×
27.01.2020
220.017.fa97

Результат интеллектуальной деятельности: Амиды, сочетающие адамантановый и монотерпеновый фрагменты, используемые в качестве ингибиторов ортопоксвирусов

Вид РИД

Изобретение

Аннотация: Изобретение относится к соединениям общей формулы 1a-f, где R - фрагменты (6,6-диметилбицикло[3.1.1]гепт-2-ен-2-ил)метила (1a, 1b), (6,6-диметилбицикло[3.1.1]гепт-2-ен-2-ил)этила (1c, 1d), (2,2,3-триметилциклопент-3-ен-1-ил)метила (1e, 1f), R - остаток 1- или 2-адамантана (1a-f), и 2. Технический результат: получены новые соединения, которые могут найти применение в медицине в качестве эффективных ингибиторов репродукции вирусов из рода Orthopoxvirus., обладающих высокой антивирусной активностью в сочетании с низкой токсичностью. 1 табл., 8 пр.

Изобретение относится к медицине, вирусологии и фармакологии, а именно к использованию соединений общей формулы 1a-g, где R1 фрагменты (6,6-диметилбицикло[3.1.1]гепт-2-ен-2-ил)метила (1a, 1b), (6,6-диметилбицикло[3.1.1]гепт-2-ен-2-ил)этила (1c, 1d), (2,2,3-триметилциклопент-3-ен-1-ил)метила (1e, 1f), R2 остаток 1- или 2-адамантана (1a-f), и 2 (включая их пространственные изомеры, в том числе стереоизомеры), в качестве ингибиторов репродукции ортопоксвирусов.

В 1980 г на Ассамблее Всемирной организации здравоохранения (ВОЗ) было объявлено об искоренении натуральной или черной оспы на планете, с этого же времени была прекращена вакцинация против вируса натуральной оспы (ВНО). Оспа стала первой болезнью в истории человечества, побежденной с помощью массовой вакцинации. В настоящее время, считается, что около 50% населения Земли не имеют иммунитета против ВНО. Вместе с тем, в отчете "Независимой консультативной группы по последствиям технологии синтетической биологии для общественного здравоохранения, связанных с оспой" для генерального директора ВОЗ было отмечено, что необходимо продолжение разработки новых низкомокулярных лекарственных средств [Идентификационный номер ВОЗ: WHO/HSE/PED/2015.1 (http://apps.who.int/iris/bitstream/10665/198357/l/WHO_HSE_PED_2015.1_eng.pdf?ua=1)]. Такой вывод связан с несколькими причинами. Во-первых, в настоящее время из-за климатических изменений существует угроза распространения ВНО из мерзлотных грунтов с останками умерших от оспы. Во-вторых, в связи с развитием и доступностью биотехнологий существует угроза воспроизведения ВНО или ему подобного вируса в террористических целях [Noyce R.S., Lederman S. & Evans D.H. PLoS One (2018) 13, 1-16]. Нельзя исключать также возможность нелегального хранения ВНО и преднамеренного использования против населения природных или рекомбинантных штаммов ВНО. Еще одним доводом в пользу разработки новых препаратов против ортопоксвирусов является то, что опасность для человека представляют и циркулирующие в популяциях животных другие ортопоксвирусы, например, вирусы оспы обезьян и оспы коров, которые эволюционируют, распространяются и периодически вызывают вспышки заболеваний среди людей. Например, последняя вспышка заболеваний у людей вирусом оспы обезьян была отмечена в Африке в 2016 г; стоит отметить, что смертность от этого заболевания может достигать 17% [Giulio D.B. Di & Eckburg Р.В. Lancet (2004) 4, 15-25; Mfinanga S. et al. Int. J. Infect. Dis. (2018) 78, 78-84].

В настоящее время в Российской Федерации нет официально зарегистрированных химиопрепаратов для защиты людей от ВНО и других патогенных для человека ортопоксвирусов. Есть единственный препарат, разрешенный для лечении натуральной оспы и оспы обезьян на территории США, - ST-246 (Tecovirimat, ТРОХХ®, N-(6,8-диоксо-7-азатрицикло[3.3.2.02,4]дец-9-ен-7-ил)-4-(трифторметил)бензамидметил, Рис. 1) [FDA approves the first drug with an indication for treatment of smallpox. FDA News Release, https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm613496.htm, 13.07.2018]. Еще один противооспенный препарат находится на стадии клинических испытаний (СМХ001 (Brincidofovir, 3-(пентадецилокси)пропил((S)-1-(4-амино-2-оксопиримидин-1(2H)-ил)-3-гидроксипропан-2-илокси)метилфосфонат)) [Ноу S.M. Drugs (2018) 78 (13), 1377-1382]. Препарат СМХ001 (Brincidofovir) представляет собой липофильный нуклеотидный аналог Цидофовира (Cidofovir, CDV, Vistide®) (Рис. 1). CDV (Vistide®) является противовирусным препаратом, используемым для лечения цитомегаловирусного ретинита, при этом он проявляет активность в летальных моделях ортопоксвирусной инфекции на мышах и обезьянах [Идентификационный номер ВОЗ: WHO/HSE/GAR/BDP/2010.3/RUS (http://whqlibdoc.who.int/hq/2010/WHO_HSE_GAR_BDP_2010.3_rus.pdf?ua=1)]. Было показано, что Цидофовир имеет низкую пероральную биодоступность и может быть токсичным для почек, кроме того этот препарат оказался не эффективным при его использовании после проявления оспенных поражений у зараженных ВНО обезьян. В случае же СМХ001, на моделях с применением мелких грызунов было обнаружено, что он не обеспечивает достаточный уровень защиты от летальной инфекции мышей вирусом эктромелии [Parker S., Chen N.G., Foster S. et al. Antiviral Res. 2012. 94(1). 44-53]. ST-246 был разработан SIGA Technologies Inc. (США). Его механизм действия отличается от механизма CDV, который ингибирует репликацию вирусной ДНК. Мишенью ST-246 является высококонсервативный вирусный кодируемый белок р37, присутствующий во всех ортопоксвирусах.

