×
06.12.2019
219.017.e9c0

Результат интеллектуальной деятельности: Катализатор совместной гидроочистки смеси растительного и нефтяного углеводородного сырья и способ его приготовления

Вид РИД

Изобретение

Аннотация: Изобретение относится к катализатору совместной гидроочистки смеси растительного и нефтяного углеводородного сырья. Данный катализатор включает в свой состав кобальт, никель, молибден и оксид алюминия, причем он содержит в прокаленном при 550°С состоянии: Мо - 9,0-15,0% мас., Со - 0,5-3,5% мас. и Ni - 0,5-3,5% мас., остальное - пористый носитель с содержанием углерода 0-5% мас.; катализатор имеет удельную поверхность 100-250 м/г, удельный объем пор 0,3-1,1 см/г, средний диаметр пор 4,0-10,0 нм. Способ приготовления данного катализатора включает пропитку носителя по влагоемкости с последующей сушкой, причем вакуумированный носитель, содержащий оксид алюминия, однократно пропитывают водным раствором предшественников активных компонентов, содержащим молибденовую гетерополикислоту, комплексонат никеля или кобальта с карбоновой кислотой. Технический результат - увеличение активности и стабильности катализатора в процессе совместной гидроочистки смеси растительного и нефтяного углеводородного сырья. 2 н. и 3 з.п. ф-лы, 2 табл., 10 пр.

Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для гидроочистки растительного и нефтяного углеводородного сырья, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

В связи с ростом потребления энергоресурсов в мире и необходимостью поиска их возобновляемых источников все большее внимание привлекают процессы получения топлив и органических соединений на базе растительного углеводородного сырья [Bahadar A., BilalKhan М. // Renew. Sust. Energ. Rev. 2013. V. 27. P. 128, Кохберг Л.М. Прогноз научно-технологического развития России: 2030. Министерство образования и науки Российской Федерации, Национальный исследовательский университет «Высшая школа экономики». Москва, 2014. 244 с]. Экономически оправданным способом получения новых топлив является совместная гидропереработка растительного и нефтяного углеводородного сырья, так как она может осуществляться на действующих мощностях нефтеперерабатывающих заводов (НПЗ) без значительных капитальных затрат. Однако при совместной гидроочистке растительных масел и нефтяных фракций возникает существенная проблема ингибирования целевых реакций кислородсодержащими соединениями растительного происхождения [Kubicka D., Kaluza L. // Appl. Catal. A. 2010. V. 372. P. 199, Philippe M., Richard F., Hudebine D., Brunet S. // Appl. Catal. A. 2010. V. 383. P. 14, Badawi M., Paul J., Cristol S., Payen E. // Catal. Commun. 2011. V. 12. P. 901, Egeberg R., Michaelsen N., Skyum L., Zeuthen P. // Petroleum Technology Quarterly. 2010. P. 101, Deliy I.V., Vlasova E.N., Nuzhdin A.L., Gerasimov E.Yu., Bukhtiyarova G.A. // RSC Adv. 2014. V. 4. P. 2242].

В качестве катализаторов гидродеоксигенации традиционно применяют оксиды щелочных и благородных металлов, нанесенные на мезопористые носители со слабыми или среднекислотными свойствами [RU 2602278 С1 от 11.11.2015, RU 2356629 С1 от 22.08.2007, RU 2335340 С1 от 22.08.2007, RU 2356629 С1 от 22.08.2007, RU 2472764 С1 от 28.11.2011, RU 2397199 С2 от 16.01.2006, RU 2440847 С1 от 30.08.2010, RU 2472584 С1 от 25.10.2011, CN 105903465, CN 105921160, CN 105935589, CN 105983409 и др.]. Процесс гидродеоксигенации на таких системах осуществляют при давлении водорода от 0,1-15 МПа, температуре 200-400°С, объемной скорости подачи сырья от 1,0 ч-1, объемном соотношении водород/сырье - от 400 нм33. Указанный процесс отличается высокой эффективностью и обеспечивает полное превращение кислородсодержащих соединений. Однако, применительно к совместной гидроочистке растительного и нефтяного углеводородного сырья использования подобных каталитических систем является нецелесообразным из-за значительного количества серо- и азотсодержащих соединений в сырье, которые являются каталитическими ядами для благородных металлов, что приводит к быстрой дезактивации используемого катализатора и, как следствие, потере активности.

