до 256144 импульса на пит. Температура стеклования стекла данного состава 460°С, варка стекла осуществляется в электрической печи в платиновом тигле при температуре 1400°С. Увеличение содержания оксида натрия до 30% в составе кварцевого стекла снижает микротвердость до 3,9 ГПа. Максимальная скорость записи информации составляет 9 КБ/сек.

Пример 4

В многокомпонентном стекле состава 30Na2O-5Al2O3-65SiO2 на глубине 50 мкм сфокусированными фемтосекундными лазерными импульсами длительностью 600 фс с частотой повторения 100 кГц и энергией 45 нДж формируются массивы питов с ориентацией «медленной» оси 0°, 45° и 90° относительно первоначального направления поляризации лазерного излучения, фазовым сдвигом в диапазоне 25 нм. Число импульсов пит составляло 128072 импульса на пит. Температура стеклования данного стекла составляет 480°С, а варка проводится в электрической печи при температуре 1490°С. Микротвердость стекла данного состава составляет 4,1-5,0 ГПа, что в 2,5 раза меньше, чем в кварцевом стекле. Скорость записи информации составляет 9 КБ/сек.

Пример 5

В многокомпонентном стекле состава 4Na2O-2Al2O3-13B2O3-81SiO2 на глубине 50 мкм сфокусированными фемтосекундными лазерными импульсами длительностью 600 фс с частотой повторения 100 кГц и энергией 45 нДж формируются массивы питов с ориентацией «медленной» оси 0°, 45° и 90° относительно первоначального направления поляризации лазерного излучения, фазовым сдвигом в диапазоне 25 нм. Число импульсов пит составляло 128072 импульса на пит. Температура стеклования данного стекла составляет 535°С, варка стекла осуществляется в электрической печи в платиновом тигле при температуре 1600°С. Микротвердость синтезированного стекла составляет 5,2-6,1 ГПа. Скорость записи составляет 9 КБ/сек.

Пример 6

В многокомпонентном стекле состава 25Na2O-5Al2O3-5B2O3-65SiO2 на глубине 50 мкм сфокусированными фемтосекундными лазерными импульсами длительностью 600 фс с частотой повторения 100 кГц и энергией 45 нДж формируются массивы питов с ориентацией «медленной» оси 0°, 45° и 90° относительно первоначального направления поляризации лазерного излучения, фазовым сдвигом в диапазоне 25 нм. Число импульсов пит составляло 64036 импульса на пит. Температура стеклования данного стекла составляет 510°С, варка стекла осуществляется в электрической печи в платиновом тигле при температуре 1510°С. Введение в состав стекла оксидов натрия, алюминия, бора в указанных количествах в состав кварцевого стекла позволяет снизить микротвердость с 10,5 ГПа до 5,4 ГПа. Скорость записи составляет 9 КБ/сек.

Выводы

Из приведенных выше примеров следует, что используя патентуемые составы возможно значительное упрощение технологического процесса изготовления носителя за счет снижения температур синтеза, которые в случае прототипа составляют порядка 2000°С, а для носителей на основе заявляемых многокомпонентных стекол лежат в диапазоне от 1400 до 1620°С и за счет использования электрических печей вместо специальных установок синтеза кварцевого стекла, а также упрощение процессов шлифовки и полировки поверхности носителя, обусловленное снижением микротвердости материала, при сохранении скорости записи информации, которая указана в прототипе.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 174.
28.07.2018
№218.016.75ee

Способ позиционирования кора оптического волокна над светочувствительной областью фотодетектора

Изобретение относится к области оптической техники и касается способа позиционирования кора оптического волокна над светочувствительной областью фотодетектора. Способ включает в себя подведение кора оптического волокна к поверхности на расстояние , после чего кор оптического волокна перемещают...
Тип: Изобретение
Номер охранного документа: 0002662485
Дата охранного документа: 26.07.2018
25.08.2018
№218.016.7f7e

Автономный необитаемый подводный аппарат для измерения дифференциальных характеристик векторного звукового поля

Изобретение относится к гидроакустике, в частности к устройствам пеленга подводных источников шума. Автономный необитаемый подводный аппарат для измерения дифференциальных характеристик векторного звукового поля содержит носовой и кормовой звукопрозрачные обтекатели, носовой и кормовой...
Тип: Изобретение
Номер охранного документа: 0002664971
Дата охранного документа: 24.08.2018
25.08.2018
№218.016.7f9f

