×
13.11.2019
219.017.e11c

Результат интеллектуальной деятельности: Система управления расходом топлива в газотурбинный двигатель

Вид РИД

Изобретение

Аннотация: Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления авиационными ГТД для регулирования расхода топлива в КС. Техническим результатом настоящего изобретения является повышение надежности системы дозирования топлива, повышение полноты сгорания топлива и снижение вредных выбросов. Указанный технический результат достигается за счет того, что в системе управления расходом топлива в газотурбинный двигатель, включающей первый и второй коллекторы камеры сгорания, электронный регулятор, соединенный с блоком датчиков, последовательно соединенные первый электрогидроусилитель, первый дозатор топлива, первый клапан перепада давлений, последовательно соединенные второй электрогидроусилитель, второй дозатор топлива и второй клапан перепада давлений, электрогидроусилители соединены с электронным регулятором, вторые входы дозаторов и вторые входы клапанов перепада подключены к топливному насосу, датчики положения дозирующих элементов дозаторов, связанные с электронным регулятором, согласно настоящему изобретению система дополнительно оснащена управляемыми от электронного регулятора первым и вторым электрогидроклапанами и первым и вторым распределителями топлива в коллекторы камеры сгорания, причем каждый распределитель топлива связан с первым и вторым коллекторами, первый распределитель топлива своим входом подключен к выходу первого клапана перепада давлений, второй распределитель - к выходу второго клапана перепада давлений, выход первого электрогидроклапана подключен к первому клапану перепада давлений и к второму распределителю топлива, а выход второго электрогидроклапана - к второму клапану перепада и первому распределителю топлива. 1 ил., 1 табл.

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления авиационными газотурбинными двигателями (ГТД) для регулирования расхода топлива в камеру сгорания (КС).

Известно устройство для управления ГТД» содержащее последовательно соединенные первый блок датчиков параметров воздуха на входе в двигатель и параметров работы двигателя, электронный регулятор, электрогидропреобразователь (ЭГП), селектор, управляемый вход которого подключен к выходу блока встроенного контроля электронного регулятора, а также последовательно соединенные топливный насос, распределительный клапан и гидромеханический регулятор, подключенный ко второму блоку датчиков, золотник-ограничитель, пружинная полость которого соединена с выходом гидромеханического регулятора, а чувствительная полость - с топливной магистралью между дозатором топлива и распределительным клапаном и посредством рабочей кромки через дроссельное сопротивление и селектор - с топливной магистралью на выходе топливного насоса.

В процессе работы устройства по информации от первого блока датчиков электронный регулятор формирует управляющее воздействие на ЭГП, а гидромеханический регулятор по информации от второго блока датчиков формирует управляющее воздействие, подводимое в пружинную полость золотника-ограничителя.

При исправном электронном регуляторе сигнала с выхода блока встроенного контроля нет, селектор находится в положении «электроника», при котором на дозатор подается управляющее воздействие электронного регулятора, который осуществляет управление расходом топлива в камеру сгорания ГТД через дозатор топлива и распределительный клапан.

При отказе электронного регулятора по команде блока встроенного контроля селектор перекладывается в положение «гидромеханика». При этом отключается гидравлическая связь между блоком ЭГП и дозатором топлива. Дозатор топлива переводится в положение нулевого расхода («закрыто») и топливо из магистрали за топливным насосом через селектор и дроссель подводится к рабочей кромке золотника - ограничителя. На золотнике-ограничителе давление топлива в магистрали перед распределительным клапаном сравнивается с величиной, являющейся суммой усилия начальной затяжки пружины в пружинной полости золотника-ограничителя и управляющего давления топлива, подводимого от гидромеханического регулятора.

В чувствительной полости с помощью рабочей кромки золотника-ограничителя формируется заданный гидромеханическим регулятором расход топлива, который подается в магистраль перед распределительным клапаном и далее - в камеру сгорания ГТД.

Независимо от управляющего воздействия гидромеханического регулятора расход топлива в камеру сгорания не может быть больше максимального, обеспечивающего нормальную работу двигателя. Обеспечивается это подбором величины дросселя в процессе приемосдаточных испытаний ГТД.

Примененная схема дозирования топлива позволяет исключить возможность неконтролируемого изменения фактического расхода топлива в камеру сгорания при отказе дозатора топлива. Это, в свою очередь, позволяет повысить надежность работы и безопасность эксплуатации ГТД. (см. патент РФ №2439349, кл. F02C 9/00, 2012 г.).