В 2010 г. ВОЗ был опубликован отчет "Научный обзор исследований вируса натуральной оспы 1999-2010 г" [Идентификационный номер ВОЗ: WHO/HSE/GAR/BDP/2010.3/RUS (http://whqlibdoc.who.int/hq/2010/WHO_HSE_GAR_BDP_2010.3_rus.pdf?ua=1)] и замечания консультативной группы независимых экспертов ВОЗ по обзору программы исследования натуральной оспы (AGIES) по данному обзору [Идентификационный номер ВОЗ: WHO/HSE/GAR/BDP/2010.4 (http://whqlibdoc.who.int/hq/2010/WHO_HSE_GAR_BDP_2010.4_rus.pdf?ua=1)]. Эксперты AGIES в отношении СМХ001 и ST-246 отметили следующее: "Развитие резистентности было описано во время проведения экспериментов по пассированию in vitro с участием каждого из этих лекарств… AGIES полагает, что на продвинутых стадиях разработки было бы желательно продолжать исследования в направлении создания дополнительных обладающих активностью против ортопоксвирусов лекарств, механизмы действия которых отличаются от механизмов действия лекарств, находящихся на продвинутых стадиях разработки."

Некоторые производные адамантана обладают противовирусной активностью [Wanka L., Iqbal K. & Schreiner P.R. Chem. Rev. (2013) 113, 3516-604]. Среди них обнаружен ингибитор вируса осповакцины 1H-индол-2,3-дион-3-(N-2-адамантилтиосемикарбозон) (3) (рис. 2), который после трехчасовой экспозиции в культуре клеток в концентрации 2 мкг/мл привел к снижению репродукции вируса осповакцины на 42% [Kreutzberger А., Н.-Н. & Stratmann J. Arch. Pharm. (Weinheim). (1984) 317, 767-771]. Выраженным ингибирующим действием на вирус осповакцины обладают некоторые замещенные аминоацетил-адамантиламины (например, соединение 4, рис. 2), аминоалкоксиацетил-адамантиламины (например, соединение 5, рис. 2) и тромантадин 6 [May G., Peteri D. Arzneimittel Forschung (Drug research) (1973) 23(5), S.718]. В работе [Kreutzberger A. & H.-H. Arch. Pharm. (Weinheim). (1974) 307, 766-774] показано, что N-1-адамантил-2,2-дифенилацетамид (7) (рис. 2) в концентрации 2 мкг/мл снижает репродукцию вируса осповакцины в культуре клеток от 72 до 100%. Однако в этих работах отсутствуют данные по токсичности соединений, что не дает возможности оценить практический потенциал этих соединений. В то же время, ряд 1-адамантил-тиосемикарбазонов (соединения 8-9, рис. 2) и тиокарбогидразонов (соединения 10-13, рис. 2) не проявили активности против вируса осповакцины [Kolocouris A. et al. Bioorganic Med. Chem. Lett. (2002) 12, 723-727]. Отметим, что для представленных соединений их активность на других типах ортопоксвирусов не изучалась.

Наиболее близким к заявляемым соединениям 1 и 2 прототипом, являются соединения 4, 6, 7. Однако для этих соединений отсутствуют данные об их активности в отношении других вирусов из рода Orthopoxvirus, а также ничего не известно об их токсичности, что делает невозможным оценку их практической применимости.

Задачей изобретения является создание нового класса эффективных ингибиторов репродукции вирусов из рода Orthopoxvirus., обладающих высокой антивирусной активностью в сочетании с низкой токсичностью и, соответственно, высоким индексом селективности.

Технический результат: расширение ассортимента ингибиторов репродукции ортопоксвирусов.

Поставленная задача решается новыми соединениями общей формулы 1a-f, где R1 фрагменты (6,6-диметилбицикло[3.1.1]гепт-2-ен-2-ил)метила (1а, 1b), (6,6-диметилбицикло[3.1.1]гепт-2-ен-2-ил)этила (1c, 1d), (2,2,3-триметилциклопент-3-ен-1-ил)метила (1e, 1f), R2 остаток 1- или 2-адамантана (1a-f), и 2 (включая их пространственные изомеры, в том числе оптически активные формы):

Соединения общей формулы 1 и 2, после проведения углубленных фармакологических исследований, могут использоваться, как в чистом виде, так и в качестве компонентов новых низкотоксичных высокоэффективных препаратов против вирусов из рода Orthopoxvirus.

Синтез амидов 1a-f осуществлялся по схеме 1 взаимодействием соответствующих хлорангидридов кислот 16а, b с аминами 15а-с (Схема 1).

Схема 1. Реагенты и условия: (i) Et3N, толуол; 0°С.

Для получения амидов типа 1a-f, содержащих адамантановый фрагмент, первоначально были синтезированы некоторые монотерпеновые амины.

Эти соединения могут быть получены, например, из миртенола (19) и нопола (20) по следующей схеме: взаимодействием спиртов с PBr3 с последующим превращением полученных бромпроизводных по реакции Габриеля в соответствующие амины (15а) и (15b) (Схема 2). Синтез амина (15с) осуществлялся восстановлением LiAlH4 оксима полученного из камфаленового альдегида 21 (Схема 2). Амины (15а), (15b) и (15с) были описаны ранее в работах [Midland М.М., Kazubski A.J. Org. Chem. (1992) 57, 2953-2956; Sen S.E., Roach S.L. Synthesis. (1994) 1995, 756-758; Паплавская И.А., Горяев М.И., ЖОХ, (1963) 33(5), 1495-1496]. Соединения (15а), (15b) и (15с) использовались далее без предварительной очистки.

Хлорангидрид 1-адамантан карбоновой кислоты (16а) - коммерчески доступный реагент. Его изомер, хлорангидрид 2-адаманатан карбоновой кислоты (16b), был синтезирован исходя из адамантанона-2 (22). Методика синтеза хлорангидрида (16b) включала получение соответствующего оксирана 23 взаимодействием 22 с триметилсульфоксонием иодидом [Mukherjee A. et al. J. Org. Chem. (1994) 59(12), 3270-3274], раскрытие эпоксидной группы до альдегидной, окисление альдегида 24 до кислоты 25 реагентом Джонса [Madder A. et al. J. Chem. Soc., Perkin Trans. (1997) 2. 12, 2787-2784]. Выход 2-адамантан карбоновой кислоты 25, после очистки хроматографией на силикагеле, составил 85%. Хлорангидрид 2-адамантан карбоновой кислоты (16b) был получен по методике [Molle G. et al. J. Org. Chem., (1982) 47(21), 4120-4128] кипячением кислоты 25 в SOCl2 (Схема 2).

