×
01.02.2020
220.017.fc43

Результат интеллектуальной деятельности: Катализатор совместной гидроочистки смеси растительного и нефтяного углеводородного сырья и способ его приготовления

Вид РИД

Изобретение

Аннотация: Изобретение относится к массивному катализатору совместной гидроочистки смеси растительного и нефтяного углеводородного сырья и способу его приготовления. Данный катализатор включает в свой состав молибден в количестве 55-65,0% мас., серу в количестве 30-45% мас. и углерод в количестве 0-5,0% мас. Катализатор имеет удельную поверхность 50-150 м/г, удельный объем пор 0,1-0,5 см/г. Предлагаемый катализатор позволяет проводить совместную гидроочистку смеси растительного и нефтяного углеводородного сырья. Изобретение также относится к способу приготовления массивного катализатора совместной гидроочистки смеси растительного и нефтяного углеводородного сырья, который включает следующие стадии: однократную пропитку пористого носителя по влагоемкости водным раствором соединения молибдена с последующей сушкой, сульфидированием и вытравливанием носителя плавиковой кислотой. Технический результат - увеличение активности катализатора в процессе совместной гидроочистки смеси растительного и нефтяного углеводородного сырья. 2 н. и 5 з.п. ф-лы, 2 табл., 10 пр.

Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для гидроочистки растительного и нефтяного углеводородного сырья, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Начиная с 1974 и до наших дней многочисленные энергетические кризисы [Licklider R. - International Studies Quarterly. - 1988. - V. 32. - P. 205-226.], а также необходимость снижения выбросов парниковых газов и оксидов серы [Directive 2009/30/ЕС of the European Parliament and of the Council of 23 April 2009.] привели к повышению интереса к биоэнергетике, особенно к использованию продуктов переработки растительного сырья в виде топлива или же в качестве добавок к моторным топливам [Czernik S., Bridgwater A.V. - Energy Fuel. - 2004. - V. 18. - P. 590-598. Mohan D., Pittman C.U., Steele P.H. - Energy Fuels. - 2006. - V. 20. - P. 848-889. Ingram L., Mohan D., Bricka M. et al. - Energy Fuels. - 2008. - V. 22. - P. 614-625. Azadi P., Inderwildi O.R., Farnood R. et al. - Renew. Sustain. Energy Rev. - 2013. - V. 21. - P. 506-523. Bridgwater A.V. - Biomass Bioenergy. - 2012. - V. 38. - P. 68-94. Furimsky E. - Catal. Today. - 2013. - V. 217. - P. 13-56.]. Недостатки биотоплива 1 (биодизель), такие как более высокая вязкость по сравнению с традиционными моторными топливами, необходимость утилизировать побочные продукты производства (глицерин), низкая химическая и температурная стабильность из-за высокого содержания кислорода (35-40 мас %) и двойных связей [Czernik S., Bridgwater A.V. - Energy Fuel. - 2004. - V. 18. - P. 590-598.], можно устранить с помощью гидродеоксигенации (ГДО) и гидрирования (ГИД) исходного растительного сырья (в частности растительных масел) с получением смеси алканов под названием «грин-дизель» (greendiesel) или суперцетан (supercetane), обладающих высокой стабильностью и более высоким цетановым числом по сравнению с биодизелем [Guzman A., Torres J.E., Prada L.P. et al. - Catal. Today - 2010. - V. 156. - P. 38. Hancsok J., Krar M., Magyar S. et al. - Microporous Mesoporous Mater. - 2007. - V. 101. - P. 148. Kalnes Т., Marker Т., Shonnard D.R. - Int. J. Chem. React. Eng. - 2007. - V. 5. - P. 48.]. Чаще всего ГДО проводят как на нанесенных на различные носители благородных металлах [Ardiyanti A.R., Gutierrez A., Honkela M.L. et al. - Appl. Catal. A Gen. - 2011. - V. 407. - P. 56-66.], так и на сульфидах переходных металлов [Bejblova М., Zamostny P., Cerveny L. et al. - Appl. Catal. A Gen. - 2005. - V. 296. - P. 69. Bunch A., Ozkan U. - J. Catal. - 2002. - V. 206. - P. 177. Yang Y., Туе С., Smith K. - Catal. Commun. - 2008. - V. 9. - P. 1364. Senol O., Viljava Т., Krause A. - Catal. Today. - 2005. - V. 106. - P. 186. Viljava Т., Komulainen R., Krause A. - Catal. Today. - 2000. - V. 60. - P. 83. Whiffen V.M.L., Smith K.J. - Energy Fuel. - 2010. - V. 24. - P. 4728-4737. Zhang S., Yongjie Y., Li T. et al. - Bioresour. Technol. - 2004. - V. 96. - P. 545. Laurent E., Delmon B. - Ind. Eng. Chem. Res. - 1993. - V. 32. - P. 2516.]. Благородные металлы обладают высокой активностью и селективностью в ГДО, но дороги и их использование затруднительно, т.к. они могут быть отравлены даже следовыми количествами серы, поэтому использование сульфидов переходных металлов является более предпочтительным.