В результате анализа известного устройства необходимо отметить, что дозатор топлива данного устройства не дублирован, поэтому его отказ приводит к потере управления ГТД.

Известна реализующая способ система управления расходом топлива в ГТД, содержащая последовательно соединенные блок датчиков параметров работы двигателя и воздуха на входе в двигатель, электронный регулятор режимов работы двигателя, блок электрогидропреобразователей, к выходу которого подключены управляемые входы первого дозатора топлива и остальных дозаторов (по одному на каждый топливный коллектор камеры сгорания), каждый дозатор через свой датчик положения подключен к блоку датчиков, расходные входы дозаторов подключены к расходному выходу топливного насоса, расходные вход и выход первого дозатора гидравлически подключены к клапану поддержания перепада давлений, управляющий выход клапана поддержания перепада давлений подключен к управляемому входу топливного насоса.

В процессе работы системы по измеренным с помощью датчиков параметрам электронный регулятор формирует по заранее определенной зависимости потребный суммарный расход топлива в камеру сгорания ГТД.

Далее электронный регулятор потребный суммарный расход топлива распределяет между всеми топливными коллекторами, количество и расходные характеристики которых заносятся в энергонезависимую память электронного регулятора в процессе приемо-сдаточных испытаний ГТД.

В зависимости от потребного расхода топлива в первый топливный коллектор с помощью расходной характеристики первого дозатора, которая заносится в энергонезависимую память электронного регулятора в процессе сдаточных испытаний двигателя, электронный регулятор определяет заданное положение первого дозатора, сравнивает с измеренным с помощью датчика и блока датчиков фактическим положением первого дозатора и осуществляет управление расходом топлива в первый коллектор, изменяя с помощью ЭГП положение первого дозатора. Поддержание перепада давлений топлива на первом дозаторе обеспечивается с помощью клапана поддержания перепада давлений за счет изменения производительности топливного насоса.

Одновременно электронный регулятор определяет заданное положение остальных дозаторов, исходя из потребного расхода топлива в соответствующий топливный коллектор и расходной характеристики соответствующих дозаторов. Расходные характеристики всех дозаторов заносятся в энергонезависимую память электронного регулятора в процессе приемо-сдаточных испытаний ГТД. Далее с помощью датчиков дозатора и блока датчиков электронный регулятор измеряет фактическое положение остальных дозаторов и осуществляет управление расходом топлива, изменяя с помощью ЭГП положения остальных дозаторов. При этом в процессе управления заданное положение остальных дозаторов корректируется в зависимости от гидравлического сопротивления в тракте подачи топлива после первого дозатора и гидравлического сопротивления в тракте подачи топлива после соответствующего дозатора.

(см. патент РФ №2435972, кл. F02C 9/26) - наиболее близкий аналог.

В результате анализа известной системы необходимо отметить, что для обеспечения надежности системы управления необходимо, чтобы при любом единичном отказе гидравлических агрегатов, включая отказ электрогидроусилителя, система сохраняла работоспособность. В известной системе это требование не выполняется, наоборот, режим работы всех дозаторов и питающего насоса зависит от режима работы первого дозатора. При отказе управления первым дозатором система теряет работоспособность.

Техническим результатом настоящего изобретения является повышение надежности системы дозирования топлива, повышение полноты сгорания топлива и снижение вредных выбросов.

Указанный технический результат достигается за счет того, что в системе управления расходом топлива в газотурбинный двигатель, включающей первый и второй коллекторы камеры сгорания, электронный регулятор, соединенный с блоком датчиков, последовательно соединенные первый электрогидроусилитель, первый дозатор топлива, первый клапан перепада давлений, последовательно соединенные второй электрогидроусилитель, второй дозатор топлива и второй клапан перепада давлений, электрогидроусилители соединены с электронным регулятором, вторые входы дозаторов и вторые входы клапанов перепада подключены к топливному насосу, датчики положения дозирующих элементов дозаторов, связанные с электронным регулятором, новым является то система дополнительно оснащена управляемыми от электронного регулятора первым и вторым электрогидроклапанами и первым и вторым распределителями топлива в коллекторы камеры сгорания, причем каждый распределитель топлива связан с первым и вторым коллекторами, первый распределитель топлива своим входом подключен к выходу первого клапана перепада давлений, второй распределитель - к выходу второго клапана перепада давлений, выход первого электрогидроклапана подключен к первому клапану перепада давлений и к второму распределителю топлива, а выход второго электрогидроклапана - к второму клапану перепада и первому распределителю топлива.