Амиды 1a-f были получены взаимодействием хлорангидридов 16а, 16b и аминов 15а-с с выходами от 31 до 55%.

Синтез амида 2 осуществлялся по схеме 3 взаимодействием соответствующих хлорангидрида 17 с амином 18 (Схема 3).

Для синтеза амида типа 2 нами был получен хлорангидрид миртеновой кислоты (17) окислением миртеналя (19) хлоритом натрия в слабокислых условиях по методике [Pat. 6444687 US. Substituted imidazole neutopeptide Y Y5 Receptor antagonists / Stamford, A.A., Boyle, C.D.; Schering corporation (USA) - 03.09.02. - 26 pp. (Chem. Abstr. 2005:319778)] до соответствующей кислоты (Схема 3) и последующим кипячением с SOCl2. Взаимодействие (18) с 2-аминоадамантаном (18) привело к образованию соответствующего амида типа 2 (Схема 3).

Цитотоксичность и противовирусную активность синтезированных производных в отношении вирусов оспавакцины (штамм Копенгаген), оспы коров (Гришак) и оспы мышей (эктромелии, штамм К-1) оценивали с использованием адаптированного колориметрического метода в культуре клеток Vero [Селиванов Б.А., Тихонов А.Я., Беланов Е.Ф., Бормотов Н.И., и др. Химико-фармацевтический журнал. (2017) 51(6), 13-17]. В качестве положительного контроля использовался коммерчески доступный препарат Цидофовир (Heritage Consumer Products, LLC, США).

Изобретение иллюстрируется следующими примерами:

Спектральные исследования выполнены в Химическом исследовательском центре коллективного пользования СО РАН. Величины удельного вращения определяли на спектрометре PolAAr 3005. Удельное вращение выражено в (град⋅мл)⋅(г⋅дм)-1, концентрация раствора (г)⋅(100 мл)-1. Спектры ЯМР 1Н (δ, м.д., J/Гц) и 13С (δ, м.д.) регистрировали на спектрометре Bruker DRX-500 (1Н: 500.13 МГц, 13С: 125.76 МГц) для растворов веществ в CDCl3; в качестве внутреннего стандарта использовали остаточные сигналы хлороформа (δH 7.24, δC 76.90 м.д.). Строение полученных соединений установлено на основе анализа спектров ЯМР 1Н с привлечением спектров двойного резонанса 1Н - 1Н и двумерных спектров гомоядерной 1Н - 1Н корреляции (COSY), а также анализа спектров ЯМР 13С с привлечением двумерных спектров гетероядерной 13С - 1Н корреляции на прямых (COSY, 1JC,H 135 Гц) и дальних константах спин-спинового взаимодействия (COLOC, 2,3JC,H 10 Гц). Мультиплетность сигналов в спектрах ЯМР 13С определяли по спектрам, записанным в режиме J-модуляции (JMOD). Нумерация атомов в соединениях дана для отнесения сигналов в спектрах ЯМР и не совпадает с нумерацией атомов в номенклатурном названии. Масс-спектры высокого разрешения записывали на спектрометре DFS ThermoScientific в режиме полного сканирования в диапазоне m/z 0-500, ионизация электронным ударом 70 эВ при прямом вводе образца. Анализ фракций и наблюдения за ходом превращений осуществляли методом ГЖХ на приборе Agilent 7820А, кварцевая колонка НР-5 (сополимер 5%-дифенил-95%-диметоксисилоксан) длиной 30 м, внутренний диаметр 0.25 мм, толщина стационарной фазы 0.25 мкм, детектор пламенно-ионизационный, газ-носитель Не (скорость потока 2 мл/мин., деление потока 99:1), температурный режим 120-280°С, нагрев 20°С/мин.. Растворители перед использованием сушились и перегонялись.

Пример 1. N-(((1R,5S)-6,6-Диметилбицикло[3.1.1]гепт-2-ен-2-ил)метил)адаманатан-1-карбоксамид 1а.

К раствору монотерпенового амина (16а) (0.16 г, 1 ммоль, 1 экв) в толуоле (7 мл) при 0°С прикапывали раствор хлорангидрида 1- адамантан карбоновой кислоты (17а) (0.2 г, 1 ммоль, 1 экв) и триэтиламина (0.17 мл, 1.2 ммоль, 1.2 экв) в толуоле (3 мл). Реакционную смесь перемешивали 10 минут при комнатной температуре, растворитель отгоняли, остаток растворяли в EtOAc (25 мл), и промывали последовательно водными растворами 5% NaOH (20 мл), 5% HCl (20 мл) и насыщенным раствором NaCl (20 мл). Органическую фазу сушили над Na2SO4, упаривали. Амиды 1а выделили в чистом виде методом колоночной хроматографии с выходом 32%.

N-(((1R,5S)-6,6-Диметилбицикло[3.1.1]гепт-2-ен-2-ил)метил)адаманатан-1-карбоксамид 1а.

1Н-ЯМР (CDCl3): 0.81 (с, 3Н, Н-22); 1.12 (д, J(20анти, 20син)=8.6 Гц, 1Н, Нанти-20); 1.24 (с, 3Н, Н-21); 1.64-1.74 (м, 6Н, 2Н-4, 2Н-6, 2Н-10); 1.82 (д, 6Н, 3J=3.0 Гц, 2Н-2, 2Н-8, 2Н-9); 1.99 (ддд, 1Н, J(19, 17)=J(19, 20син)=5.6 Гц, J(19, 15)=1.5 Гц, Н-19); 1.99-2.03 (м, 3Н, Н-3, Н-5, Н-7); 2.05-2.09 (м, 1Н, Н-17); 2.18 (д.м, 1Н, 2J=17.7 Гц, Н-16); 2.25 (д.м, 1Н, 2J=17.7 Гц, Н'-16); 2.35 (ддд, 1Н, J(20син, 20анти)=8.6 Гц, J(20син, 17)=J(20син, 19)=5.6 Гц, Нсин-20); 3.69 (ддм, 1Н, 2J=15.6 Гц, J(13, NH)=5.4 Гц, Н-13); 3.78 (ддм, 1Н, 2J=15.2, J(13', NH)=6.0 Гц, Н'-13); 5.32-5.35 (м, 1Н, Н-15); 5.45-5.52 (ш.м 1Н, NH).

