×
13.12.2018
218.016.a696

ЛЮМИНЕСЦИРУЮЩАЯ СТЕКЛОКЕРАМИКА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к прозрачным стеклокристаллическим оксидным материалам. Люминесцирующая стеклокерамика, содержащая следующие компоненты, мас.%: LiO 0,03-2,94; NaO 0,06-5,77; GaO 26,5-53,5; SiO 9,9-17,3; GeO 31,2-54,1; TiO сверх 100% 0,04-3,9. Технический результат заключается в получение прозрачной стеклокерамики на основе фазы γ-GaO, спектральное распределение свечения которой близко к таковому для стандартных источников света серии «D». 5 пр., 2 табл., 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к прозрачным стеклокристаллическим оксидным материалам, в частности к прозрачной люминесцирующей стеклокерамике, которая может использоваться в качестве преобразователя УФ-С излучения в квазибелый свет.

Выделение в объеме стекла широкозонных полупроводниковых нанокристаллов, в частности обращенной шпинели γ-Ga2O3, позволяет получать прозрачную стеклокерамику, люминесцирующую в видимой области. При возбуждении излучением УФ-С диапазона спектр люминесценции этой стеклокерамики представляет собой суперпозицию УФ, синей и зеленой полос с максимумами при ~350, 460 и 530 нм. Наблюдаемое рекомбинационное свечение обусловлено собственными дефектами фазы γ-Ga2O3, выступающими в качестве доноров и акцепторов [1]. Изменение их количества и соотношения за счет легирования нанокристаллов γ-Ga2O3 гетеровалентными примесями, позволяет управлять спектральным распределением люминесценции стеклокерамики. В работах [2, 3] показана возможность создания светодиода белого свечения на основе квантовых точек γ-Ga2O3 с родамином В или красителем ATTO565. При возбуждении УФ излучением диода люминесцируют не только нанокристаллы, но и лиганды за счет безызлучательной передачи к ним энергии возбуждения от γ-Ga2O3. Результирующее от них свечение имеет белый цвет, однако, стабильность и длительность службы таких гибридных структур, очевидно, крайне низка.

Наиболее близким аналогом к заявляемому материалу является прозрачная стеклокерамика состава (мас. %) (0,03-3,02)Li2O-(0,08-6,07)Na2O-(27,9-52,5)Ga2O3-(15,4-25,5)SiO2-(26,8-44,4)GeO2 [4]. Недостатком прототипа является относительно узкая (Δλ≈150 нм) бесструктурная полоса люминесценции с максимумом (≈460 нм) в синей области спектра. Это не позволяет использовать известный материал для преобразования УФ-С излучения в квазибелый свет без применения дополнительных источников излучения.

Техническим результатом настоящего изобретения является разработка прозрачной стеклокерамики, содержащей легированные TiO2 нанокристаллы γ-Ga2O3, спектральное распределение свечения которой близко к таковому для стандартных источников света серии «D».

Технический результат достигается составом стекла, включающего Li2O, Na2O, Ga2O3, SiO2, GeO2 и TiO2 при следующем соотношении компонентов (мас. %):

Li2O 0,03-2,94

Na2O 0,06-5,77

Ga2O3 26,5-53,5

SiI2 9,9-17,3

GeO2 31,2-54,1

TiO2 0,04-3,9 сверх 100%

Изменение концентрации вышеуказанных оксидов в заявляемых пределах не влияет на состав первично выделяющейся кристаллической фазы, а только на отношение амплитуд гауссовых компонент для рассматриваемой полосы люминесценции, интегральную интенсивность свечения заявляемой стеклокерамики и склонность исходного стекла к кристаллизации.

В таблице 1 представлен ряд составов синтезированных стекол, на основе которых получены стеклокристаллические материалы.

Режимы термообработок, соотношение гауссовых компонент для рассматриваемой полосы, определяющее цвет свечения, цветовые координаты и коэффициент пропускания (при λ=580 нм для образцов толщиной 1 мм) полученных образцов стеклокерамики представлены в Таблице 2.

Достижение заявляемого технического результата подтверждается следующими примерами.

Пример 1

Готовят шихту для синтеза стекла №1. Исходные материалы SiO2, GeO2, TiO2 марки «ос. ч.», Ga2O3, Li2CO3, Na2CO3 марки «х.ч.» взвешивают на аналитических весах и смешивают в требуемом соотношении. Варку стекла осуществляют в электрических печах сопротивления в платиновом тигле в течение 40 мин. Выработку проводят путем закалки расплава. Для получения стеклокерамики исходное стекло подвергают обработке в области температур максимума экзотермического пика. Режимы термообработок выбирают на основе результатов дифференциальной сканирующей калориметрии.