Сущность заявленного изобретения поясняется графическими материалами, на которых представлена схема системы управления расходом топлива в ГТД;

В таблице представлено распределение расхода топлива по коллекторам КС ГТД при исправных и отказавших дозаторах топлива.

Система управления расходом топлива в ГТД содержит электронный регулятор 1, первый выход которого связан с первым электрогидравлическим усилителем (ЭГУ) 2, а второй выход электронного регулятора связан со вторым ЭГУ 3. Первый ЭГУ 2 связан с управляющим входом первого дозатора 4, а второй ЭГУ 3 - с управляющим входом второго дозатора 5. Управление каждым дозатором осуществляется от электронного регулятора 1 через «свой» ЭГУ. Дозатор 4 оснащен датчиком 6 положения дозирующего элемента дозатора (сервопоршня), а дозатор 5 - датчиком 7 положения дозирующего элемента дозатора (сервопоршня). Датчики 6 и 7 связаны соответственно с первым и вторым входами электронного регулятора 1, с третьим входом которого связан блок 8 датчиков. Первый дозатор 4 через первый клапан перепада давлений 9 связан с первым распределителем топлива 10. Второй дозатор 5 через второй клапан перепада давлений 11 связан со вторым распределителем топлива 12.

Дозаторы выполнены таким образом, чтобы максимальный расход через каждый дозатор был равен суммарному расходу топлива в КС на максимальном режиме работы ГТД.

Система также содержит первый 13 и второй 14 электрогидравлические клапаны (ЭГК 13 и ЭГК 14), вход первого из которых связан с третьим выходом электронного регулятора 1, а вход второго - с четвертым выходом электронного регулятора 1. Выходы ЭГК 13 и ЭГК 14 связаны соответственно с управляющими входами клапанов 9 и 11. Выход первого ЭГК 13 дополнительно соединен со вторым распределителем топлива 12, а выход второго ЭГК 14 - с первым распределителем топлива 10.

Первый ЭГК 13 подает командное давление на клапан перепада давлений 9 первого дозатора топлива 4 и распределитель топлива 12 второго дозатора. Второй ЭГК 14 подает командное давление на клапан перепада давлений 11 второго дозатора топлива 5 и распределитель 10 топлива первого дозатора.

Первый выход первого распределителя топлива 10 связан с входом первого 15, а второй с входом второго 16 коллекторов КС 17 ГТД.

Первый выход второго распределителя топлива 12 связан с входом второго 16, а второй с входом первого 15 коллекторов КС 17 ГТД.

Электронный регулятор 1 формирует расход топлива в коллекторы 15 и 16 КС 17 в зависимости от заданного режима работы ГТД. Заданный режим работы ГТД определяется положением РУД и условиями работы ГТД (положение РУД, а так же условия работы ГТД измеряются блоком датчиков, РУД на фиг. не показан). Позицией 18 обозначен топливный насос. Насос 18 связан с расходными входами дозаторов 4 и 5, а также клапанов перепада давлений 9 и 11.

Заявленная система может быть скомпонована из известных блоков и элементов.

Электронный регулятор является стандартным, например, цифровым.

В качестве датчиков блока датчиков 8, а также датчиков 6 и 7 могут быть использованы стандартные датчики контроля параметров работы ГТД, например, индуктивные датчики частоты вращения, термоэлектрические и терморезистивные датчики температуры, резистивные или емкостные датчики давлений, стандартные линейные дифференциальные трансформаторы для измерения линейных или угловых перемещений.

В качестве клапанов перепада давлений 9 и 11 могут быть использованы стандартные клапаны дросселирующего типа. Клапан перепада давлений может работать в двух режимах: как обычный клапан перепада давлений и как отсечной клапан. Чувствительный элемент каждого клапана перепада давлений подключен к входу и выходу дозатора. Каждый из клапанов перепада поддерживает постоянным перепад давлений на дозаторе, за счет чего при установке дозатора в заданное положение обеспечивается требуемый расход топлива в КС ГТД. При подаче командного давления от ЭГК клапан перепада закрывается и отсекает дозатор от коллектора КС ГТД.