К концу XX века все основные способы повышения активности катализаторов на основе промотированных кобальтом или никелем сульфидов переходных металлов подошли к пределу своих возможностей. Одним из решений данной проблемы стало создание массивных катализаторов, полностью состоящих из активной фазы. Наибольшую известность получили получаемые путем соосаждения солей-предшественников полиметаллические Ni-Mo-W массивные высокодисперсные катализаторы серии NEBULA®. Подобные катализаторы проявляют высокую эффективность во многих гидрогенизационных процессах [Eijsbouts S., MayoS.W., Fujita K. - Appl. Catal. A: General. - 2007. - V. 322. - P. 58-66.].

Основными недостатками использования подобных катализаторов в реакциях совместной гидроочистки растительного и нефтяного сырья является низкая селективность в отношении реакций прямого гидрирования по сравнению с декарбонилированием и декарбоксилированием, что приводит к выделению СО или СО2, которые, адсорбируясь на активных центрах, препятствуют протеканию целевых реакций гидродесульфуризации (ГДС) и гидрирования (ГИД), т.е. проявляют ингибирующее влияние [Lappas А.А., Bezergianni S., Vasalos LA. - Catal. Today. - 2009. - V. 145. - P. 55-62.]. Техническим решением настоящего изобретения является использование плавиковой кислоты для удаления носителя при создании массивного катализатора совместной гидроочистки нефтяного и растительного сырья, что позволяет увеличить селективность по маршруту гидрирования, по сравнению с традиционными каталитическими системами, полученными путем разложения тиосолей молибдена.

Наиболее близким по своей технической сущности и достигаемому эффекту к предлагаемому техническому решению является массивный катализатор гидроочистки, описанный в патенте US 7,223,713 В2.

Данная система представляет собой дисульфид молибдена MoS2 или углеродсодержащий дисульфид молибдена MoS2-xCx, полученный путем разложения соли прекурсора состава AxMoS4 (где А - ион аммония, тетра-алкиламмония или диамина) в гидротермальных условиях. Основным недостатком указанного выше катализатора является использование разложения тиосолей молибдена в качестве способа синтеза, что приводит к низкой селективности в условиях совместной гидроочистки растительного и нефтяного сырья.

Техническим результатом настоящего изобретения является создание нового массивного катализатора для совместной гидроочистки нефтяного и растительного сырья, обладающего повышенной активностью и селективного по маршруту гидрирования, по сравнению с традиционными каталитическими системами за счет синтеза массивного катализатора путем удаления носителя плавиковой кислотой. Технический результат достигается за счет массивного катализатора совместной гидроочистки растительного и нефтяного углеводородного сырья, содержащего Мо - 55-65,0% мас., S - 30-45% мас., С - 0-5,0% мас.; катализатор имеет удельную поверхность 50-150 м2/г, удельный объем пор 0,1-0,5 см3/г.

Способ приготовления массивного катализатора совместной гидроочистки растительного и нефтяного углеводородного сырья включает однократную пропитку водным раствором одного из предшественников активных компонентов ((NH4)6Mo7O24, (NH4)3[Со(ОН)6Mo6O18], H5[BMo12O40], (NH4)3[Ni(ОН)6Mo6O18], Н7[PMo11CoO40], Н3[PMo12O40], H3[SiMo12O40]), вакуумированного носителя (оксида алюминия, оксида кремния или их композитов с содержанием углерода 0-5 мас. %) по влагоемкости; сушку при температурах из диапазона 100-150°С; сульфидирование газовой смесью H2S/H2 (1-10% об. H2S) при температуре из диапазона 120-400°С и давлении из диапазона 0,1-4,0 МПа; вытравливание носителя плавиковой кислотой HF согласно методике [Varakin A.N., Mozhaev A.V., Pimerzin А.А. et al. - Appl. Catal. В: Environ. - 2018 - V. 238 - P. 498-508.] при температуре из диапазона 20-80°С и времени выдержки из диапазона 2-8 ч.