13С-ЯМР (CDCl3): 40.58 (с, C-1), 39.26 (т, С-2, С-8, С-9), 28.04 (д, С-3, С-5, С-7), 36.43 (т, С-4, С-6, С-10), 177.54 (с, С-11), 43.70 (т, С-13), 144.82 (с, С-14), 118.20 (д, С-15), 31.02 (т, С-16), 40.65 (д, С-17), 37.82 (с, С-18), 43.90 (д, С-19), 31.39 (т, С-20), 26.00 (к, С-21), 21.13 (к, С-22).

HR MS: 313.2396 (М+, C21H31O1N1+; вычислено 313.2400).

Пример 2. N-(((1R,5S)-6,6-Диметилбицикло[3.1.1]гепт-2-ен-2-ил)метил)адамантан-2-карбоксамид 1b.

Амиды 1b был получен по методике приведенной в примере 1 с выходом 46%.

1Н-ЯМР (CDCl3): 0.80 (с, 3Н, Н-22); 1.13 (д, J(20анти, 20син)=8.7 Гц, 1H, Нанти-20); 1.24 (с, 3H, Н-21); 1.57-1.62 (м, 2Н, Н-4, Н-9); 1.69-1.77 (м, 4Н, 2Н-6, Н-8, Н-10); 1.80-1.84 (м, 1Н, Н-5 или Н-7); 1.84-1.95 (м, 5Н, Н'-4, Н-7 или Н-5, Н'-8, Н'-9, Н'-10); 2.04 (ддд, 1Н, J(19, 17)=J(19, 20син)=5.6 Гц, J(19, 15)=1.4 Гц, Н-19); 2.05-2.09 (м, 1Н, Н-17); 2.18 (дм, 1Н, 2J=17.7 Гц, Н-16); 2.20-2.28 (м, 3H, Н-1, Н-3, Н'-16); 2.35 (ддд, 1Н, J(20син, 20анти)=8.7 Гц, J(20син, 17)=J(20син, 19)=5.6 Гц, Нсин-20); 2.42-2.45 (м, 1Н, Н-2); 3.76 (ддм, 1Н, 2J=15.1 Гц, J(13, NH)=6.0 Гц, Н-13); 3.83 (ддм, 1Н, 2J=15.1 Гц, J(13', NH)=6.0 Гц, Н'-13); 5.34-5.37 (м, 1Н, Н-15); 5.45-5.56 (ш.м, 1Н, NH).

13С-ЯМР (CDCl3): 30.00 д и 29.81 д (С-1, С-3), 49.98 (д, С-2), 33.21 т и 33.28 т (С-4, С-9), 27.30 д и 27.39 д (С-5, С-7), 37.26 (т, С-6), 38.25 (т, С-8, С-10), 173.71 (с, С-11), 43.85 (т, С-13), 144.92 (с, С-14), 118.47 (д, С-15), 31.03 (т, С-16), 40.65 (д, С-17), 37.83 (с, С-18), 43.93 (д, С-19), 31.44 (т, С-20), 25.99 (к, С-21), 21.02 (к, С-22).

HR MS: 313.2402 (M+, C21H31O1N1+; вычислено 313.2400).

Пример 3. N-(2-((1R,5S)-6,6-Диметилбицикло[3.1.1]гепт-2-ен-2-ил)этил)адамантан-1-карбоксамид 1с.

Амиды 1с был получен по методике, приведенной в примере 1 с выходом 31%.

1Н-ЯМР (CDCl3): 0.81 (с, 3H, Н-23); 1.08 (д, 1Н, 2J=8.6 Гц, Нанти-21); 1.24 (с, 3H, Н-22); 1.62-1.73 (м, 6Н, 2Н-4, 2Н-6, 2Н-10); 1.79 (д, 6Н, 3J=3.0 Гц, 2Н-2, Н-8, 2Н-9); 1.97-2.04 (м, 4Н, Н-3, Н-5, Н-7, Н-20); 2.05-2.14 (м, 3H, 2Н-14, Н-18); 2.19 (дм, 1Н, 2J=17.7 Гц, Н-17); 2.25 (дм, 1Н, 2J=17.7 Гц, Н'-17); 2.36 (ддд, 1Н, 2J=8.6 Гц, J(21цис, 18)=J(21цис, 20)=5.6 Гц, Нцис-21); 3.14-3.29 (м, 2Н, 2Н-13); 5.25-5.28 (м, 1Н, Н-16); 5.59 (ш.с, 1Н, NH).

13С-ЯМР (CDCl3): 40.41 (с, С-1), 39.12 (т, С-2, С-8, С-9), 28.00 (д, С-3, С-5, С-7), 36.41 (т, С-4, С-6, С-10), 177.57 (с, С-11), 36.36 (т, С-13), 36.30 (т, С-14), 145.47 (с, С-15), 118.59 (д, С-16), 31.24 (т, С-17), 40.54 (д, С-18), 37.72 (с, С-19), 45.10 (д, С-20), 31.67 (т, С-21), 26.05 (к, С-22), 21.12 (к, С-23).

HR MS: 327.2552 (M+, C22H33O1N1+; вычислено 327.2557).

Пример 4. N-(2-((1R,5S)-6,6-Диметилбицикло[3.1.1]гепт-2-ен-2-ил)этил)адамантан-2-карбоксамид 1d.

Амиды 1d был получен по методике приведенной в примере 1 с выходом 31%.

1Н-ЯМР (CDCl3): 0.78 (с, 3H, Н-23); 1.06 (д, 1Н, 2J=8.7 Гц, Нанти-21); 1.22 (с, 3H, Н-22); 1.53-1.58 (ш.д, 2Н, 2J=12.8 Гц, Н-4, Н-9); 1.66-1.73 (м, 4Н, 2Н-6, Н-8, Н-10); 1.76-1.80 (м, 1Н, Н-5 или Н-7); 1.81-1.91 (м, 5Н, Н'-4, Н-7 или Н-5, Н'-8, Н'-9, Н'-10); 2.01 (ддд, 1Н, J(20, 18)=J(20, 21цис)=5.6 Гц, J(20, 16)=1.3 Гц, Н-20); 2.03-2.07 (дм, 1Н, Н-18); 2.09-2.24 (м, 6Н, Н-1, Н-3, 2Н-14, 2Н-17); 2.33 (ддд, 1Н, 2J=8.7 Гц, J(21цис, 18)=J(21цис, 20)=5.6 Гц, Нцис-21); 2.36-2.39 (м, 1Н, Н-2); 5.23-5.26 (м, 1Н, Н-16); 5.64-5.70 (ш.м, 1Н, NH).