Распределитель топлива может быть выполнен золотникового типа. Затяжка пружины золотника настроена на номинальное давление порядка 8 атм, соответствующее расходу топлива (7…8)% от максимального. Пока входное давление топлива ниже номинального, все топливо подается в первый коллектор, при достижении номинального давления золотник смещается и включается подача топлива во второй коллектор. Расход топлива в первый коллектор сохраняется постоянным и равным расходу в момент подключения второго коллектора. При подаче командного давления от ЭГК золотники распределителей смещаются в положение, при котором топливо от «своего» дозатора беспрепятственно может подаваться в «свой» коллектор, а подача в другой коллектор отключается. То есть, распределители топлива могут обеспечивать подачу топлива в один или в оба коллектора в зависимости от команды электрогидравлических клапанов.

Система работает следующим образом.

При неработающем ГТД дозаторы 4 и 5 находятся в закрытом положении, ЭГК и ЭГУ обесточены, топливный насос 18 не создает давления на выходе.

При запуске ГТД электронный регулятор 1 подает питание на первый ЭГК 13, последний переводит первый клапан 9 перепада давлений в открытое положение, открывая подачу топлива в первый распределитель топлива 10, через который топливо подается в первый коллектор 15 камеры сгорания 17 ГТД. При этом командное давление от первого ЭГК 13 ко второму распределителю 12 топлива переводит последний в состояние, при котором топливо через второй распределитель топлива 12 может дозироваться только во второй коллектор 16 КС 17 ГТД. Второй выход второго распределителя топлива 12 закрыт.

Одновременно электронный регулятор 1 подает питание на второй ЭГК 14, который, в свою очередь, переводит второй клапан 11 перепада в открытое состояние и первый распределитель 10 топлива в состояние, при котором топливо через него может дозироваться только в первый коллектор 15 КС 17 ГТД. Второй выход первого распределителя топлива 10 закрыт.

Параллельно электронный регулятор 1 посредством первого ЭГУ 2 перемещает сервопоршень первого дозатора 4 в положение, соответствующее расходу топлива при запуске ГТД. Второй дозатор 5 топлива посредством второго ЭГУ 3 устанавливается в закрытое положение. Таким образом, на режиме запуска ГТД топливо дозируется только в первый коллектор 15 КС 17 ГТД. Электронный регулятор 1 изменяет расход топлива в КС 17 ГТД согласно программе запуска.

При повышении режима работы ГТД электронный регулятор 1 увеличивает расход топлива в КС 17 ГТД.

При достижении определенного режима работы ГТД электронный регулятор 1 переводит второй дозатор 5 в открытое положение посредством второго ЭГУ 3. Через второй клапан 11 перепада и первый выход второго распределителя топлива 12 топливо начинает поступать и во второй коллектор 16 КС 17 ГТД. Одновременно электронный регулятор 1 снижает расход через первый дозатор 4, обеспечивая оптимальное распределение расходов топлива по коллекторам КС.

Второй выход второго распределителя топлива 12 закрыт. При параллельной работе дозаторов 4 и 5 электронный регулятор 1 распределяет топливо между двумя коллекторами камеры сгорания, обеспечивая оптимальный режим работы ГТД на установившихся и переходных режимах его работы.

Если в процессе работы ГТД электронный регулятор 1 диагностирует отказ первого дозатора 4, он дает команду на снятие питания (обесточивание) первого ЭГК 13, в результате первый клапан 9 перепада давлений закрывается и отсекает расход топлива через первый дозатор 4 в КС 17 ГТД. Одновременно по команде от первого ЭГК 13, второй распределитель топлива 12 подключает второй дозатор 5 к первому коллектору 15 КС 17 ГТД и в соответствии со своей настройкой начинает дозировать топливо в оба коллектора 15 и 16 КС 17 по упрощенной программе, при этом, электронный регулятор 1 подает команду на второй ЭГУ 3 для перевода сервопоршня второго дозатора 5 в положение, обеспечивающее необходимый суммарный расход топлива в КС 17 ГТД. Дозирование топлива в ГТД через оба коллектора осуществляется только через второй дозатор, который обеспечивает заданный суммарный расход топлива.