Другим направлением в разработке катализаторов гидродеоксигенации является использование систем на основе сульфидов переходных металлов, широко используемых в гидроочистке и гидрокрекинге. Традиционно для этого используют сульфиды молибдена или вольфрама, промотированные никелем или кобальтом, нанесенные на мезопористый Al2O3 [Furimsky Е., AppliedCatalysisA: General, 2000, 199, 147-190]. В таких системах состав катализатора оказывает существенное влияние на протекание реакций гидродесульфуризации (ГДС) и гидрирования (ГИД), а также гидродеоксигенации (ГДО), при чем каталитические системы, промотированные Ni, являются более активными в реакциях гидрирования ароматических углеводородов и удалении кислородсодержащих органических соединений, а катализаторы, допированные кобальтом, находят большее применение для реакций удаления сернистых компонентов [Nikul'shin Р.А., Mozhaev A.V., Ishutenko D.I., Minaev P.P., Lyashenko A.I., Pimerzin A.A. // Kinetics and Catalysis. 2012. V. 53. №5. P. 620; Kogan V.M., Nikul'Shin P.A., Dorokhov V.S., Permyakov E.A., Mozhaev A.V., Ishutenko D.I., Eliseev O.L., Rozhdestvenskaya N.N., Lapidusa, A.L. // Russian Chemical Bulletin. 2014. V. 63 P. 332; Nikul'Shin P.A., Sal'Nikov V.A., Gilkina E.O., Pimerzin A.A. // Catalysis in Industry. 2014. №4. P. 63; Brillouet S., Baltag E., Brunet S., Richard F. // Appl. Catal. B. 2014. V. 148-149. P. 201; Nikulshin P.A., Salnikov V.A., Varakin A.N., Kogan V.M. // Catal. Today. 2016. V. 271. P. 45; Egeberg R., Michaelsen N., Skyum L., Zeuthen P. // Petroleum Technology Quarterly. 2010. P. 101; Deliy I.V, Vlasova E.N., Nuzhdin A.L., Gerasimov E.Yu., Bukhtiyarova G.A. // RSC Adv. 2014. V. 4. P. 2242; US 2007090024 25.10.2006; JP 2006346631 28.12.2006; US 2007010682 11.01.2007, RU 2013143688 27.09.2013, RU 2385764 C2 07.07.2008, RU 2626398 C1 09.11.2016, RU 2620089 C1 08.04.2016, RU 2626399 C1 09.11.2016 и др.].

Общим недостатком данных катализаторов является узкая сырьевая направленность вследствие высокой активности в каком-либо одном типе целевых реакций и меньшей активности - в другом, что не позволяет эффективно использовать их при совместной переработке растительного и нефтяного сырья. Техническим решением настоящего изобретения является применение одновременно и кобальта, и никеля в качестве промоторов активной фазы, что позволит совместить в одном катализаторе как активные СоМо центры ГДС, так и активные NiMo центры ГДО.

Наиболее близким по своей технической сущности и достигаемому эффекту к предлагаемому техническому решению является катализатор гидродеоксигенации кислородсодержащего углеводородного сырья или совместной гидроочистки нефтяных фракций и кислородсодержащих соединений, полученных из растительного (возобновляемого) сырья, описанный в патенте RU 2492922 C1, B01J 23/28 (2006.01), B01J 23/755 (2006.01), B01J 21/18 (2006.01), B11J 21/04 (2006.01), B01J 35/10 (2006.01), B01J 37/02 (2006.01). Данная система содержит соединения молибдена (15-25 мас. % МоО3) и никеля (4.0-6.0 мас. % NiO), диспергированные на поверхности модифицированного углеродным покрытием алюмооксидного носителя (содержание углерода 1-3 мас. %, удельная площадь поверхности не менее 200 м2/г, удельный объем пор 0.8-1.1 см3/г, средний диаметр пор не менее 10 нм). Основным недостатком указанного выше катализатора является использование в качестве промотора только оксида никеля, что приводит к недостаточно высокой каталитической активности в реакциях ГДС сероорганических соединений.