13С-ЯМР (CDCl3): 29.75 д и 29.80 1 (С-1, С-3), 49.85 (д, С-2), 33.12 т и 33.13 (С-4, С-9), 27.23 д и 27.31 д (С-5, С-7), 37.19 (т, С-6), 38.19 (т, С-8, С-10), 173.63 (с, С-11), 36.49 (т, С-13, С-14), 145.38 (с, С-15), 118.35 (д, С-16), 31.17 (т, С-17), 40.52 (д, С-18), 37.69 (с, С-19), 45.14 (д, С-20), 31.55 (т, С-21), 26,02 (к, С-22); 20.95 (к, С-23).

HR MS: 327.2560 (M+, C22H33O1N1+; вычислено 327.2557).

Пример 5. N-(2-((R)-2,2,3-Триметилциклопент-3-ен-1-ил)этил)адамантан-1-карбоксамид 1е.

Амиды 1е был получен по методике приведенной в примере 1 с выходом 55%.

1Н-ЯМР (CDCl3): 0.71 (с, 3H, Н-21); 0.92 (с, 3H, Н-20); 1.35-1.43 (м, 1Н, Н-14); 1.55 (м, 3H, Н-22); 1.55-1.72 (м, 8Н, 2Н-4, 2Н-6, 2Н-10, Н'-14, Н-15); 1.80 (д, 6Н, 3J=3.0, 2Н-2, 2Н-8, 2Н-9); 1.80-1.85 (м, 1Н, Н-19); 1.97-2.01 (м, 3H, Н-3, Н-5, Н-7); 2.23-2.29 (м, 1Н, Н-19'); 3.13-3.20 (м, 1Н, Н-13); 3.23-3.30 (м, 1Н, Н'-13); 5.16-5.19 (м, 1Н, Н-18); 5.62 (ш.с, 1Н, NH).

13С-ЯМР (CDCl3): 40.36 (с, С-1), 39.14 (т, С-2, С-8, С-9), 27.99 (д, С-3, С-5, С-7), 36.38 (т, С-4, С-6, С-10), 177.62 (с, С-11), 38.68 (т, С-13), 29.92 (т, С-14), 47.93 (д, С-15), 46.66 (с, С-16), 148.35 (с, С-17), 121.42 (д, С-18), 35.37 (с, С-19), 25.56 (к, С-20), 19.51 (к, С-21), 12.41 (к, С-22).

HR MS: 315.2553 (M+, C21H33O1N1+; вычислено 315.2557).

Пример 6. N-(2-((R)-2,2,3-Триметилциклопент-3-ен-1-ил)этил)адамантан-1-карбоксамид 1f.

Амиды 1f был получен по методике приведенной в примере 1 с выходом 55%.

Выход 55%. 1Н-ЯМР (CDCl3): 0.74 (с, 3H, Н-21); 0.95 (с, 3H, Н-20); 1.39-1.47 (м, 1Н, Н-14); 1.58 (м, 3H, все J <3.0 Гц, Н-22); 1.58-1.67 (м, 3H, Н-4, Н-9, Н'-14); 1.70-1.77 (м, 5Н, 2Н-6, Н-8, Н-10, Н-15); 1.79-1.95 (м, 7Н, Н'-4, Н-5, Н-7, Н'-8, Н'-9, Н'-10, Н-19); 2.22-2.26 (м, 2Н, Н-1, Н-3); 2.30 (ддм, 1Н, 2J=15.3, J(19', 15)=7.8, другие J ≤ 3.0 Гц, Н'-19); 2.41 (ш.с, 1Н, Н-2); 3.20-3.28 (м, 1H, Н-13); 5.19-5.22 (м, 1H, Н-18); 5.64 (ш.с, 1Н, NH).

13С-ЯМР (CDCl3): 29.89 д и 29.94 д (С-1, С-3), 49.89 (д, С-2), 33.22 т (т, С-4, С-9), 27.29 д и 27.39 д (С-5, С-7), 37.27 (т, С-6); 38.27 (т, С-8, С-10); 173.90 (с, С-11), 38.73 (т, С-13), 30.11 (т, С-14), 47.90 (д, С-15), 46,72 (с, С-16), 148.44 (с, С-17), 121.46 (д, С-18), 35.36 (т, С-19), 25.64 (к, С-20), 19.59 (к, С-21), 12.47 (к, С-22).

HR MS: 315.2558 (M+, C21H33O1N1+; вычислено 315.2557).

Пример 7. (1R,5S)-N-(Адамантан-2-ил)-6,6-диметилбицикло[3.1.1]гепт-2-ен-2-карбоксамид 1g.

К раствору 2-аминоадамантана (19) (0.15 г, 1 ммоль, 1 экв) в толуоле (7 мл) при 0°С прикапывали раствор хлорангидрида кислоты (18) (0.2 г, 1 ммоль, 1 экв) и триэтиламина (0.17 мл, 1.2 ммоль, 1.2 экв) в толуоле (3 мл). Реакционную смесь перемешивали 24 часа при комнатной температуре, растворитель отгоняли, остаток растворяли в EtOAc (25 мл), и промывали последовательно водными растворами 5% NaOH (20 мл), 5% HCl (20 мл) и насыщенным раствором NaCl (20 мл). Органическую фазу сушили над Na2SO4, упаривали. Полученный 1g амид выделяли колоночной хроматографией с выходом 30%.