Если электронный регулятор 1 диагностирует отказ второго дозатора 5, он дает команду на обесточивание второго ЭГК 14, в результате второй клапан перепада 11 закрывается и отсекает расход топлива через второй дозатор 5 в КС 17 ГТД. Одновременно по команде от второго ЭГК 14 первый распределитель топлива 10 подключает первый дозатор 4 ко второму коллектору 16 КС 17 ГТД и в соответствии со своей настройкой начинает дозировать топливо в коллекторы 15 и 16 КС 17 ГТД по упрощенной программе, при этом, электронный регулятор 1 подает команду на первый ЭГУ 2 для перевода сервопоршня первого дозатора 4 в положение, обеспечивающее необходимый суммарный расход топлива в КС 17 ГТД. Дозирование топлива в ГТД через оба коллектора осуществляется только через первый дозатор, который обеспечивает заданный суммарный расход топлива.

В результате заданные режимы работы ГТД обеспечиваются за счет полного дублирования дозаторов топлива, их датчиков и ЭГУ. Если оба дозатора исправны, топливо распределяется по коллекторам камеры сгорания оптимально, в отказных ситуациях реализуется распределение топлива по упрощенной программе, при этом обеспечивается сохранение тяги двигателя. Распределение топлива по коллекторам камеры сгорания двигателя при отказе первого или второго дозаторов определяется одинаково настроенными распределителями топлива 10 и 12.

Распределение расхода топлива по коллекторам камеры сгорания при штатной работе и при отказах представлено в таблице.

При обнаружении отказа двух дозаторов электронный регулятор обесточивает оба электрогидравлических клапана и подача топлива в ГТД прекращается. Таким образом, обеспечивается безопасное выключение двигателя. Отказ дозатора может привести к неконтролируемой подаче топлива в КС ГТД и, как следствие, разрушению двигателя. Применение данной системы позволяет полностью парировать любой отказ основного узла системы управления ГТД - дозатора топлива, например, засорение электрогидроусилителя или затирание сервопоршня Дозатора. Это существенно повышает надежность работы ГТД и безопасность эксплуатации летательного аппарата.

За счет независимой подачи топлива в первый и второй коллекторы камеры сгорания система может реализовывать оптимальное распределение топлива, например, с точки зрения повышения полноты сгорания и как следствие снижения вредных выбросов в атмосферу.

Система управления расходом топлива в газотурбинный двигатель, включающая первый и второй коллекторы камеры сгорания, электронный регулятор, соединенный с блоком датчиков, последовательно соединенные первый электрогидроусилитель, первый дозатор топлива, первый клапан перепада давлений, последовательно соединенные второй электрогидроусилитель, второй дозатор топлива и второй клапан перепада давлений, электрогидроусилители соединены с электронным регулятором, вторые входы дозаторов и вторые входы клапанов перепада подключены к топливному насосу, датчики положения дозирующих элементов дозаторов, связанные с электронным регулятором, отличающаяся тем, что система дополнительно оснащена управляемыми от электронного регулятора первым и вторым электрогидроклапанами и первым и вторым распределителями топлива в коллекторы камеры сгорания, причем каждый распределитель топлива связан с первым и вторым коллекторами, первый распределитель топлива своим входом подключен к выходу первого клапана перепада давлений, второй распределитель - к выходу второго клапана перепада давлений, выход первого электрогидроклапана подключен к первому клапану перепада давлений и к второму распределителю топлива, а выход второго электрогидроклапана - к второму клапану перепада и первому распределителю топлива.
Система управления расходом топлива в газотурбинный двигатель
Система управления расходом топлива в газотурбинный двигатель
Источник поступления информации: Роспатент

Показаны записи 11-20 из 110.
17.02.2018
№218.016.2b11

Устройство для измерения акустического сигнала от деталей турбомашины

Изобретение относится к измерительным устройствам, в частности к устройствам диагностики технического состояния подшипниковых опор авиационных газотурбинных двигателей. Устройство для измерения акустического сигнала от деталей турбомашины содержит трубчатый полый корпус, установленный в...
Тип: Изобретение
Номер охранного документа: 0002642963
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3176

Способ испытания авиационного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний турбореактивных двигателей (ТРД). Способ испытания ТРД включает подогрев и наддув воздуха на входе в двигатель. Для двигателя, содержащего топливно-масляный теплообменник, предварительно создают математическую...
Тип: Изобретение
Номер охранного документа: 0002645066
Дата охранного документа: 15.02.2018
10.05.2018
№218.016.392b