Техническим результатом настоящего изобретения является создание нового катализатора совместной гидроочистки нефтяного и растительного сырья, обладающего повышенной активностью в реакциях удаления серы и кислорода по сравнению с традиционными биметаллическим системами за счет использования в качестве промотора одновременно двух промотирующих металлов (Со и Ni). Технический результат достигается за счет катализатора совместной гидроочистки растительного и нефтяного углеводородного сырья, содержащего в прокаленном при 550°С состоянии: Мо - 9,0-15,0% мас., Со - 0,5-3,5% мас., Ni - 0,5-3,5% мас., остальное - пористый носитель с содержанием углерода 0-5% мас.; катализатор имеет удельную поверхность 100-250 м2/г, удельный объем пор 0,3-1,1 см3/г, средний диаметр пор 4,0-10,0 нм.

Способ приготовления катализатора совместной гидроочистки растительного и нефтяного углеводородного сырья включает однократную пропитку водным раствором предшественников активных компонентов, содержащим молибденовую гетерополикислоту и комплексонат никеля или кобальта с карбоновой кислотой, вакуумированного носителя по влагоемкости с последующей сушкой при температуре 100-160°С в потоке воздуха или азота. В качестве молибденовой гетерополикислоты используют одну из ряда H6[Co2Mo10O38H4], Н3[Со(ОН)6Mo6O18], Н4[Ni(ОН)6Mo6O18], Н7[PMo11CoO40], в качестве прекурсора комплексоната кобальта используется один из ряда кобальт углекислый CoCO3⋅nH2O (n=0-4), кобальт углекислый основной СоСО3⋅mCo(ОН)2⋅nH2O (m=0-2, n=0,5-4), в качестве прекурсора комплексоната никеля используется один из ряда никель углекислый NiCO3⋅nH2O (n=0-4), никель углекислый основной NiCO3⋅mNi(OH)2⋅nH2O (m=0-2, n=0,5-4), в качестве карбоновой кислоты используют как минимум одну из следующего ряда: лимонная кислота С6Н8С7, молочная кислота С3Н6О3, винная кислота C4H6O6, гликолевая кислота С2Н4О3. В качестве пористого носителя используют оксид алюминия, оксид кремния или их композиты с содержанием углерода 0-5 мас. %.

Исходные соединения для приготовления пропиточного раствора, свойства носителя и состав катализаторов приведены в табл. 1.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1

Состав катализатора и способ его приготовления согласно известному техническому решению - прототипу.

Для приготовления пропиточного раствора 22,0 г H4[Ni(OH)6Mo6O18], 4,7 г NiCO3⋅Н2О и 9,1 г лимонной кислоты C6H8O7⋅ последовательно растворяют в 57,4 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 76,5 см3. рН пропиточного раствора равен 2,5-3,5.

Носитель - смесь оксида алюминия γ-Al2O3 (98% мас.) и углерода (2% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 160°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 10,0; Ni - 3,1; носитель - остальное; имеет удельную поверхность 238 м2/г, объем пор 0,59 см3/г и средний диаметр пор 5,6 нм (табл. 1).

Примеры 2-10 иллюстрируют предлагаемое техническое решение.

Пример 2

Для приготовления пропиточного раствора 21,2 г Н7[PMo11CoO40], 5,6 г NiCO3⋅Н2О и 7,9 г винной кислоты C4H6O6⋅ последовательно растворяют в 66,8 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 89,0 см3. рН пропиточного раствора равен 2,5-3,5.

Носитель - смесь оксида алюминия γ-Al2O3 (95% мас.) и SiO2 (5% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при 160°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 10,1; Ni - 2,5; Со - 0,6; Р - 0,3; носитель - остальное; имеет удельную поверхность 240 м2/г, объем пор 0,68 см3/г и средний диаметр пор 6,2 нм (табл. 1).

Пример 3

Для приготовления пропиточного раствора 27,7 г H4[Ni(OH)6Mo6O18], 5,6 г. СоСО3⋅Со(ОН)2⋅H2O и 4,0 г. гликолевой кислоты C2H4O3⋅ последовательно растворяют в 71,8 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 95,7 см3. рН пропиточного раствора равен 2,5-3,5.

Носитель - смесь оксида алюминия γ-Al2O3 (90% мас.) и SiO2 (10% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на в токе азота 140°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 12,2; Ni - 1,2; Со - 2,4; носитель - остальное; имеет удельную поверхность 233 м2/г, объем пор 0,74 см3/г и средний диаметр пор 6,4 нм (табл. 1).