Рентгенофазовый анализ (РФА) термообработанного и исходного стекол осуществляли на рентгеновском дифрактометре D2 Phaser (Bruker, CuKα, Ni фильтр) для образцов в виде порошка дисперсностью ~40 мкм в интервале углов 2θ=10-70°.

Спектры поглощения термообработанных стекол регистрировали на сканирующем двухлучевом спектрофотометре UV-3600 (Shimadzu). Спектры люминесценции в видимой области тех же образцов получали на спектрально-аналитическом комплексе на базе монохроматора/спектрографа MS3504i (SOL Instruments).

Данное стекло после обработки при температуре максимума экзотермического пика (675°С) люминесцирует при возбуждении УФ-С излучением (λ<280 нм) в широком диапазоне длин волн. Полоса люминесценции содержит три гауссовы компоненты с максимумами в УФ, синей и зеленой области спектра (Фиг. 1. Спектры люминесценции термообработанных стекол составов №№1-4), соотношение амплитуд которых указано в Таблице 2. Полученное соотношение указанных компонент приводит к сближению цветовых координат наблюдаемого излучения и стандартного источника света серии «D» в цветовом пространстве CIE (Фиг. 2. Координаты цветности излучения термообработанных стекол составов №№1-4 и стандартного источника белого света D65 в цветовом пространстве CIE-1931).

Пример 2

Готовят шихту и синтезируют стекло №2 (Таблица 1) аналогично методике, приведенной в примере 1. Отличие состоит в отсутствии добавки TiO2. Свойства стеклокерамики приведены в Таблице 2. Данное стекло после обработки при температуре максимума экзотермического пика (675°С) также люминесцирует в видимой области (Фиг. 1). Однако цветовые координаты наблюдаемого свечения сильно отличаются от таковых для стандартного источника света серии «D» (Фиг. 2).

Пример 3

Готовят шихту и синтезируют стекло №3 (Таблица 1) аналогично методике, приведенной в примере 1. Свойства стеклокерамики приведены в Таблице 2. Данное стекло после обработки при температуре максимума экзотермического пика (675°С) также люминесцирует в видимой области (Фиг. 1), однако размер и содержание выделившихся нанокристаллов, согласно РФА, меньше, чем в стекле состава №1, что приводит к снижению интегральной интенсивности свечения.

Пример 4

Готовят шихту и синтезируют стекло №4 (Таблица 1) аналогично методике, приведенной в примере 1. Свойства стеклокерамики приведены в Таблице 2. Данное стекло после обработки при температуре максимума экзотермического пика (675°С) также люминесцирует в видимой области (Фиг. 1), однако координаты цветности смещены в сторону зеленого цвета (Фиг. 2), что затрудняет использование этой стеклокерамики в качестве источника квазибелого света.

Пример 5

Готовят шихту и синтезируют стекла составов №№5-8 (Таблица 1) аналогично методике, приведенной в примере 1. Свойства полученной стеклокерамики приведены в Таблице 2. Данные стекла после термообработки по режимам, указанным в Таблице 2, также люминесцируют в видимой области, однако содержание нанокристаллов, согласно РФА, для состава №5 меньше, чем у стекла состава №1 (Фиг. 3), что снижает интегральную интенсивность полосы люминесценции. Стекла составов №№6-8 характеризуются повышенной склонностью к кристаллизации, что приводит к значительному снижению светопропускания (Таблица 2).

Литература

1. Т. Wang, S.S. Farvid, M. Abulikemu, P.V. Radovanovic. Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals. J.Am. Chem. Soc. 132 (2010) 9250-9252.

2. T. Wang, V. Chirmanov, W. H. M. Chiu, P.V. Radovanovic. Generating tunable white light by resonance energy transfer in transparent dye-conjugated metal oxide nanocrystals. J.Am. Chem. Soc. 135 (2013) 14520-14523.

3. V. Chirmanov, P.C. Stanish, A. Layek, Pavle V. Radovanovic. Distance-dependent energy transfer between Ga2O3 Nanocrystal defect states and conjugated organic fluorophores in hybrid white-light-emitting nanophosphors. J.Phys. Chem. С 119 (2015) 5687-5696.

4. Голубев H.B., Игнатьева E.C., Сигаев В.Н., Лоренци Р., Палеари А. Патент РФ 2604614.


