×
04.02.2020
220.017.fd1f

Результат интеллектуальной деятельности: ОПТОВОЛОКОННЫЙ КОНФОКАЛЬНЫЙ СКАНИРУЮЩИЙ МИКРОСКОП

Вид РИД

Изобретение

№ охранного документа
0002712789
Дата охранного документа
31.01.2020
Аннотация: Изобретение относится к устройствам регистрации излучения, возбуждаемого в локальных областях среды при фокусировке лазерного излучения. Оптоволоконный конфокальный сканирующий микроскоп содержит лазерный источник излучения, Y-циркулятор, объектив, конфокальную диафрагму, фотоприемник и устройства пространственного сканирования анализируемой области объекта. Первый однонаправленный вход оптического волновода Y-циркулятора соединен с источником освещения объекта. Оптический пучок выходного торца первого волновода направляется в торец второго волновода под некоторым углом в оси второго волновода в пределах апертурного угла оптического волокна. Выходной торец оптического двунаправленного второго волновода является апертурой, формирующей световой пучок освещения объекта через объектив и одновременно является конфокальной диафрагмой, фильтрующей излучение отклика среды объекта. Излучение отклика среды проходит обратно через объектив и второй волновод в торец третьего однонаправленного волновода. Третий волновод расположен по оси второго волновода. Выход третьего волновода является выходом Y-циркулятора, соединенным с входом оптоволоконного спектрометра. Излучающий торец второго волновода соединен с механической системой смещения этого торца для сканирования масштабированного объективом изображения апертуры излучателя в сопряженной плоскости, совмещенной с объектом. Технический результат заключается в расширении функциональных возможностей устройства и упрощении конструкции микроскопа. 1 ил.

Изобретение относится к устройствам регистрации излучения, возбуждаемого в локальных областях среды при фокусировке лазерного освещения, и последующего синтеза двухмерного и трехмерного изображений по результатам пространственного сканирования объекта световым пучком. Устройство может быть использовано для спектрального исследования различных биологических сред, включая флуоресцентную диагностику для решения прикладных задач медицины. Конфокальная микроскопия имеет ряд преимуществ по сравнению с традиционной оптической микроскопией, включая регулируемую глубину поля, исключение ухудшающей изображение внефокусной информации, возможность последовательного анализа оптических срезов толстых образцов.

Известен «Аппарат для микроскопии», являющийся первым описанием конфокального микроскопа (MARVIN MlNSKY АМ/111 7- ATTORNEYS United States Patent office Patented Dec. 19, 1961 3,013,467 MICROSCOPY APPARATUS Marvin Minsky, 44 Bowdoin St., Cambridge, Mass. Filed Nov. 7, 1957, Ser. No. 695,107 4 Claims. C1. 88-14). Устройство, согласно изобретению (Патент М. Минский), содержит источник излучения 10, 12 с точечной коллимирующей диафрагмой 16, объектив 11, конфокальную диафрагму 26, фотоприемник 28, светоделительную пластину 17, причем отражающая поверхность пластины 17 обращена к объективу 11 и фотоприемнику 28 с конфокальной диафрагмой 26, а прозрачная поверхность пластины 17 обращена к источнику освещения 10, 12 с точечной коллимирующей диафрагмой 16, устройство пространственного сканирования объекта (Патент М. Минский). Из описания патента следует, что излучение источника проходит сквозь делительную пластину к объекту, а возвращается по другому пути: отражается от делительной пластины и направляется через конфокальную диафрагму на фотоприемник. В данном случае делительная пластина выполняет функцию невзаимного устройства - трех портового циркулятора (Y-циркулятора). Данное техническое решение позволяет исключить внефокусные лучи, задерживаемые конфокальной диафрагмой и, на основе данных о смещении образца устройством пространственного сканирования, построить двухмерное или трехмерное изображение с высокой контрастностью. Механическая система сканирования объекта исследований построена с использованием резонатора на изгибных колебаниях, возбуждаемых электромагнитными устройствами, синхронизированными с разверткой электронного луча осциллографа.