1Н-ЯМР (CDCl3): 0.80 (с, 3H, Н-21); 1.15 (д, J(19анти, 19син)=9.0 Гц, 1Н, Нанти-19); 1.31 (с, 3H, Н-20); 1.61-1.65 (м, 2Н, Н-4, Н-9); 1.71-1.76 (м, 4Н, Н'-4, 2Н-6, Н'-9); 1.79-1.86 (м, 6Н, Н-5, Н-7, 2Н-8, 2Н-10); 1.90-1.94 (м, 2Н, Н-1, Н-3); 2.09-2.13 (м, 1Н, Н-16); 2.33 (ддд, 1Н, 2J=19.0 Гц, J(15, 14)=J(15, 16)=3.0, Н-15); 2.39 (ддд, 1Н, 2J=19.0 Гц, J(15', 14)=J(15', 16)=3.0, Н'-15); 2.44 (ддд, 1Н, J(19син, 19анти)=9.0 Гц, J(19син, 16)=J(19син, 18)=5.7 Гц, Нсин-19); 2.60 (ддд, 1Н, J(18, 16)=J(18, 19син)=5.7 Гц, J(18, 14)=1.7 Гц, Н-18); 4.03-4.07 (м, 1Н, Н-2); 5.98 (ш.д, 1Н, J(11, 2)=8.0 Гц, NH); 6.30-6.33 (м, 1Н, Н-14).

13С-ЯМР (CDCl3): 31.77 д и 31.78 д (С-1, С-3), 52.85 (д, С-2), 31.96 т и 31.97 т (С-4, С-9), 27.00 д и 27.13 д (С-5, С-7), 37.42 (т, С-6); 36.98 (т, С-8, С-10); 166.21 (с, С-12), 144.27 (с, С-13), 127.93 (д, С-14), 31.52 (т, С-15), 40.37 (д, С-16), 37.69 (с, С-17), 42.01 (д, С-18), 31.32 (т, С-19), 25.90 (к, С-20), 20.85 (к, С-21).

HR MS: 299.2242 (М+, C20H29O1N1+; вычислено 299.2244).

Пример 8. Определение цитотоксичности и противовирусного действия соединений 1 a-f и 2 в отношении вирусов осповакцины (штамм Копенгаген), оспы коров (Гришак) и оспы мышей (штамм К-1) в культуре клеток Vero

Цитотоксичность и противовирусную активность синтезированных производных в отношении вирусов оспавакцины, оспы коров и оспы мышей оценивали с использованием адаптированного колориметрического метода в культуре клеток Vero [Селиванов Б.А., Тихонов А.Я., Беланов Е.Ф., Бормотов Н.И., и др. Химико-фармацевтический журнал. (2017) 51(6), 13-17]. В качестве положительного контроля использовался коммерчески доступный препарат Cidofovir (HeritageConsumerProducts, LLC, США).

В работе были использованы типичные представители ортопоксвирусов - вирус осповакцины (штамм Копенгаген), оспы коров (Гришак) и эктромелии (оспы мышей, штамм К-1), полученные из Государственной коллекции возбудителей вирусных инфекций и риккетсиозов ФБУН ГНЦ БВ «Вектор» Роспотребнадзора.

Вирусы нарабатывали в культуре клеток Vero. Концентрацию вирусов в культуральной жидкости определяли путем титрования методом бляшек в культуре клеток Vero, рассчитывали и выражали в десятичных логарифмах бляшко-образующих единиц в 1 мл (lg БОЕ/мл). Концентрация вирусов в использованных в работе образцах составляла от 5,6 до 6,1 lg БОЕ/мл. Наработанные и использованные в работе серии вирусов с указанным титром хранили при -70°С.

Оценку противовирусной эффективности препаратов проводили по адаптированной и модифицированной нами методике [Селиванов Б.А., Тихонов А.Я., Беланов Е.Ф., Бормотов Н.И., и др. Химико-фармацевтический журнал. (2017) 51(6), 13-17]. В качестве препарата сравнения использовали коммерчески доступный препарат Цидофовир (Cidofovir, Vistide) производства GileadSciencesInc. (США).

В лунки 96-луночных планшетов, содержащих монослой клеток Vero в 100 мкл среды DMEM с 2% эмбриональной сыворотки, сначала вносили по 50 мкл серийных разведений исследуемых соединений, а потом - по 50 мкл разведения ортопоксвируса в дозе 1000 БОЕ/лунку. Токсическая активность соединений определялась по гибели клеток под воздействием препарата в лунках планшета, в которые вирус не вносили. В качестве контролей использовали монослои клеток в лунках планшета, в которые вносили вирус без соединений (контроль вируса) и монослои клеток в лунках, в которые не вносили ни вирус, ни соединения (контроль культуры клеток). После инкубирования в течение 4 сут, монослой клеток окрашивали витальным красителем нейтральным красным в течение 1,5 ч. После удаления красителя и отмывки лунок от его несвязавшейся фракции добавляли лизирующий буфер. Количество красителя, адсорбированное живыми клетками монослоя, оценивали по оптической плотности (ОП), которая является показателем количества неразрушенных под влиянием вируса клеток в монослое. ОП измеряли на спектрофотометре Emax (MolecularDevices, США) при длине волны 490 нм. Учет результатов проводили с использованием планшетного спектрофотометра Emax и программы SoftMax 4.0 (MolecularDevices, США), которая автоматически рассчитывала 50% цитотоксическую концентрацию (ТС50 в мкг/мл) и 50% вирус ингибирующую (эффективную) концентрацию (IC50 в мкг/мл) препаратов. В таблице 1 приведены пересчитанные данные в мкмоль/л. По соотношению 50% цитотоксической и эффективной концентраций определяли индекс селективности (SI) препарата в отношении вируса: SI=TC50/IC50 (таблица 1).

Примечание: ТС50 - 50%-я цитотоксическая концентрация, при которой разрушаются 50% клеток в неинфицированном монослое; IC50 - 50%-я вирус ингибирующая концентрация, при которой сохраняется 50% клеток в инфицированном монослое; в виде M±Sm, где М - среднее, Sm - стандартное отклонение, n=3 - число измерений ТС50 и IC50; SI - индекс селективности препарата (TC50/IC50).

Наибольшую активность амиды типа 1a-f и 2 показали в отношении вируса осповакцины (штамм Копенгаген) и оспы мышей (штамм К-1). При этом стоит отметить, что при сравнении производных 1-адамантан карбоновой кислоты (соединения 1а, 1с, 1е) и 2-адамантан карбоновой кислоты (соединения 1b, 1d, 1f) первые оказываться более активными (Таблица 1). Данная тенденция наблюдается для всех типов изучаемых ортопоксвирусов: вирус осповакцины (штамм Копенгаген), вирусы оспы коров (штамм Гришак) и оспы мышей (эктромелии, штамм К-1). Все исследованные соединения 1 и 2 оказались на порядок более активными в отношении вируса осповакцины (ВОВ), чем препарат сравнения Цидофовир.