Исходные соединения для приготовления пропиточного раствора, свойства носителя и состав катализаторов приведены в табл. 1.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1

Состав катализатора и способ его приготовления согласно известному техническому решению - прототипу.

К 75 мл деионизированной воды добавили 10 г тетратиомолибдата аммония, поместили в реактор автоклава. Автоклав продули дважды водородом для удаления кислорода воздуха. После нагрева до 300°С при скорости перемешивания 300 об/мин автоклав выдерживали 2 ч. После охлаждения отобрали образовавшийся черный осадок и промыли изопропанолом.

Массивный катализатор в прокаленном в токе H2S/H2 (10% об. H2S) при температуре 400°С в течение 4 ч состоянии содержит, мас. %: Мо - 57,70; имеет удельную поверхность 45 м2/г, объем пор 0,08 см3/г (табл. 1).

Примеры 2-10 иллюстрируют предлагаемое техническое решение.

Пример 2

Для приготовления пропиточного раствора 42,8 г Н3РМо12О40×5Н2О растворяют в 83,2 см3 воды при 60°С и перемешивании.

Носитель - оксид алюминия γ-Al2O3 - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 160°С в течение 3 ч, затем сульфидируют в токе H2S/H2 (10% об. H2S) при температуре 400°С в течение 6 ч.

Вытравливание носителя из нанесенного сульфидированного катализатора осуществляли плавиковой кислотой HF по методике: 100 г катализатора поместили в пластиковую бутыль, затем добавили 474 г дистиллированной воды и 193 г плавиковой кислоты. После 4 ч выдержки при температуре 50°С и постоянном перемешивании черный раствор отфильтровывали и промывали дистиллированной водой.

Катализатор содержит, мас. %: Мо - 57,7 имеет удельную поверхность 121 м2/г, объем пор 0,21 см3/г (табл. 1).

Пример 3

Для приготовления пропиточного раствора 68.1 г (NH4)3[Со(ОН)6Mo6O18] растворяют в 88.3 см3 воды при 40°С и перемешивании.

Носитель - зауглероженный оксид алюминия γ-Al2O3 (2% мас. углерода) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 120°С в течение 4 ч, а затем сульфидируют в токе H2S/H2 (10% об. H2S) при температуре 350°С в течение 5 ч.

Вытравливание носителя из нанесенного сульфидированного катализатора осуществляли плавиковой кислотой HF по методике: 100 г катализатора поместили в пластиковую бутыль, затем добавили 474 г дистиллированной воды и 193 г плавиковой кислоты. После 6 ч выдержки при температуре 30°С и постоянном перемешивании черный раствор отфильтровывали и промывали дистиллированной водой.

Катализатор содержит, мас. %: Мо - 56,6, имеет удельную поверхность 143 м2/г, объем пор 0,17 см3/г (табл. 1).

Пример 4

Для приготовления пропиточного раствора 58.9 г Н5[BMo12O40] растворяют в 76.8 см3 воды при 50°С и перемешивании.

Носитель - зауглероженный оксид алюминия γ-Al2O3 (5% мас. углерода) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 150°С в течение 3 ч, а затем сульфидируют в токе H2S/H2 (10% об. H2S) при температуре 400°С в течение 5 ч.

Вытравливание носителя из нанесенного сульфидированного катализатора осуществляли плавиковой кислотой HF по методике: 100 г катализатора поместили в пластиковую бутыль, затем добавили 474 г дистиллированной воды и 193 г плавиковой кислоты. После 5 ч выдержки при температуре 50°С и постоянном перемешивании черный раствор отфильтровывали и промывали дистиллированной водой.

Катализатор содержит, мас. %: Мо - 54,8, имеет удельную поверхность 150 м2/г, объем пор 0,15 см3/г (табл. 1).