ЛЮМИНЕСЦИРУЮЩАЯ СТЕКЛОКЕРАМИКА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 14.
13.01.2017
№217.015.8bf2

Люминесцирующий стеклокристаллический материал

Изобретение относится к прозрачным стеклокристаллическим оксидным материалам, которые могут использоваться в качестве активной части конверторов в видимую область спектра УФ излучения солнечно-слепого диапазона. Технический результат изобретения - создание прозрачного стеклокристаллического...
Тип: Изобретение
Номер охранного документа: 0002604614
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.b7ba

Способ получения легкоплавкой стеклокомпозиции

Изобретение относится к легкоплавким стеклокристаллическим композиционным материалам для вакуумплотного низкотемпературного спаивания корундовой керамики. Технический результат – повышение механической прочности получаемых спаянных изделий и повышение технологичности получения стеклокомпозиций....
Тип: Изобретение
Номер охранного документа: 0002614844
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.bdd3

Способ локальной кристаллизации стекол

Изобретение относится к области оптического материаловедения. Технический результат – получение однородных кристаллических линий в объеме стекла. Локальная кристаллизация стекол проходит под действием фемтосекундного лазерного излучения. Пучок лазера пропускают через призматический телескоп или...
Тип: Изобретение
Номер охранного документа: 0002616958
Дата охранного документа: 18.04.2017
26.08.2017
№217.015.dcdf

Способ изготовления массивов кобальтовых нанопроволок

Изобретение относится к изготовлению массивов кобальтовых нанопроволок в порах трековых мембран. Способ включает электроосаждение кобальта в поры трековых мембран из электролита, содержащего CoSO⋅7HO - 300-320 г/л, HBO - 30-40 г/л, при рН 3,5-3,8 и температуре 40-45°С. Электроосаждение проводят...
Тип: Изобретение
Номер охранного документа: 0002624573
Дата охранного документа: 04.07.2017
29.12.2017
№217.015.f413

Фосфатное стекло и способ его получения

Изобретение относится к области оптического материаловедения, в частности к фосфатным стеклам. Стекло содержит следующие компоненты, мас.%: PO 58,00-70,00; KO 8,50-18,50; AlO 7,10-8,90; ВаО 9,80-11,50; BO 3,70-5,20; SiO 1,80-2,30; SnO 1,10-1,25 Au 0,005-0,02 (сверх 100%). При подготовке шихты...
Тип: Изобретение
Номер охранного документа: 0002637676
Дата охранного документа: 06.12.2017
20.01.2018
№218.016.142b

Замещенные 3-(3-пиридил)изоксазолидины, обладающие фунгицидной активностью

Изобретение относится к замещенным 3-(3-пиридил)изоксазолидинам общей формулы I, где R означает фенил или 4-хлорфенил, R означает атом водорода или 4-фторфенил, R означает карбэтокси-группу. Технический результат – 3-(3-пиридил)изоксазолидины, обладающие фунгицидной активностью. 3 табл., 3 пр.
Тип: Изобретение
Номер охранного документа: 0002634717
Дата охранного документа: 03.11.2017
13.02.2018
№218.016.22f1

Насыпная насадка для массообменных колонн

Изобретение относится к области процессов и аппаратов химической технологии, а именно к насыпным насадкам для массообменных колонн, и может быть использовано в качестве контактного устройства в химико-технологических процессах ректификации, абсорбции, химического обмена, осуществляемых в...
Тип: Изобретение
Номер охранного документа: 0002641920
Дата охранного документа: 23.01.2018
13.02.2018
№218.016.243d

Насыпная насадка для массообменных колонн

Изобретение относится к области процессов и аппаратов химической технологии, а именно к насыпным насадкам для массообменных колонн, и может быть использовано в качестве контактного устройства в химико-технологических процессах ректификации, абсорбции, химического обмена, осуществляемых в...
Тип: Изобретение
Номер охранного документа: 0002642572
Дата охранного документа: 25.01.2018
04.04.2018
№218.016.34ec

Насыпная насадка для массообменных колонн

Изобретение относится к области процессов и аппаратов химической технологии, а именно к насыпным насадкам для массообменных колонн, и может быть использовано в качестве контактного устройства в химико-технологических процессах ректификации, абсорбции, химического обмена и пр., осуществляемых в...
Тип: Изобретение
Номер охранного документа: 0002646076
Дата охранного документа: 01.03.2018
19.01.2019
№219.016.b19f