Пример 4

Для приготовления пропиточного раствора 21,8 г. H6[Со2Мо10О38Н4], 4,3 г. NiCO3⋅Н2О и 3,6 г молочной кислоты С3Н6О3⋅ последовательно растворяют в 57,4 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 76,5 см3. рН пропиточного раствора равен 2,5-3,5.

Носитель - смесь оксида алюминия γ-Al2O3 (98% мас.) и углерода (2% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при 120°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 10,0; Ni - 1,9; Со - 1,2; носитель - остальное; имеет удельную поверхность 238 м2/г, объем пор 0,59 см3/г и средний диаметр пор 5,6 нм (табл. 1).

Пример 5

Для приготовления пропиточного раствора 36,9 г Н6[Co2Mo10O38H4], 6,8 г NiCO3⋅1,5Ni(ОН)2⋅2H2O и 13,4 г лимонной кислоты С6Н8О7⋅последовательно растворяют в 61,4 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 81,9 см3. рН пропиточного раствора равен 2,5-3,5.

Носитель - смесь оксида алюминия γ-Al2O3 (93% мас.), SiO2 (5% мас.) и углерода (2% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при 100°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 15,0; Ni - 2,7; Со - 1,8; носитель - остальное; имеет удельную поверхность 233 м2/г, объем пор 0,63 см3/г и средний диаметр пор 6,16 нм (табл. 1).

Пример 6

Для приготовления пропиточного раствора 27,7 г Н4[Ni(ОН)6Mo6O18], 5,9 г CoCO3⋅Н2О и 8,2 г винной кислоты С4Н6О6⋅ последовательно растворяют в 66,0 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 88,0 см3. рН пропиточного раствора равен 2,5-3,5.

Носитель - смесь оксида алюминия γ-Al2O3 (88% мас.), SiO2 (10% мас.) и углерода (2% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат в токе азота при 160°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 12,0; Ni - 1,2; Со - 2,5; носитель - остальное; имеет удельную поверхность 226 м2/г, объем пор 0,68 см3/г и средний диаметр пор 6,4 нм (табл. 1).

Пример 7

Для приготовления пропиточного раствора 27,4 г H6[Со2Мо10О38Н4], 5,2 г NiCO3⋅Ni(ОН)2⋅4Н2О и 3,7 г гликолевой кислоты C2H4O3⋅ последовательно растворяют в 49,9 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 66,6 см3. рН пропиточного раствора равен 2,5-3,5.

Носитель - смесь оксида алюминия γ-Al2O3 (95% мас.) и углерода (5% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при 160°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 12,1; Ni - 2,2; Со - 1,5; носитель - остальное; имеет удельную поверхность 232 м2/г, объем пор 0,51 см3/г и средний диаметр пор 5,5 нм (табл. 1).

Пример 8

Для приготовления пропиточного раствора 37,3 г Н3[Со(ОН)6Mo6O18], 7,6 г NiCO3⋅1,5Ni(ОН)2⋅Н2О и 10,6 г винной кислоты С4H6О6⋅ последовательно растворяют в 76,5 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 102,0 см3. рН пропиточного раствора равен 2,5-3,5.

Носитель - смесь оксида алюминия γ-Al2O3 (90% мас.), SiO2 (5% мас.) и углерода (5% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при 150°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас.%: Мо - 15,0; Ni - 3,0; Со - 1,5; носитель - остальное; имеет удельную поверхность 228 м2/г, объем пор 0,55 см3/г и средний диаметр пор 6,1 нм (табл. 1).

Пример 9

Для приготовления пропиточного раствора 22,0 г Н4[Ni(ОН)6Mo6O18], 4,7 г Со(СО3)⋅Н2О и 9,2 г лимонной кислоты С6Н8О7⋅ последовательно растворяют в 53,0 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 70,7 см3. рН пропиточного раствора равен 2,5-3,5.

Носитель - смесь оксида алюминия γ-Al2O3 (85% мас.), SiO2 (10% мас.) и углерода (5% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат в токе азота при 160°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 10,6; Ni - 1,0; Со - 2,1; носитель - остальное; имеет удельную поверхность 221 м2/г, объем пор 0,59 см3/г и средний диаметр пор 6,4 нм (табл. 1).