Основной недостаток устройства - система фокусировки светового пучка точечного источника 16 на объекте и система управления положением конфокальной диафрагмы 26, должны с высокой точностью обеспечить совмещение изображения освещенной локальной области объекта с точечной конфокальной диафрагмой, размещаемой в сопряженной плоскости объектива. При высоком разрешении микроскопа, вследствие «двойной фокусировки», предъявляются высокие требования к оптомеханике устройства. Кроме того, формирование точечного источника света из протяженного источника с помощью диафрагмы 16 не позволяет получить достаточно высокую плотность мощности сканирующего пучка осветителя на объекте. Представленная механическая система сканера с резонатором, на котором закреплен объект исследований, не может обеспечить независимого смещения по осям координат и имеет ограниченные возможности по исследованию различных сред, подвергающихся вибрационному воздействию.

Наиболее близким по совокупности признаков является прибор фирмы Dilor (Франция), ориентированный на проведение измерений с высоким спектральным разрешением, в котором флуоресцентные изображения объектов реконструируются только на основе записанных спектров (А.В. Феофанов «Спектральная лазерная сканирующая конфокальная микроскопия в биологических исследованиях». Успехи биологической химии - т. 47, 2007, с. 371-410, рис. 3 на с. 381). Прибор содержит лазерный источник излучения, возбуждающего флуоресценцию, устройство невзаимной коммутации направляемого на объект излучения и излучения отклика среды в виде светоделительной пластины, объектив, конфокальную диафрагму, фотоприемник с функцией разложения флуоресцентного излучения в спектр и его регистрации, устройство пространственного сканирования оптическим пучком анализируемой области объекта за счет перемещения объектива и синхронного сканирования подвижными зеркалами.

Недостатком данного устройства является наличие светоделительной пластины и, соответственно, необходимость в высокоточной системе синхронной фокусировки - фокусировки излучения на объекте и совмещения изображения фокального пятна в сопряженной плоскости объектива с точечной конфокальной диафрагмой. При этом, для возбуждения флуоресценции используется только одна длина волны лазера, а ее смена требует перенастройки прибора. Система сканирования, построенная на синхронном движении зеркал, отличается сложностью механических узлов и имеет ограничения по динамическим характеристикам сканера.

Техническим результатом изобретения является расширение функциональных возможностей устройства и упрощение конструкции микроскопа за счет применения оптоволоконного Y-циркулятора в качестве устройства невзаимной коммутации, направляемого на объект излучения и излучения отклика среды (Оптоволоконный коммутатор лазерного спектроанализатора. Патент RU 2632993 от 04.04.2016. Опубликовано: 11.10.2017, Бюл. №29).

Преимущество данной системы состоит в том, что она не содержит селективных делительных зеркал, элементов оптомеханики для выполнения оптической юстировки совмещения изображения фокального пятна сканирующего светового пучка с конфокальной диафрагмой в сопряженной плоскости объектива. Предложенный принцип коммутации оптических пучков решает задачу их разделения независимо от спектрального и модового состава излучения, а также поляризации. В рассматриваемом Y-циркуляторе невзаимность обусловлена топологией пространственной коммутации оптических пучков.

Пучок излучения выходного торца первого (однонаправленного) оптического волновода, сопряженного с лазерным источником, возбуждающим флуоресценцию, направляется в торец второго волновода под некоторым углом, задаваемым направляющей системой подложек с канавками в пределах апертурного угла оптического волокна. Излучение выходного торца второго волновода объективом фокусируется на поверхности или в объеме объекта. Отраженное и флуорецентное излучения освещенной локальной области объекта в пределах пространственного угла числовой апертуры собираются объективом и вводятся обратно в выходной торец второго (двухнаправленного) волновода. Пучок излучения объекта из второго волновода направляется в торец третьего (однонаправленного) волновода, расположенного по оси второго волновода. Выход третьего волновода является выходом Y-циркулятора и соединен с входом оптоволоконного спектрометра. Для регистрации спектра флуоресценции в оптический волновод лазерного источника и оптический волновод входа спектрометра дополнительно включены пропускающий и заграждающий фильтры лазерного излучения. Таким образом, выходная апертура второго волновода является как выходной апертурой лазерного источника, так и входной апертурой фотоприемника (конфокальной диафрагмой), блокирующей внефокусные лучи излучения объекта. Исключается высокоточная механика, обеспечивающая совмещение изображения точечного источника флуоресцентного излучения, возбужденного сфокусированным лазерным пучком, с точечной конфокальной диафрагмой, так как конфокальная диафрагма и точечный источник лазерного излучения совмещены в одной апертуре. Остается только одна независимая степень свободы - фокусировка возбуждающего флуоресценцию лазерного излучения в пространственных координатах объекта. Следствием этого является новая возможность построения устройства сканирования микроскопа, когда пространственное сканирование масштабированного объективом изображения апертуры торца второго волновода в сопряженной плоскости, совмещенной с объектом, осуществляется механическим сканированием торца второго волновода (конфокальной диафрагмы) в соответствующем масштабе смещений. Данное решение расширяет возможности построения сканеров наряду с известными техническими решениями - сканированием флуоресцентных сигналов с трехмерным субмикронным разрешением подвижными зеркалами, смещением объекта и смещением объектива. Устройство дополнительно содержит пропускающий и заграждающий оптические фильтры на выходе лазерного источника и входе оптоволоконного спектрометра в соответствии с известным техническим решением, обеспечивающим выделения флуоресцентного излучения на фоне возбуждающего лазерного излучения.