Пример 5

Для приготовления пропиточного раствора 60.6 г (NH4)6Mo7O24 растворяют в 148.2 см3 воды при 50°С и перемешивании.

Носитель SiO2 массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 160°С в течение 2 ч, а затем сульфидируют в токе H2S/H2 (10% об. H2S) при температуре 360°С в течение 5 ч.

Вытравливание носителя из нанесенного сульфидированного катализатора осуществляли плавиковой кислотой HF по методике: 100 г катализатора поместили в пластиковую бутыль, затем добавили 474 г дистиллированной воды и 193 г плавиковой кислоты. После 4 ч выдержки при температуре 40°С и постоянном перемешивании черный раствор отфильтровывали и промывали дистиллированной водой.

Катализатор содержит, мас. %: Мо - 57,7 имеет удельную поверхность 105 м2/г, объем пор 0,35 см3/г (табл. 1).

Пример 6

Для приготовления пропиточного раствора 68.1 г (NH4)3[Ni(OH)6Mo6O18] растворяют в 99.8 см3 воды при 60°С и перемешивании.

Носитель - зауглероженная смесь оксида алюминия γ-Al2O3 и 5% масс SiO2 (2% мас. углерода) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 160°С в течение 3 ч, а затем сульфидируют в токе H2S/H2 (10% об. H2S) при температуре 400°С в течение 6 ч.

Вытравливание носителя из нанесенного сульфидированного катализатора осуществляли плавиковой кислотой HF по методике: 100 г катализатора поместили в пластиковую бутыль, затем добавили 474 г дистиллированной воды и 193 г плавиковой кислоты. После 6 ч выдержки при температуре 30°С и постоянном перемешивании черный раствор отфильтровывали и промывали дистиллированной водой.

Катализатор содержит, мас. %: Мо - 56.5, имеет удельную поверхность 95 м2/г, объем пор 0,31 см3/г (табл. 1).

Пример 7

Для приготовления пропиточного раствора 58.9 г H5[BMo12O40] растворяют в 97.4 см3 воды при 90°С и перемешивании.

Носитель - зауглероженная смесь оксида алюминия γ-Al2O3 и 5% мас. SiO2 (5% мас. углерода) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 150°С в течение 3 ч, а затем сульфидируют в токе H2S/H2 (10% об. H2S) при температуре 400°С в течение 6 ч.

Вытравливание носителя из нанесенного сульфидированного катализатора осуществляли плавиковой кислотой HF по методике: 100 г катализатора поместили в пластиковую бутыль, затем добавили 474 г дистиллированной воды и 193 г плавиковой кислоты. После 5 ч выдержки при температуре 50°С и постоянном перемешивании черный раствор отфильтровывали и промывали дистиллированной водой.

Катализатор содержит, мас. %: Мо - 54.8, имеет удельную поверхность 90 м2/г, объем пор 0,28 см3/г (табл. 1).

Пример 8

Для приготовления пропиточного раствора 59.6 г H7[PMo11CoO40], растворяют в 96.0 см3 воды при 50°С и перемешивании.

Носитель - оксид алюминия γ-Al2O3 - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 120°С в течение 4 ч, а затем сульфидируют в токе H2S/H2 (10% об. H2S) при температуре 360°С в течение 5 ч.

Вытравливание носителя из нанесенного сульфидированного катализатора осуществляли плавиковой кислотой HF по методике: 100 г катализатора поместили в пластиковую бутыль, затем добавили 474 г дистиллированной воды и 193 г плавиковой кислоты. После 4 ч выдержки при температуре 40°С и постоянном перемешивании черный раствор отфильтровывали и промывали дистиллированной водой.

Катализатор содержит, мас. %: Мо - 57.5, имеет удельную поверхность 85 м2/г, объем пор 0,41 см3/г (табл. 1).

Пример 9

Для приготовления пропиточного раствора 57,3 г H3[SiMo12O40] растворяют в 107.2 см3 воды при 60°С и перемешивании.

Носитель - зауглероженная смесь оксида алюминия γ-Al2O3 и 10% масс SiO2 (2% мас. углерода) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 160°С в течение 3 ч, а затем сульфидируют в токе H2S/H2 (10% об. H2S) при температуре 400°С в течение 6 ч.