Пример 10

Для приготовления пропиточного раствора 37,0 г H6[Со2Мо10О38Н4], 7,1 г Ni(СО3)⋅Н2О и 6,0 г молочной кислоты С3Н6О3⋅ последовательно растворяют в 62,4 см3 воды при 40-60°С и перемешивании. После окончания выделения СО2 доводят объем пропиточного раствора водой до 83,2 см3. рН пропиточного раствора равен 2,5-3,5.

Носитель - смесь оксида алюминия γ-Al2O3 (100% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при 160°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 15,0; Ni - 2,8; Со - 1,8; носитель - остальное; имеет удельную поверхность 245 м2/г, объем пор 0,64 см3/г и средний диаметр пор 5,6 нм (табл. 1).

Испытания катализаторов проводили в процессе гидроочистки растительного и нефтяного углеводородного сырья. В качестве смесевого сырья использовали: смесь прямогонной дизельной фракции (95%) и растительного масла (5%) (содержание серы 0,88% мас.); прямогонной дизельной фракции (85%) и растительного масла (15%) (содержание серы 0,79% мас.).

В трубчатый реактор загружали 15 см3 катализатора в виде частиц размером 0,25-0,50 мм, приготовленных путем измельчения и рассеивания исходных гранул катализатора, разбавленного SiC до общего объема 30 см3. Сульфидирование проводили смесью диметилдисульфида и керосиновой фракции при 240°С в течение 10 ч и при 340°С в течение 10 ч.

Условия испытания: давление водорода 4.0 МПа, кратность циркуляции водорода 500 нл/л сырья, объемная скорость подачи сырья 1.5 ч-1 и 1.0 ч-1, температура в реакторе 340°С при испытании смеси с добавлением 5% растительного масла и 360°С при испытании смеси с добавлением 15% растительного масла. Гидрогенизаты отделяли от водорода в сепараторах высокого и низкого давления, затем подвергали обработке 10%-ным раствором NaOH в течение 15 мин, отмывали дистиллированной водой до нейтральной реакции промывных вод, высушивали над прокаленным CaCl2. Содержание серы в сырье и полученных гидрогенизатах определяли согласно ГОСТ Р 52660. Стабильность работы катализатора оценивали в жестких условиях по ускоренной степени дезактивации: давление водорода 1.0 МПа, кратность циркуляции водорода 150 нл/л сырья, объемная скорость подачи сырья 2.0 ч-1, температура в реакторе 380°С, процесс вели в течение 50 ч. Активность катализаторов в ГДС оценивали по формуле:

где ГДС - степень гидрообессеривания (%); - содержание серы в сырье, (ppm); Cs - содержание серы в гидрогенизате (ppm).

Стабильность работы катализатора оценивали по степени ускоренной дезактивации и рассчитывали по формуле:

где - содержание серы в стабильном гидрогенизате, полученном при ОСПС 1 ч-1 и температуре Т°С до ускоренной дезактивации, ppm; - содержание серы в стабильном гидрогенизате, полученном при ОСПС 1 ч-1 и температуре Т°С после ускоренной дезактивации, ppm; для сырья с 5% РМ Т=340°С, для сырья с 15% РМ Т=360°С.

Степень гидродеоксигенации (ГДО) растительных масел оценивали по изменению концентрации триглицеридов жирных кислот, определяемой методом ИК-спектроскопии.

Результаты испытаний катализаторов представлены в табл. 2.

Заявляемые катализаторы превосходят по активности и сравнимы по стабильности с прототипом, предлагаемые катализаторы позволяют получать гидрогенизат с содержанием серы менее 10 ppm при переработке смеси растительного и нефтяного сырья. Показатели процесса при гидроочистке растительного и нефтяного углеводородного сырья позволяют сделать вывод о высокой эффективности заявляемых катализаторов и способов их приготовления.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 191.
20.01.2018
№218.016.1e75

Способ очистки отходящих газов окисления изопропилбензола

Изобретение относится к нефтехимической и нефтеперерабатывающей промышленности. Способ очистки отходящих газов окисления изопропилбензола заключается в извлечении изопропилбензола с помощью низкотемпературной конденсации, причем для создания низких температур используют энергию отходящих газов...
Тип: Изобретение
Номер охранного документа: 0002640781
Дата охранного документа: 11.01.2018
13.02.2018
№218.016.2035

Вертикальный стальной резервуар

Изобретение относится к области строительства, в частности к сооружению стальных вертикальных резервуаров, расположенных в сейсмически опасных районах и районах с повышенными требованиями к защите окружающей среды. Техническим результатом изобретения является увеличение эксплуатационной...
Тип: Изобретение
Номер охранного документа: 0002641353
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.267d