Практически все исследуемые соединения оказались менее цитотоксичными, чем препарат сравнения Цидофовир в два и более раз, только амиды 1d и 1f показали сравнимую с Цидофовир токсичность для клеток линии Vero (Таблица 1).

Благодаря сочетанию высокой активности и низкой цитотоксичности, разработанные соединения 1 и 2 обладают высоким индексом селективности, что делает перспективным их практическое применение.

Таким образом, нами обнаружен новый тип высокоэффективных низкотоксичных ингибиторов ортопоксвирусов.


Амиды, сочетающие адамантановый и монотерпеновый фрагменты, используемые в качестве ингибиторов ортопоксвирусов
Амиды, сочетающие адамантановый и монотерпеновый фрагменты, используемые в качестве ингибиторов ортопоксвирусов
Источник поступления информации: Роспатент

Показаны записи 101-110 из 132.
12.02.2020
№220.018.0174

Искусственные гены, кодирующие белки-иммуногены ev.ctl и ev.th, рекомбинантные плазмидные днк pev.ctl и pev.th, обеспечивающие экспрессию искусственных генов, и искусственные т-клеточные полиэпитопные белки-иммуногены ev.ctl и ev.th, содержащие эпитопы антигенов вируса эбола, используемые для создания вакцины против вируса эбола

Изобретение относится к области биотехнологии и молекулярной биологии. Предложены искусственные гены, используемые для создания вакцины против вируса Эбола, кодирующие искусственный Т-клеточный белок-иммуноген EV.CTL и Т-клеточный белок-иммуноген EV.Th соответственно, со свойствами антигенов...
Тип: Изобретение
Номер охранного документа: 0002713723
Дата охранного документа: 06.02.2020
13.02.2020
№220.018.0244

4,7-диметил-3,4,4a,5,8,8a-гексагидроспиро[хромен-2,1'-циклогексан]-4,8-диол в качестве анальгезирующего средства

Изобретение относится к 4,7-диметил-3,4,4a,5,8,8a-гексагидроспиро[хромен-2,1'-циклогексан]-4,8-диолу общей формулы 1, включая его пространственные изомеры, в том числе оптически активные формы. Технический результат – получено новое соединение, которое может найти применение в медицине в...
Тип: Изобретение
Номер охранного документа: 0002713946
Дата охранного документа: 11.02.2020
15.03.2020
№220.018.0c46

Штамм базидиального гриба inonotus obliquus - продуцент пигмента меланина, обладающего противовирусной и противоопухолевой активностью

Изобретение относится к биотехнологии. Штамм базидиального гриба Inonotus obliquus TV-18, обладающий противовирусной и противоопухолевой активностями, депонирован в коллекции бактерий, бактериофагов и грибов ФБУН ГНЦ ВБ Вектор под регистрационным номером F-1375. Штамм базидиального гриба...
Тип: Изобретение
Номер охранного документа: 0002716590
Дата охранного документа: 12.03.2020
18.03.2020
№220.018.0ce6

Пероральная лекарственная форма препарата в капсулах для лечения и профилактики заболеваний, вызываемых ортопоксвирусами

Изобретение относится к пероральной лекарственной форме препарата в капсулах, эффективной против ВНО (вируса натуральной оспы) и других патогенных для человека и животных ортопоксвирусов, и может быть использовано в области фармацевтики, вирусологии, медицины и ветеринарии. Готовая...
Тип: Изобретение
Номер охранного документа: 0002716709
Дата охранного документа: 16.03.2020
30.03.2020
№220.018.118f

Способ получения антигена вируса зика, обладающего иммуногенными и антигенными свойствами

Изобретение относится к области биотехнологии. Изобретение представляет собой способ получения инактивированного, концентрированного и очищенного антигена вируса Зика (ZIKV). Техническим результатом изобретения является повышение выхода антигена вируса Зика и создание более щадящих условий...
Тип: Изобретение
Номер охранного документа: 0002717993
Дата охранного документа: 27.03.2020
05.06.2020
№220.018.2430

Способ получения биологически активных компонентов из клеток дрожжей saccharomyces cerevisiae и лечебное средство на их основе

Предложены способ получения суммарной РНК и полисахарида зимозана из клеток дрожжей Saccharomyces cerevisiae, штамм ВКПМ Y-448 и лечебное средство на их основе. Способ характеризуется тем, что он включает разрушение клеток дрожжей в буфере с рН 7,4, содержащем 10 мМ Трис, 20 мМ ЭДТА и 0,5 М...
Тип: Изобретение
Номер охранного документа: 0002722731
Дата охранного документа: 03.06.2020
29.06.2020
№220.018.2cd3

Средство для ингибирования фермента тирозил-днк-фосфодиэстеразы 1 человека на основе фенилкумаринов, сенсибилизирующее опухоли к действию противоопухолевых агентов

Изобретение относится к применению соединений, представляющих собой производные фенилкумаринов общей формулы I, в которой R = Н, F, Br, -OMe, R = бензил; 3,7-диметилокта-2,6-диен-1-ил; (6,6-диметилбицикло[3.1.1]гепт-2-ен-2-ил)метил или (6,6-диметилбицикло[3.1.1]гепт-2-ен-2-ил)этил, в качестве...
Тип: Изобретение
Номер охранного документа: 0002724878
Дата охранного документа: 26.06.2020
29.06.2020
№220.018.2cec

1,1'-(гексан-1,6-диил)бис(3-(((1r,4as,10ar)-7-изопропил-1,4а-диметил-1,2,3,4,4а,9,10,10а-октагидрофенантрен-1-ил)метил)мочевина, проявляющая ингибирующее действие в отношении фермента тирозил-днк-фосфодиэстеразы 1 человека и увеличивающая активность темозоломида в отношении клеток глиобластомы

Изобретение относится к применению 1,1'-(гексан-1,6-диил)бис(3-(((1R,4aS,10aR)-7-изопропил-1,4а-диметил-1,2,3,4,4а,9,10,10а-октагидрофенантрен-1-ил)метил)мочевины формулы I в качестве ингибитора фермента тирозил-ДНК-фосфодиэстеразы 1 человека, проявляющего синергетический эффект с темозоломидом...
Тип: Изобретение
Номер охранного документа: 0002724882
Дата охранного документа: 26.06.2020
18.07.2020
№220.018.3453