Вытравливание носителя из нанесенного сульфидированного катализатора осуществляли плавиковой кислотой HF по методике: 100 г катализатора поместили в пластиковую бутыль, затем добавили 474 г дистиллированной воды и 193 г плавиковой кислоты. После 5 ч выдержки при температуре 40°С и постоянном перемешивании черный раствор отфильтровывали и промывали дистиллированной водой.

Катализатор содержит, мас. %: Мо - 64.6, имеет удельную поверхность 77 м2/г, объем пор 0,36 см3/г (табл. 1).

Пример 10

Для приготовления пропиточного раствора 65,0 г (NH4)6Mo7O24 растворяют в 104.7 см3 воды при 80°С и перемешивании.

Носитель - зауглероженная смесь оксида алюминия γ-Al2O3 и 10% мас. SiO2 (5% мас. углерода) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 120°С в течение 6 ч, а затем сульфидируют в токе H2S/H2 (10% об. H2S) при температуре 400°С в течение 5 ч.

Вытравливание носителя из нанесенного сульфидированного катализатора осуществляли плавиковой кислотой HF по методике: 100 г катализатора поместили в пластиковую бутыль, затем добавили 474 г дистиллированной воды и 193 г плавиковой кислоты. После 6 ч выдержки при температуре 30°С и постоянном перемешивании черный раствор отфильтровывали и промывали дистиллированной водой.

Катализатор содержит, мас. %: Мо - 54,8 имеет удельную поверхность 75 м2/г, объем пор 0,30 см3/г (табл. 1).

Испытания катализаторов проводили в процессе гидроочистки растительного и нефтяного углеводородного сырья. В качестве смесевого сырья использовали: смесь прямогонной дизельной фракции (90%) и растительного масла (10%) (содержание серы 0,88% мас.).

В трубчатый реактор загружали 4 см3 катализатора, разбавленного SiC. Сульфидирование проводили в токе H2S/H2 (10% об. H2S) при температуре 400°С в течение 4 ч.

Условия испытания: давление водорода 4.0 МПа, кратность циркуляции водорода 500 нл/л сырья, объемная скорость подачи сырья 0.5 ч-1 и 1.0 ч-1, температура в реакторе 360°С. Гидрогенизаты отделяли от водорода в сепараторах высокого и низкого давления, затем подвергали обработке 10%-ным раствором NaOH в течение 15 мин, отмывали дистиллированной водой до нейтральной реакции промывных вод, высушивали над прокаленным CaCl2. Содержание серы в сырье и полученных гидрогенизатах определяли согласно ГОСТ Р 52660. Стабильность работы катализатора оценивали в жестких условиях по ускоренной степени дезактивации: давление водорода 1.0 МПа, кратность циркуляции водорода 150 нл/л сырья, объемная скорость подачи сырья 2.0 ч1, температура в реакторе 380°С, процесс вели в течение 50 ч. Активность катализаторов в ГДС оценивали по формуле:

где ГДС - степень гидрообессеривания (%); - содержание серы в сырье, (ppm); CS - содержание серы в гидрогенизате (ppm).

Стабильность работы катализатора оценивали по степени ускоренной дезактивации и рассчитывали по формуле:

где - содержание серы в стабильном гидрогенизате, полученном при ОСПС 1 ч-1 и температуре Т°С до ускоренной дезактивации, ppm; - содержание серы в стабильном гидрогенизате, полученном при ОСПС 1 ч-1 и температуре 360°С после ускоренной дезактивации, ppm.

Степень гидродеоксигенации (ГДО) растительных масел оценивали по изменению концентрации триглицеридов жирных кислот, определяемой методом ИК-спектроскопии.

Результаты испытаний катализаторов представлены в табл. 2.