Цифровой модулятор для преобразования частоты

Изобретение относится к области импульсной техники и может быть использовано в преобразователях частоты для управления электродвигателями переменного тока. Технический результат заключается в формировании различных законов регулирования напряжения в функции частоты силового преобразователя и...
Тип: Изобретение
Номер охранного документа: 0002644070
Дата охранного документа: 07.02.2018
17.02.2018
№218.016.2bb0

Способ получения (s)-3-(аминометил)-5-метилгексановой кислоты

Изобретение относится к способу получения (S)-3-(аминометил)-5-метилгексановой кислоты формулы I, используемой в терапии ряда нейропатических заболеваний, путем энантиоселективного присоединения диэтилмалоната к 4-метил-1-нитропентену-1 с последующим восстановлением и кислотным гидролизом...
Тип: Изобретение
Номер охранного документа: 0002643373
Дата охранного документа: 01.02.2018
17.02.2018
№218.016.2df0

Способ производства съедобных пленок из яблочного сырья

Изобретение относится к пищевой промышленности, преимущественно к съедобным пленкам из яблочного сырья. Способ производства съедобных пленок из яблочного сырья характеризуется тем, что у яблок удаляют несъедобные части, обрабатывают водяным паром в течение 10-30 мин, к полученной массе...
Тип: Изобретение
Номер охранного документа: 0002643722
Дата охранного документа: 05.02.2018
04.04.2018
№218.016.31d3

Сборный резец для контурного точения

Сборный резец содержит державку, имеющую державочную часть и головку с гнездом для установки режущей пластины, прихват и расположенный в выступе головки со стороны державочной части резьбовой механизм с возможностью взаимодействия его упорного винта с одним из торцов пластины для ее перемещения...
Тип: Изобретение
Номер охранного документа: 0002645236
Дата охранного документа: 19.02.2018
04.04.2018
№218.016.33d2

Расплавляемый электролит для химического источника тока

Изобретение относится к области электротехнической промышленности, в частности к разработке расплавляемых электролитов для химических источников тока на основе солей лития и рубидия. Расплавляемый электролит для химического источника тока включает хлорид лития и хлорид рубидия, в качестве...
Тип: Изобретение
Номер охранного документа: 0002645763
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3ebd

Способ работы маневренной регенеративной парогазовой теплоэлектроцентрали и устройство для его осуществления

Изобретение относится к энергетике. В способе работы маневренной регенеративной парогазовой теплоэлектроцентрали и устройстве для его реализации теплоту газов, расширенных в газовой турбине, используют для регенеративного подогрева сжатого воздуха и сетевой воды теплосети. При этом в...
Тип: Изобретение
Номер охранного документа: 0002648478
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.4183

Буксовый подшипниковый узел колес железнодорожного транспорта

Буксовый подшипниковый узел колес железнодорожного транспорта содержит двухрядный блок роликовых подшипников качения, воспринимающий радиальную и осевую нагрузку при движении транспортного средства. Подшипник с цилиндрическими роликами устанавливают с внешней стороны буксы. Подшипник с...
Тип: Изобретение
Номер охранного документа: 0002649106
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.43b5

Способ изготовления образца для испытания на внецентренное сжатие

Изобретение относится к области строительства, в частности к способу изготовления образцов для испытания на внецентренное сжатие. Сущность: осуществляют высверливание на верхней и нижней опорной поверхности четырехугольной призмы симметричных парных сферических лунок для центрирующих элементов,...
Тип: Изобретение
Номер охранного документа: 0002649609
Дата охранного документа: 04.04.2018
Показаны записи 31-40 из 57.
13.06.2019
№219.017.8107

Способ гидрогенизационного облагораживания углеводородного сырья

Изобретение относится к способам гидрогенизационной переработки углеводородного сырья в присутствии каталитической системы и может быть использовано в нефтеперерабатывающей промышленности. Предлагается способ гидрогенизационного облагораживания углеводородного сырья при повышенных температуре и...
Тип: Изобретение
Номер охранного документа: 0002691067
Дата охранного документа: 10.06.2019
13.06.2019
№219.017.8124