Карбоксамиды изопимаровой кислоты, обладающие анальгетической активностью

Изобретение относится к карбоксамидам изопимаровой кислоты формулы (Iа, б), в которой Iа:R=NHCHCHOH, Iб:R=(2)-(гидроксиметил)пирролидин-1-ил. Технический результат: получены новые карбоксамиды изопимаровой кислоты, обладающие анальгетической активностью. 2 табл., 7 пр.
Тип: Изобретение
Номер охранного документа: 0002726613
Дата охранного документа: 15.07.2020
08.08.2020
№220.018.3e09

Комплексный биологический инсектицидный препарат против непарного шелкопряда lymantria dispar

Изобретение относится к области биотехнологии. Изобретение представляет собой комплексный биологический инсектицидный препарат против личинок непарного шелкопряда (НШ) Lymantria dispar, являющихся опасным вредителем лесных и сельскохозяйственных культур и может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002729465
Дата охранного документа: 06.08.2020
Показаны записи 101-110 из 146.
21.03.2019
№219.016.ec1a

Панель сывороток, содержащих антитела к антигенам hcv разных субтипов

Изобретение относится к области медицины, а именно биотехнологии и иммунологии, и может быть использовано в технологии изготовления панелей сывороток, содержащих антитела к вирусам гепатита С разных субтипов. Положительная часть панели включает образцы плазмы пациентов, положительных на РНК...
Тип: Изобретение
Номер охранного документа: 0002456617
Дата охранного документа: 20.07.2012
08.04.2019
№219.016.fe9a

Полиэпитопная противоопухолевая вакцинная конструкция, содержащая эпитопы опухоль-ассоциированных антигенов, фармацевтическая композиция и ее применение для стимуляции специфического противоопухолевого иммунного ответа

Изобретение относится к области биохимии. Предложены иммуногенные полиэпитопные вакцинные конструкции, содержащие эпитопы опухоль-ассоциированных антигенов - ЦТЛ-эпитопы и Т-хелперные эпитопы - и оптимизированные спейсерные последовательности. Изобретение может быть использовано для...
Тип: Изобретение
Номер охранного документа: 0002684235
Дата охранного документа: 04.04.2019
10.04.2019
№219.017.07ce

Противоопухолевое средство тритерпеновой природы, полученное путем модификации глицирретовой кислоты

Изобретение относится к новому химическому соединению, а именно к метиловому эфиру 2-циано-3,12-диоксо-1(2),11(9)-диен-11-дезоксоглицирретовой кислоты формулы (1): которое может быть использовано в медицине в качестве лекарственного средства, обладающего противоопухолевым действием. 1 табл., 3...
Тип: Изобретение
Номер охранного документа: 0002401273
Дата охранного документа: 10.10.2010
17.04.2019
№219.017.1540

Способ получения рабочих стандартов сывороток, содержащих ay и ad субтипы hbsag

Изобретение относится к области иммунологии и может быть использовано в технологии изготовления контрольных образцов для тест-систем для выявления HBsAg. Сущность изобретения состоит в том, что отбор разводящих сывороток проводят путем анализа донорских сывороток методами иммуноферментного...
Тип: Изобретение
Номер охранного документа: 0002271011
Дата охранного документа: 27.02.2006
19.04.2019
№219.017.2f8d

Противосудорожное средство

Изобретение относится к лекарственным средствам и касается применения этилового эфира (1S,2S,3R,5S)-2-амино-2,6,6-триметилбицикло[3.1.1]гептан-3- карбоновой кислоты формулы 1 в качестве противосудорожного средства. Предложенное средство отличается отсутствием влияния на психолокомоторную...
Тип: Изобретение
Номер охранного документа: 0002370260
Дата охранного документа: 20.10.2009
19.04.2019
№219.017.303b

Лекарственное средство с гиполипидемическим эффектом "симваглизин"

Изобретение относится к лекарственным средствам, а именно к новому лекарственному средству, обладающему гиполипидемическим эффектом и представляющему собой молекулярный комплекс симвастатина с β-глицирризиновой кислотой при мольном соотношении симвастатин: β-глицирризиновая кислота 1:(1-4)....
Тип: Изобретение
Номер охранного документа: 0002308947
Дата охранного документа: 27.10.2007
27.04.2019
№219.017.3e07

Корректор цитостатической полихимиотерапии

Изобретение относится к корректорам цитостатической полихимиотерапии. В качестве корректора предлагается использовать β-аланиламид бетулоновой кислоты формулы (I): который потенцирует противоопухолевый эффект и антиметастатическую активность полихимиотерапии (ПХТ), проявляет антиоксидантное и...
Тип: Изобретение
Номер охранного документа: 0002353623
Дата охранного документа: 27.04.2009
09.05.2019
№219.017.4f7e

Способ получения 3,4-эпоксикарана из 3-карена с одновременным получением 3-карен-5-она и 3-карен-2,5-диона

Изобретение относится к области химии терпеновых соединений, а именно к способу получению 3,4-эпоксикарана формулы I с одновременным получением 3-карен-5-она формулы II и 3-карен-2,5-диона формулы III, заключающемуся в следующем: 3-карен обрабатывают разбавленной перекисью водорода в...
Тип: Изобретение
Номер охранного документа: 0002400465
Дата охранного документа: 27.09.2010
10.05.2019
№219.017.5154

N-гетероциклические производные борниламина в качестве ингибиторов ортопоксвирусов

Изобретение относится к новым соединениям общей формулы I а-с. Технический результат: получены новые соединения, которые могут использоваться в качестве ингибиторов репродукции ортопоксвирусов. 2 табл., 2 пр.
Тип: Изобретение
Номер охранного документа: 0002687254
Дата охранного документа: 08.05.2019
18.05.2019
№219.017.56cf

Способ получения усниновой кислоты

Изобретение относится к химико-фармацевтической промышленности. Проводят экстракцию смеси лишайников родов Usnea и Cladonia органическим растворителем (хлороформ, четыреххлористый углерод, ацетон, гексан, петролейный эфир, нефрас и смеси перечисленных растворителей) с последующим выделением...
Тип: Изобретение
Номер охранного документа: 0002317076
Дата охранного документа: 20.02.2008
+ добавить свой РИД