Подводный планер для локализации источника звука

Изобретение относится к области устройств для локализации источника звука. Подводный планер содержит крылья, рули, двигатели, аккумуляторную батарею, систему управления. Планер содержит два разнесенных детектора - носовой и кормовой. Каждый детектор прикрыт звукопрозрачным колпаком и...
Тип: Изобретение
Номер охранного документа: 0002664973
Дата охранного документа: 24.08.2018
07.09.2018
№218.016.83a8

Бронематериал фронтального слоя бронепанели

Изобретение относится к области материалов многослойных бронепанелей, использующихся для индивидуальной защиты и для защиты вооружения, военной и специальной техники. Композиционный бронематериал включает карбид бора и армирующие волокна. При этом материал дополнительно содержит полимерное...
Тип: Изобретение
Номер охранного документа: 0002666195
Дата охранного документа: 06.09.2018
07.09.2018
№218.016.83eb

Средство, его применение и способ повышения устойчивости организма млекопитающих к переохлаждению

Группа изобретений относится к созданию лекарственного средства для повышения устойчивости млекопитающих к переохлаждению. Средство содержит фармацевтическую композицию препаратов, содержащую 0,78-1,18 мас.% пропранолола, 0,015-0,024 мас.% резерпина, 0,078-0,12 мас.% ивабрадина, 0,098-0,18...
Тип: Изобретение
Номер охранного документа: 0002665963
Дата охранного документа: 05.09.2018
07.09.2018
№218.016.83f2

Средство, включающее перфторуглеродную эмульсию (варианты), его применение и способ повышения устойчивости организма млекопитающих к переохлаждению

Группа изобретений относится к созданию лекарственного средства для повышения устойчивости млекопитающих к переохлаждению. Средство содержит фармацевтическую композицию препаратов, содержащую 0,78-1,18 мас.% пропранолола, 0,015-0,024 мас.% резерпина, 0,078-0,12 мас.% ивабрадина, 0,098-0,18...
Тип: Изобретение
Номер охранного документа: 0002665964
Дата охранного документа: 05.09.2018
13.09.2018
№218.016.8717

Способ диагностики рака легкого по анализу выдыхаемого пациентом воздуха на основе анализа биоэлектрических потенциалов обонятельного анализатора крысы

Изобретение относится к медицине, в частности к исследованию и анализу газообразных биологических материалов, и может быть использовано для диагностики рака легкого у человека. Способ основан на анализе выдыхаемого пациентом воздуха путем анализа биоэлектрических потенциалов обонятельного...
Тип: Изобретение
Номер охранного документа: 0002666873
Дата охранного документа: 12.09.2018
22.09.2018
№218.016.8999

Многоцелевая подводная лодка для осуществления транспортировки, установки, снятия грузов под водой

Изобретение относится к области судостроения и касается вопросов создания средств для осуществления транспортировки, установки, снятия грузов под водой, а также для осмотра, технического обслуживания, ремонта подводных сооружений. Предложена многоцелевая подводная лодка для осуществления...
Тип: Изобретение
Номер охранного документа: 0002667407
Дата охранного документа: 19.09.2018
25.09.2018
№218.016.8b27

Система релятивистской квантовой криптографии

Изобретение относится к области квантового распределения ключей, а именно релятивистских квантовых протоколов. Технический результат – организация подстройки приемного интерферометра в однопроходной схеме релятивистского квантового распределения ключей с использованием имеющихся в системе...
Тип: Изобретение
Номер охранного документа: 0002667755
Дата охранного документа: 24.09.2018
03.10.2018
№218.016.8cca

Способ подбора условий для криоконсервации биологических объектов в вязких средах с использованием гидратообразующих газов и устройство для его осуществления

Изобретение относится к криоконсервации биологических объектов. Предложенный способ подбора условий для криоконсервации биологических объектов в вязких средах с использованием гидратообразующих газов предусматривает внесение исследуемых криопротекторов в среду для криоконсервации, при этом: а)...
Тип: Изобретение
Номер охранного документа: 0002668322
Дата охранного документа: 28.09.2018
Показаны записи 21-30 из 31.
04.04.2018
№218.016.33b3