Заявляемые катализаторы превосходят по активности и стабильности прототип в процессе совместной гидроочистки растительного и нефтяного углеводородного сырья. Показатели процесса совместной гидроочистки позволяют сделать вывод об эффективности заявляемых катализаторов и способов их приготовления.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 191.
26.08.2017
№217.015.d9b0

Способ компенсации оптических аберраций с использованием деформируемого зеркала

Изобретение относится к способам, которые обеспечивают компенсацию оптических аберраций с использованием деформируемого зеркала, и может быть использовано в активных и адаптивных оптических системах, предназначенных для компенсации аберраций волнового фронта светового излучения. Способ...
Тип: Изобретение
Номер охранного документа: 0002623661
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.df33

Способ приготовления кисломолочногопродукта

Изобретение относится к молочной промышленности. Подготовленное молоко подвергают действию электрического тока в катодном пространстве диафрагменного электролизера с плоскими электродами из нержавеющей стали 10Х17Н13М2Т при объемной плотности тока 2 А/см и катодной плотности тока 0,018 А/см в...
Тип: Изобретение
Номер охранного документа: 0002625030
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.f51a

Катализатор, способ его приготовления и процесс селективной гидроочистки бензина каталитического крекинга

Изобретение относится к области химии, в частности к катализаторам для селективной гидроочистки бензинов каталитического крекинга, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Заявляется катализатор селективной гидроочистки бензина каталитического...
Тип: Изобретение
Номер охранного документа: 0002637808
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f85d

Адсорбент для очистки сточных вод от ионов меди

Изобретение относится к охране окружающей среды. Предложен сорбент для очистки сточных вод от меди. Сорбент представляет собой отработанный в процессе фильтрации пива кизельгур, подвергнутый сушке при 50-200°C и последующей термохимической активации при 60-100°C. Активацию проводят в 2,0-2,5 М...
Тип: Изобретение
Номер охранного документа: 0002639803
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.f8cd

Способ получения изопропилбензола

Изобретение относится к способу получения изопропилбензола алкилированием бензола пропиленом и переалкилированием полиалкилибензолов. Способ характеризуется тем, что реакции алкилирования и переалкилирования проводят раздельно, причем реакцию алкилирования проводят в жидкой фазе с применением...
Тип: Изобретение
Номер охранного документа: 0002639706
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.0516

Способ производства фруктового продукта в виде пластинок из груш, яблок и виноградного сырья

Изобретение относится к пищевой промышленности, в частности к изготовлению фруктового продукта в виде пластинок из груш, яблок и виноградного сырья. Пищевой продукт готовят путем подготовки груш и яблок. Удаляют несъедобные части и кожуру. Режут на ломтики толщиной 5-8 мм, обрабатывают в...
Тип: Изобретение
Номер охранного документа: 0002630702
Дата охранного документа: 12.09.2017
19.01.2018
№218.016.078f

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Изобретение относится к способу приготовления катализатора для глубокой гидроочистки нефтяных фракций. Способ включает пропитку алюмооксидного носителя раствором соединений металлов VIII, VI и V групп. При этом готовят совместный пропиточный раствор MoO и/или WO, не обязательно VO, от 0,33 до...
Тип: Изобретение
Номер охранного документа: 0002631424
Дата охранного документа: 22.09.2017
20.01.2018
№218.016.0f39

Способ получения 1н-бензо[f]хромен-2-ил(арил)кетонов

Изобретение относится к способу получения 1-бензо[ƒ]хромен-2-ил(арил)кетонов реакцией замещенных 1-[(диметиламино)метил]-2-нафтолов с 3-(диметиламино)-1-арил-проп-2-ен-1-онами. Полученные соединения являются перспективными исходными соединениями для синтеза фармакологически активных веществ....
Тип: Изобретение
Номер охранного документа: 0002633368
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0f41

Расплавляемый электролит для химического источника тока

Изобретение относится к расплавляемому электролиту для химического источника тока, включающему при следующем соотношении компонентов, мас. %: фторид лития 1,57…1,63, хромат лития 64,59…66,29, хлорид калия 16,38…18,52, хромат калия 15,32…15,70. Технический результат – снижение температуры...
Тип: Изобретение
Номер охранного документа: 0002633360
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.1152

Погружной скважинный генератор газопаровой смеси

Изобретение относится к области промышленной теплоэнергетики и может быть применено для генерирования газопаровой смеси с целью термической обработки скважин в нефтедобывающей промышленности. Техническим результатом изобретения является обеспечение надежного функционирования генератора...
Тип: Изобретение
Номер охранного документа: 0002633983
Дата охранного документа: 20.10.2017
Показаны записи 21-30 из 57.
08.11.2018
№218.016.9a94