Устройство для сочленения наружной поверхности поворотного реактивного сопла турбореактивного двигателя и мотогондолы самолета

Изобретение относится к области авиадвигателестроения, а именно к конструкции поворотных сопел турбореактивных двигателей в месте сочленения поворотного устройства сопла с мотогондолой самолета. Устройство для сочленения наружной поверхности поворотного реактивного сопла турбореактивного...
Тип: Изобретение
Номер охранного документа: 0002647018
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3959

Способ управления газотурбинным двигателем

Изобретение относится к области авиационной техники, в частности к способам управления газотурбинным двигателем. В известном способе управления газотурбинным двигателем, включающим изменение расхода охлаждающего воздуха подаваемого на турбину в зависимости от режимов работы двигателя, воздух...
Тип: Изобретение
Номер охранного документа: 0002647017
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3ac5

Регулируемое сверхзвуковое сопло турбореактивного двигателя

Регулируемое сверхзвуковое сопло турбореактивного двигателя относится к области авиационного двигателестроения. Сопло содержит корпус, шарнирно прикрепленные к нему дозвуковые и внешние створки, сверхзвуковые створки, шарнирно прикрепленные к дозвуковым створкам и подвижно соединенные с...
Тип: Изобретение
Номер охранного документа: 0002647266
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3d2f

Способ испытания газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний авиационных газотурбинных двигателей (ГТД). Для типа двигателей, включающих противообледенительную систему, предварительно проводят испытания на выбранном режиме работы, измеряют параметры при выключенной и при...
Тип: Изобретение
Номер охранного документа: 0002648197
Дата охранного документа: 22.03.2018
10.05.2018
№218.016.43f4

Устройство поворота плоского сопла турбореактивного двигателя

Изобретение относится к авиадвигателестроению, конкретно к реактивным плоским соплам газотурбинных двигателей маневренных летательных аппаратов. Устройство поворота плоского сопла турбореактивного двигателя содержит неподвижный корпус, плоское сопло, установленное на подшипнике с возможностью...
Тип: Изобретение
Номер охранного документа: 0002649723
Дата охранного документа: 04.04.2018
09.06.2018
№218.016.5b4f

Многозонный термопреобразователь

Изобретение относится к области газовой динамики и может быть использовано для измерения поля температуры газового потока, движущегося с большой скоростью, в частности, в газотурбинных установках и в стендовых системах. Известный многозонный термопреобразователь, содержащий не менее трех...
Тип: Изобретение
Номер охранного документа: 0002655734
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5cbf

Устройство для сочленения наружной поверхности поворотного реактивного сопла двигателя и мотогондолы самолёта

Изобретение относится к области авиационного двигателестроения, а именно к конструкции поворотных реактивных сопел авиационных турбореактивных двигателей в месте их сочленения с мотогондолой самолета. Устройство для сочленения наружной поверхности поворотного реактивного сопла двигателя и...
Тип: Изобретение
Номер охранного документа: 0002656172
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d00

Устройство для перекрытия газового потока в корпусе турбореактивного двигателя

Предлагаемое изобретение относится к авиационной технике, а именно к реверсивным устройствам турбореактивного двигателя (далее ТРД). Устройство для перекрытия газового потока в корпусе ТРД, содержащее закрылки, установленные по окружности в корпусе, радиальные оси, установленные вдоль...
Тип: Изобретение
Номер охранного документа: 0002656169
Дата охранного документа: 31.05.2018
Показаны записи 11-20 из 32.
20.01.2018
№218.016.1542

Способ управления газотурбинным двигателем с форсажной камерой сгорания и система для его осуществления

Группа изобретений относится к области авиационного двигателестроения и может быть использована в электронно-гидромеханических системах автоматического управления многорежимными газотурбинными двигателями с форсажной камерой сгорания. Для формирования заданного значения положения...
Тип: Изобретение
Номер охранного документа: 0002634997
Дата охранного документа: 08.11.2017
10.05.2018
№218.016.4de4

Способ управления газотурбинным двигателем с форсажной камерой сгорания и система для его осуществления

Группа изобретений относится к области авиационного двигателестроения. В способе управления газотурбинным двигателем с форсажной камерой сгорания на переходных режимах работы газотурбинного двигателя заданное значение отношения давлений в заданных сечениях двигателя формируют в зависимости от...
Тип: Изобретение
Номер охранного документа: 0002652267
Дата охранного документа: 25.04.2018
18.05.2018
№218.016.5112