Прозрачный ситалл и способ его получения

Изобретение относится к оптически прозрачным стеклокристаллическим материалам магнийалюмосиликатной системы. Предлагается прозрачный ситалл, содержащий, мас.%: SiO 40-50; AlO 10-15; MgO 6-10; ZnO 20-25; NaO 0,5-3; TiO 3-9; ZrO 1-6; AsO 0,1-1. Окраску материала обеспечивают следующие компоненты,...
Тип: Изобретение
Номер охранного документа: 0002645687
Дата охранного документа: 27.02.2018
15.11.2018
№218.016.9dce

Оптическое стекло

Изобретение относится к области оптического материаловедения, в частности к бесцветным оптическим стеклам, не содержащим оксидов свинца, со значением коэффициента преломления n≥l,73, числом Аббе ν≥40 и плотностью ρ≤4,2 г/см. Изобретение можно использовать для изготовления высокоразрешающих...
Тип: Изобретение
Номер охранного документа: 0002672367
Дата охранного документа: 14.11.2018
13.12.2018
№218.016.a696

Люминесцирующая стеклокерамика

Изобретение относится к прозрачным стеклокристаллическим оксидным материалам. Люминесцирующая стеклокерамика, содержащая следующие компоненты, мас.%: LiO 0,03-2,94; NaO 0,06-5,77; GaO 26,5-53,5; SiO 9,9-17,3; GeO 31,2-54,1; TiO сверх 100% 0,04-3,9. Технический результат заключается в получение...
Тип: Изобретение
Номер охранного документа: 0002674667
Дата охранного документа: 12.12.2018
19.01.2019
№219.016.b19f

Способ резки стекла

Изобретение относится к области прецизионной микрообработки материалов, в частности к способу резки стекол при помощи гребенки лазерных импульсов фемтосекундной длительности, и может быть использовано для прецизионной резки стекла на предприятиях и в научно-исследовательских центра. Способ...
Тип: Изобретение
Номер охранного документа: 0002677519
Дата охранного документа: 17.01.2019
26.02.2019
№219.016.c7f3

Способ получения пористого стекла

Изобретение относится к технологии производства пористых стекол. Проводят травление порошка стекла в автоклаве при давлении 100-150 кг/см в четыре стадии, а именно: вначале травление в 0,5-2 Н растворе серной кислоты в течение 30-60 мин при температуре 120-200°С, затем промывание в...
Тип: Изобретение
Номер охранного документа: 0002680622
Дата охранного документа: 25.02.2019
16.08.2019
№219.017.c0b5

Легкоплавкая стеклокомпозиция

Изобретение относится к области легкоплавких стеклокристаллических композиционных материалов, предназначенных для вакуумплотного низкотемпературного спаивания корундовой керамики. Легкоплавкая стеклокомпозиция состоит из легкоплавкого стекла в количестве 80-87 мас.% и β-эвкриптита в количестве...
Тип: Изобретение
Номер охранного документа: 0002697352
Дата охранного документа: 13.08.2019
01.12.2019
№219.017.e946

Способ лазерного модифицирования стекла

Изобретение относится к способу модифицирования структуры стекла под действием лазерного пучка для формирования люминесцирующих микрообластей и может быть использовано для многократной перезаписи и хранения информации. В силикатном стекле, содержащем сульфид кадмия, записывают микрообласть при...
Тип: Изобретение
Номер охранного документа: 0002707626
Дата охранного документа: 28.11.2019
27.12.2019
№219.017.f366

Способ записи информации в нанопористом кварцоидном стекле

Изобретение относится к области оптического материаловедения, в частности к способу записи информации на носитель из нанопористого кварцоидного стекла под действием лазерного излучения. Изобретение позволяет увеличить скорость записи информации, осуществляемой наведением...
Тип: Изобретение
Номер охранного документа: 0002710389
Дата охранного документа: 26.12.2019
27.12.2019
№219.017.f3a1

Способ и устройство считывания данных с носителя из стекла

Изобретение относится к анализатору поляризации излучения, способу считывания информации, записанной в виде наведенной анизотропии показателя преломления в многослойном оптическом диске из кварцевого стекла, и устройству для считывания информации с диска. Устройство может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002710388
Дата охранного документа: 26.12.2019
27.12.2019
№219.017.f3ab

Способ записи информации в кварцевом стекле

Изобретение относится к области оптического материаловедения, в частности, к способу записи информации на носитель из кварцевого стекла под действием лазерного излучения. Запись производится за счет наведения поляризационно-зависимого двулучепреломления путем модифицирования кварцевого стекла...
Тип: Изобретение
Номер охранного документа: 0002710387
Дата охранного документа: 26.12.2019
+ добавить свой РИД