Данный технический результат достигается тем, что в оптоволоконном конфокальном микроскопе, содержащем лазерный источник излучения, устройство невзаимной коммутации, направляемого на объект излучения и излучения отклика среды, объектив, конфокальную диафрагму, фотоприемник, устройство пространственного сканирования анализируемой области объекта согласно изобретению, в качестве устройства невзаимной коммутации используется оптоволоконный Y-циркулятор, формирующий пространственное разделение коммутируемых оптических пучков, первый однонаправленный вход оптического волновода которого соединен с источником освещения объекта, а оптический пучок выходного торца этого волновода направляется в торец второго волновода под некоторым углом к оси второго волновода, задаваемым направляющей системой подложек с канавками в пределах апертурного угла оптического волокна, выходной торец оптического двунаправленного второго волновода является апертурой, формирующей световой пучок освещения объекта через объектив и, одновременно апертурой, являющейся конфокальной диафрагмой, фильтрующей излучение отклика среды объекта, проходящего обратно через этот же объектив и второй волновод в торец третьего однонаправленного волновода, расположенного по оси второго волновода, выход которого является выходом Y-циркулятора, соединенным с входом оптоволоконного спектрометра, а излучающий торец второго волновода соединен с механической системой смещения этого торца для сканирования масштабированного объективом изображения апертуры излучателя в сопряженной плоскости, совмещенной с объектом.

Сущность изобретения поясняется схемой, приведенной на Фиг. 1, на которой показан оптоволоконный конфокальный сканирующий микроскоп. Оптоволоконный Y-циркулятор (См. Фиг. 1), формирующий пространственное разделение коммутируемых оптических пучков включает оптические волокна 1, 2, и 3, размещенные на подложке 4. Конфокальная диафрагма и одновременно апертура лазерного излучателя 5 соответствуют выходному торцу оптического волновода 2. Лазерный источник 6, сопряженный с волокном 7 через оптический разъем 8 соединен с входом коллиматора 9, обеспечивающего функционирование пропускающего фильтра 10. Оптический выход коллиматора 9 соединен с волокном 1 Y-циркулятора. Объектив 11 формирует сканирующий лазерный пучок 12 на объекте 13. Выход волокна 3 соединен с входом коллиматора 14, содержащего заграждающий фильтр 15. Выход коллиматора 14 через оптический разъем 16 подключен к входу оптоволоконного спектрометра 17. Излучающий торец волокна 2 соединен с механической системой смещения этого торца 18.

Работа оптоволоконного конфокального сканирующего микроскопа (см. Фиг. 1) осуществляется следующим образом. Лазерный источник 6, через оптический волновод 7, оптический разъем 8 передает излучение на вход коллиматора 9, формирующего коллимированный пучок излучения с апертурой, необходимой для функционирования фильтра 10, пропускающего основную линию излучения лазера 6 и подавляющего остальное излучение. Выходное излучение коллиматора 9 поступает на вход волокна 1 Y-циркулятора. Выходной оптический пучок волокна 1 направляется на входной торец волокна 2 под заданным углом к оси волокна 2. Излучающий торец 5 волокна 2 расположен в фокальной плоскости объектива 11, формирующего сканирующий пучок 12, сфокусированный в сопряженной плоскости объектива 11 на исследуемым объекте 13. В локальном объеме сфокусированного лазерного излучения среда объекта 13 создает излучение флуоресценции. Это излучение в границах пространственного угла 12 вместе с отраженным лазерным излучением объективом 11 фокусируется на торце 5 волокна 2, апертура которого выполняет функцию конфокальной диафрагмы, так как иные лучи, кроме излучения из области фокусировки, не могут быть введены в волокно 2. Флуоресцентное излучение из волокна 2 в соответствие с направлением оптического пучка вводится в волокно 3, затем поступает в коллиматор 14, проходит через заграждающий фильтр 15, подавляющий лазерное излучение и пропускающий излучение флуоресценции. Выход коллиматора 14 через оптический разъем 16 соединен с входом оптоволоконного спектрометра 17, регистрирующего спектр флуоресценции сканируемой области объекта 13. Излучающий торец волокна 2 соединен с механической системой смещения этого торца 18. Смещение конфокальной диафрагмы 5, апертура которой также является излучателем, приводит к смещению фокального пятна в сопряженной плоскости объектива 11, расположенной на объекте 13.