Способ управления газотурбинным двигателем и система для его осуществления

Группа изобретений относится к области управления работой газотурбинных двигателей и может быть использована для управления подачей топлива в газотурбинный двигатель и направляющими аппаратами компрессора. В способе управления газотурбинным двигателем дополнительно формируют заданное значение...
Тип: Изобретение
Номер охранного документа: 0002653262
Дата охранного документа: 07.05.2018
09.06.2018
№218.016.5e3d

Способ работы коробки двигательных агрегатов (кда) турбореактивного двигателя (трд) и кда, работающая этим способом (варианты), способ работы насоса форсажного кда трд и насос форсажный, работающий этим способом

Группа изобретений относится к области авиадвигателестроения. Работа КДА при запуске двигателя включает три этапа. На первом этапе запуска двигателя передают пусковой крутящий момент от стартера в КДА через пусковой редуктор и через многоступенчатый редуктор направляют большую часть на вал РВД....
Тип: Изобретение
Номер охранного документа: 0002656478
Дата охранного документа: 05.06.2018
09.06.2018
№218.016.5f82

Способ работы форсажного комплекса турбореактивного двигателя (трд) и форсажный комплекс, работающий этим способом, способ работы насоса форсажного и насос форсажный, работающий этим способом, способ работы трд и трд, работающий этим способом

Группа изобретений относится к области авиадвигателестроения. В способе работы форсажного комплекса ТРД запуск форсажа производят по командам САУиР с подачей топлива в пусковой коллектор ФК непосредственно от HP через пусковой узел НФ и далее по топливному тракту, включая участок тракта РСФ,...
Тип: Изобретение
Номер охранного документа: 0002656525
Дата охранного документа: 05.06.2018
13.09.2018
№218.016.8719

Способ работы форсажного комплекса турбореактивного двигателя (трд) и форсажный комплекс, работающий этим способом (варианты), способ работы трд и трд, работающий этим способом

Группа изобретений относится к области авиадвигателестроения. В способе работы ТРД перевод форсажного комплекса в режим промежуточного и полного форсажа производят перемещением РУД САУиР из углового положения α последовательно в угловые диапазоны α и производят последовательное автоматическое...
Тип: Изобретение
Номер охранного документа: 0002666835
Дата охранного документа: 12.09.2018
16.02.2019
№219.016.bb24

Способ определения погасания камеры сгорания газотурбинного двигателя

Изобретение относится к газотурбинным двигателям (ГТД), а именно к способам определения погасания камеры сгорания ГТД, преимущественно, наземных установок, например, на газоперекатывающих агрегатах. При осуществлении способа измеряют частоту вращения n ротора высокого давления турбокомпрессора,...
Тип: Изобретение
Номер охранного документа: 0002680019
Дата охранного документа: 14.02.2019
11.03.2019
№219.016.d8be

Способ управления подачей топлива в форсажную камеру газотурбинного двигателя

Изобретение относится к системам автоматического регулирования авиационных газотурбинных двигателей (ГТД), в частности к способам управления подачей топлива в форсажную камеру ГТД, и может найти применение в авиадвигателестроении. Способ управления подачей топлива в форсажную камеру...
Тип: Изобретение
Номер охранного документа: 0002315883
Дата охранного документа: 27.01.2008
19.04.2019
№219.017.30e5

Система топливоподачи газотурбинного двигателя

Изобретение направлено на снижение подогрева топлива в системе топливоподачи газотурбинного двигателя, позволяющее повысить ресурс конструктивных элементов этой системы и надежность ее работы, а также уменьшить тепловую заметность летательного аппарата. Технический результат достигается тем,...
Тип: Изобретение
Номер охранного документа: 0002413856
Дата охранного документа: 10.03.2011
29.04.2019
№219.017.411b

Система смазки газотурбинного двигателя

Изобретение относится системам смазки механических устройств, например двигателей, в частности к устройствам для сигнализации о наличии металлических частиц в системе смазки газотурбинных двигателей (ГТД), и позволяет диагностировать начало разрушения двигателя при появлении стружки в масле....
Тип: Изобретение
Номер охранного документа: 0002312240
Дата охранного документа: 10.12.2007
+ добавить свой РИД