Способ получения катализатора деметаллизации нефтяных фракций

Изобретение относится к нефтеперерабатывающей промышленности, в частности к катализаторам гидрооблагораживания нефтяных фракций. Предлагается способ получения катализатора деметаллизации нефтяных фракций путем предварительного приготовления носителя катализатора осаждением гидроксида алюминия...
Тип: Изобретение
Номер охранного документа: 0002691069
Дата охранного документа: 10.06.2019
13.06.2019
№219.017.812f

Способ подготовки катализаторов гидрогенизационных процессов к окислительной регенерации

Изобретение относится к способу подготовки катализаторов гидроочистки к окислительной регенерации путем обработки пассивированного сульфидного катализатора, содержащего NiO, VO, FeO, смесью бутилцеллозольва и нефраса, в которой растворен комплексообразователь, выбранный из щавелевой, винной или...
Тип: Изобретение
Номер охранного документа: 0002691078
Дата охранного документа: 10.06.2019
13.06.2019
№219.017.8130

Катализатор для гидрогенизационной конверсии глицерина в простые спирты, способ его приготовления и способ гидрогенизационной конверсии глицерина в простые спирты с использованием этого катализатора

Изобретение относится к технологии переработки и касается катализатора для гидрогенизационной конверсии глицерина в простые спирты, способа его приготовления и способа гидрогенизационной конверсии глицерина в простые спирты с использованием этого катализатора. Предложенный катализатор содержит...
Тип: Изобретение
Номер охранного документа: 0002691068
Дата охранного документа: 10.06.2019
13.06.2019
№219.017.813b

Способ совместного извлечения мышьяка и хлора из нефтяных дистиллятов

Изобретение относится к области нефтепереработки и нефтехимии, а именно, к удалению отравляющих соединений для катализаторов нефтепереработки из нефтяных фракций, и может быть использовано на нефтеперерабатывающих предприятиях при очистке нефтяных фракций от примесей для последующего получения...
Тип: Изобретение
Номер охранного документа: 0002691072
Дата охранного документа: 10.06.2019
13.06.2019
№219.017.8178

Способ получения каталитически-сорбционного материала и способ извлечения мышьяка в его присутствии

Изобретение относится к области нефтепереработки и нефтехимии, а именно к удалению мышьяка и его соединений из нефтяных фракций, и может быть использовано на нефтеперерабатывающих предприятиях при очистке нефтяных фракций от примесей для последующего получения дизельного топлива и других...
Тип: Изобретение
Номер охранного документа: 0002691070
Дата охранного документа: 10.06.2019
14.07.2019
№219.017.b412

Катализатор глубокой гидроочистки вакуумного газойля и способ его приготовления

Изобретение относится к области производства катализаторов гидроочистки. Описан катализатор гидроочистки вакуумного газойля, состоящий из MoO, WO и NiO, содержание в прокаленном катализаторе MoO составляет 1,5-7,5 мас. %, WO - 15-25 мас. %, NiO - 3-5 мас. %, остальное – носитель. Носитель...
Тип: Изобретение
Номер охранного документа: 0002694370
Дата охранного документа: 12.07.2019
06.09.2019
№219.017.c7c6

Катализатор защитного слоя и способ его использования

Изобретение относится к области химии, в частности к катализаторам защитного слоя для гидроочистки тяжелых нефтяных фракций. Катализатор состоит из трех слоев, расположенных с возрастанием общего содержания оксидов металлов в каждом последующем слое, при этом первый по ходу движения защитный...
Тип: Изобретение
Номер охранного документа: 0002699225
Дата охранного документа: 04.09.2019
06.09.2019
№219.017.c7c7

Способ гидрогенизационного облагораживания остаточного нефтяного сырья

Изобретение относится к области нефтепереработки. Изобретение касается способа гидрогенизационного облагораживания остаточного нефтяного сырья на стационарных слоях катализаторов, включающий стадии: гидродеметаллизации нефтяного сырья, последующего гидрогенизационного обессеривания и...
Тип: Изобретение
Номер охранного документа: 0002699226
Дата охранного документа: 04.09.2019
08.09.2019
№219.017.c934

Жидкий органический носитель водорода, способ его получения и водородный цикл на его основе

Изобретение относится к области водородной энергетики, органической химии и катализа, в частности к разработке составов химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования. Описан жидкий органический носитель...
Тип: Изобретение
Номер охранного документа: 0002699629
Дата охранного документа: 06.09.2019
+ добавить свой РИД