Оптоволоконный конфокальный сканирующий микроскоп, содержащий лазерный источник излучения, устройство невзаимной коммутации направляемого на объект излучения и излучения отклика среды, объектив, конфокальную диафрагму, фотоприемник, устройство пространственного сканирования анализируемой области объекта, отличающийся тем, что в качестве устройства невзаимной коммутации используется оптоволоконный Y-циркулятор, формирующий пространственное разделение коммутируемых оптических пучков, первый однонаправленный вход оптического волновода которого соединен с источником освещения объекта, а оптический пучок выходного торца этого волновода направляется в торец второго волновода под некоторым углом к оси второго волновода, задаваемым направляющей системой подложек с канавками в пределах апертурного угла оптического волокна, выходной торец оптического двунаправленного второго волновода является апертурой, формирующей световой пучок освещения объекта через объектив и, одновременно, являющейся конфокальной диафрагмой, фильтрующей излучение отклика среды объекта, проходящего обратно через этот же объектив и второй волновод в торец третьего однонаправленного волновода, расположенного по оси второго волновода, выход которого является выходом Y-циркулятора, соединенным с входом оптоволоконного спектрометра, а излучающий торец второго волновода соединен с механической системой смещения этого торца для сканирования масштабированного объективом изображения апертуры излучателя в сопряженной плоскости, совмещенной с объектом.
ОПТОВОЛОКОННЫЙ КОНФОКАЛЬНЫЙ СКАНИРУЮЩИЙ МИКРОСКОП
ОПТОВОЛОКОННЫЙ КОНФОКАЛЬНЫЙ СКАНИРУЮЩИЙ МИКРОСКОП
Источник поступления информации: Роспатент

Показаны записи 61-70 из 86.
01.02.2020
№220.017.fca8

Способ идентификации патогенных бактерий в пищевых субстратах с использованием высокопроизводительного секвенирования

Изобретение относится к области биотехнологии. Предложен способ идентификации патогенных бактерий в пищевых субстратах с использованием высокопроизводительного секвенирования, включающий отбор биологического материала и выделение ДНК с проведением мультиплексной ПЦР, отличающийся тем, что для...
Тип: Изобретение
Номер охранного документа: 0002712527
Дата охранного документа: 29.01.2020
01.02.2020
№220.017.fcaa

Способ получения препарата коллагеназы в геле на основе пищевого хитозана и сукцината хитозана

Изобретение относится к биотехнологии и решает задачу увеличения скорости ферментативной реакции и повышении эффективности использования препарата на основе коллагеназы и хитозана, в том числе при осуществлении реакции на твердых поверхностях. Поставленная задача решается за счет способа...
Тип: Изобретение
Номер охранного документа: 0002712528
Дата охранного документа: 29.01.2020
04.02.2020
№220.017.fd69

Способ получения инулина из растительного сырья

Изобретение относится к получению биологически активных веществ из лекарственного растительного сырья. Способ получения инулина из корней одуванчика лекарственного включает экстрагирование очищенной водой, нагретой до температуры кипения, из измельченных корней одуванчика лекарственного в...
Тип: Изобретение
Номер охранного документа: 0002712554
Дата охранного документа: 30.01.2020
29.02.2020
№220.018.07a4

Способ получения влагопоглощающего композиционного полимерного материала с микробиологическими добавками

Изобретение относится к химии высокомолекулярных соединений, в частности к способу получения композиционного полимерного материала, обогащенного микроорганизмами. Описан способ получения влагопоглощающего композиционного полимерного материала. Инициирующую смесь добавляют в раствор полисахарида...
Тип: Изобретение
Номер охранного документа: 0002715380
Дата охранного документа: 27.02.2020
04.03.2020
№220.018.0852