Альтернативное моторное топливо

Изобретение описывает альтернативное моторное топливо с октановым числом по исследовательскому методу не менее 90,0 единиц, давлением насыщенных паров не менее 35,0 кПа и не более 100,0 кПа, включающее в себя углеводородную фракцию и алифатические спирты, при этом углеводородная фракция...
Тип: Изобретение
Номер охранного документа: 0002671639
Дата охранного документа: 06.11.2018
08.11.2018
№218.016.9b0a

Способ переработки нефтяных остатков

Изобретение относится к способу переработки тяжелых нефтяных остатков, включающему вакуумную перегонку мазута с выделением прямогонного вакуумного дистиллята и гудрона, коксование гудрона с последующим разделением жидких продуктов коксования на бензиновую, дизельную фракции и тяжелую газойлевую...
Тип: Изобретение
Номер охранного документа: 0002671640
Дата охранного документа: 06.11.2018
29.12.2018
№218.016.ac84

Катализатор селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья и способ его приготовления

Изобретение относится к катализатору селективного гидрообессеривания высокосернистого олефинсодержащего углеводородного сырья и способу его получения. Катализатор содержит как минимум один из следующих гетерополианионов [SiWO], [SiWO], [SiWO], [PWO], [PWO], [PWO], [Ni(OH)WO], [Fe(OH)WO] и...
Тип: Изобретение
Номер охранного документа: 0002676260
Дата охранного документа: 27.12.2018
20.02.2019
№219.016.bf71

Способ приготовления катализаторов для глубокой гидроочистки нефтяных фракций

Изобретение относится к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций. Описан способ приготовления катализатора для глубокой гидроочистки нефтяных фракций, включающий пропитку алюмооксидного носителя раствором соединений металлов VIII и VI групп,...
Тип: Изобретение
Номер охранного документа: 0002385764
Дата охранного документа: 10.04.2010
22.02.2019
№219.016.c5a2

Способ гидрогенизационной переработки углеводородного сырья

Изобретение относится к способу гидрогенизационной переработки углеводородного сырья и может быть использовано в нефтеперерабатывающей промышленности. Изобретение касается способа гидрогенизационной переработки углеводородного сырья, при котором сырье пропускают через реактор с неподвижным...
Тип: Изобретение
Номер охранного документа: 0002680386
Дата охранного документа: 20.02.2019
15.03.2019
№219.016.e0cc

Способ снижения содержания бензола в бензиновых фракциях

Изобретение относится к содержанию бензола в товарных бензинах. Заявлен способ снижения содержания бензола в бензиновых фракциях путем гидрирования и изомеризации в присутствии катализаторов при повышенных температуре и давлении сырья, состоящего из смеси фракции НК-85С стабильного риформата,...
Тип: Изобретение
Номер охранного документа: 0002322478
Дата охранного документа: 20.04.2008
29.04.2019
№219.017.4177

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Катализатор глубокой гидроочистки нефтяных фракций содержит оксид...
Тип: Изобретение
Номер охранного документа: 0002386476
Дата охранного документа: 20.04.2010
08.06.2019
№219.017.75b4

Способ получения канцерогенно безопасных ароматических наполнителей и пластификаторов каучука и резины

Изобретение относится к области нефтепереработки, а более конкретно к производству канцерогенно безопасных ароматических наполнителей и пластификаторов каучука и резины. Способ получения канцерогенно безопасных ароматических наполнителей и пластификаторов каучука и резины заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002690926
Дата охранного документа: 06.06.2019
09.06.2019
№219.017.7646

Способ восстановления активности цеолитсодержащего катализатора

Изобретение относится к способу восстановления активности цеолитсодержащего катализатора процесса изодепарафинизации дизельного топлива в присутствии водородсодержащего газа и может быть использовано в нефтепереработке. Предлагается способ восстановления активности цеолитсодержащего...
Тип: Изобретение
Номер охранного документа: 0002690947
Дата охранного документа: 07.06.2019
13.06.2019
№219.017.8103

Способ приготовления каталитически-сорбционного материала для удаления хлора и способ удаления хлорорганических соединений

Настоящее изобретение относится к способу приготовления каталитически-сорбционного материала для удаления хлора, включающему синтез инертного носителя, его пропитку растворами нитрата никеля и ацетата магния, причем в качестве компонента носителя, повышающего структурные характеристики, такие...
Тип: Изобретение
Номер охранного документа: 0002691071
Дата охранного документа: 10.06.2019
+ добавить свой РИД