Способ резки стекла

Изобретение относится к области прецизионной микрообработки материалов, в частности к способу резки стекол при помощи гребенки лазерных импульсов фемтосекундной длительности, и может быть использовано для прецизионной резки стекла на предприятиях и в научно-исследовательских центра. Способ...
Тип: Изобретение
Номер охранного документа: 0002677519
Дата охранного документа: 17.01.2019
Показаны записи 1-10 из 30.
10.10.2013
№216.012.728c

Стеклокристаллический материал

Изобретение относится к легированным прозрачным стеклокристаллическим материалам, которые могут использоваться в качестве активной среды лазеров и усилителей в ближней ИК области. Технический результат изобретения заключается в снижении температуры синтеза прозрачного люминесцирующего в ближней...
Тип: Изобретение
Номер охранного документа: 0002494981
Дата охранного документа: 10.10.2013
20.10.2013
№216.012.75e0

Люминесцирующее кварцевое стекло

Изобретение относится к оптическим материалам, в частности к составам активированных стекол, полученных золь-гель способом, которые могут использоваться в качестве активных элементов лазеров и суперлюминесцентных излучателей, функционирующих в области максимальной спектральной эффективности...
Тип: Изобретение
Номер охранного документа: 0002495836
Дата охранного документа: 20.10.2013
27.01.2014
№216.012.9b6a

Способ получения микрошариков из иттрий-алюмосиликатного стекла для радиотерапии

Настоящее изобретение относится к области медицины, в частности к способу получения микрошариков с модифицированной поверхностью из иттрий-алюмосиликатного стекла для радиотерапии. Техническим результатом изобретения является получение микрошариков для радиотерапии, поверхностный слой которых...
Тип: Изобретение
Номер охранного документа: 0002505492
Дата охранного документа: 27.01.2014
27.11.2014
№216.013.0aaa

Люминесцирующее стекло (варианты)

Изобретение относится к оптическим материалам, в частности к плавленому алюмоборатному стеклу, активированному трехзарядными ионами церия (Се) и тербия (Tb), которое может использоваться в качестве визуализатора ультрафиолетовых изображений и светового трансформатора из ультрафиолетовой в...
Тип: Изобретение
Номер охранного документа: 0002534138
Дата охранного документа: 27.11.2014
20.04.2015
№216.013.42f0

Люминесцирующее стекло

Изобретение относится к оптическим материалам, в частности к составам Yb-содержащих оптических стекол, которые могут использоваться в качестве активных сред лазеров (в том числе волоконных), генерирующих в ближней инфракрасной области спектра. Техническим результатом изобретения является...
Тип: Изобретение
Номер охранного документа: 0002548634
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.42f4

Люминесцирующее стекло

Изобретение относится к оптическим материалам, в частности к составам алюмоборатных стекол, которые могут использоваться в качестве преобразователей ультрафиолетового и, возможно, рентгеновского излучения в квазибелый свет, а также в качестве стандартов для коррекции регистрируемых спектров...
Тип: Изобретение
Номер охранного документа: 0002548638
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.4aab

Способ локальной нанокристаллизации галлийсодержащих оксидных стекол

Изобретение относится к области оптического материаловедения, в частности к способу локальной нанокристаллизации легированных стекол под действием лазерного излучения. Эти стекла могут быть использованы в качестве активных волноводов и в разработке интегральных усилителей и лазеров на их...
Тип: Изобретение
Номер охранного документа: 0002550622
Дата охранного документа: 10.05.2015
27.11.2015
№216.013.94c4

Способ получения оптического ситалла

Изобретение относится к области оптического материаловедения, в частности к оптически прозрачным стеклокристаллическим материалам литийалюмосиликатной системы. Техническим результатом изобретения является получение оптически прозрачного в видимой области спектра ситалла со стабильной близкой к...
Тип: Изобретение
Номер охранного документа: 0002569703
Дата охранного документа: 27.11.2015
10.03.2016
№216.014.beb5

Люминесцирующее фосфатное стекло

Изобретение относится к оптическим материалам, в частности к составам Yb-содержащих оптических стекол, которые могут использоваться в качестве активных сред лазеров (в том числе волоконных), генерирующих в ближней инфракрасной области спектра. Задачей предлагаемого изобретения является создание...
Тип: Изобретение
Номер охранного документа: 0002576761
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.db26

Способ локальной кристаллизации лантаноборогерманатного стекла

Изобретение относится к области оптического материаловедения, в частности к способу выращивания микрокристаллических каналов в прозрачных и окрашенных стеклах под действием лазерного пучка для задач интегральной оптики. Изобретение позволяет получить кристаллические линии с помощью...
Тип: Изобретение
Номер охранного документа: 0002579080
Дата охранного документа: 27.03.2016
+ добавить свой РИД