Способ отбора материнских растений betula pendula, продуцирующих семенное потомство с разной стабильностью генетического материала соматических клеток, по уровню флуктуирующей асимметрии листовой пластинки

Изобретение относится к области биотехнологии. Изобретение представляет собой способ отбора материнских растений Betula pendula, продуцирующих семенное потомство с разной стабильностью генетического материала соматических клеток, по уровню флуктуирующей асимметрии листовой пластинки,...
Тип: Изобретение
Номер охранного документа: 0002715644
Дата охранного документа: 02.03.2020
07.03.2020
№220.018.0a13

Способ идентификации и количественной оценки патогенных и условно-патогенных бактерий в пищевых субстратах с использованием высокопроизводительного секвенирования

Изобретение относится к биотехнологии и микробиологии. Предложен способ идентификации и количественной оценки патогенных и условно-патогенных бактерий Bacillus cereus, Campylobacter coli, Campylobacter jejuni, Clostridium perfringens, Cronobacter sakazii, Escherichia coli, Listeria...
Тип: Изобретение
Номер охранного документа: 0002716115
Дата охранного документа: 05.03.2020
07.03.2020
№220.018.0a2d

Способ получения альгинат-хитозановых микрокапсул с винпоцетином

Изобретение относится к производству лекарственных форм в виде микрокапсул, содержащих винпоцетин. Способ получения микрокапсул винпоцетина с оболочкой на основе хитозана и солей альгиновой кислоты включает получение гомогенной суспензии винпоцетина в 1-3% водном растворе альгината натрия,...
Тип: Изобретение
Номер охранного документа: 0002716000
Дата охранного документа: 05.03.2020
07.03.2020
№220.018.0a34

Способ отбора материнских деревьев betula pendula, продуцирующих семенное потомство с разной всхожестью и стабильностью генетического материала соматических клеток, по биохимическим параметрам

Изобретение относится к области биотехнологии. Изобретение представляет собой способ отбора материнских деревьев Betula pendula, продуцирующих семенное потомство с разной стабильностью генетического материала соматических клеток, по биохимическим параметрам (количество общего белка в семенах и...
Тип: Изобретение
Номер охранного документа: 0002716112
Дата охранного документа: 05.03.2020
15.03.2020
№220.018.0c37

Молекулярная самособирающаяся конструкция наноразмерного диапазона на основе искусственной y-подобной днк-матрицы и белка dps

Изобретение относится к биотехнологии, в частности к области молекулярного конструирования частиц наноразмерного диапазона, а также к способам получения регулярного распределения таких частиц, и может быть использована в наноэлектронике для создания ячеек памяти высокой плотности. Техническим...
Тип: Изобретение
Номер охранного документа: 0002716575
Дата охранного документа: 12.03.2020
22.04.2020
№220.018.1732

Способ получения периклазошпинельной керамики

Изобретение относится к огнеупорной промышленности и может быть использовано для получения обожженных термостойких периклазошпинельных огнеупорных изделий. Способ получения периклазошпинельной керамики включает обжиг керамообразующей смеси карбоната магния (MgCO) и оксида алюминия (γ-AlO)....
Тип: Изобретение
Номер охранного документа: 0002719291
Дата охранного документа: 17.04.2020
Показаны записи 11-12 из 12.
18.05.2019
№219.017.5b74

Оптоволоконное устройство для регистрации флуоресценции

Изобретение относится к устройствам медицинской техники и может быть использовано для диагностики спектров флуоресценции локальных внутренних и поверхностных областей различных биологических сред. Устройство содержит призму для разделения пучка стимулирующего флуоресценцию излучения,...
Тип: Изобретение
Номер охранного документа: 0002464549
Дата охранного документа: 20.10.2012
21.06.2020
№220.018.2957

Многоканальный конфокальный спектроанализатор изображений

Изобретение относится к области спектроскопических исследований и касается многоканального конфокального спектроанализатора изображений. Спектроанализатор включает в себя диодный лазер, цилиндрическую оптику, конфокальную диафрагму, объектив, видеокамеру, систему сканирования и систему...
Тип: Изобретение
Номер охранного документа: 0002723890
Дата охранного документа: 18.06.2020
+ добавить свой РИД