×
10.11.2019
219.017.e02e

Результат интеллектуальной деятельности: Способ приготовления катализатора селективной гидроочистки олефинсодержащего углеводородного сырья

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу приготовления катализатора селективной гидроочистки олефинсодержащего углеводородного сырья. Способ включает пропитку пористого носителя по влагоемкости растворами KMoS и органического комплексоната кобальта, содержащего не менее двух атомов кислорода и не менее двух атомов углерода в органическом растворителе. Содержание в прокаленном при 550°С катализаторе составляет в мас.%: Мо 5-12, Со 0,5-4, К 3-10 и остальное - носитель. Технический результат – получение селективного катализатора, обладающего высокой гидродесульфуризующей (ГДС) и низкой гидрирующей (ГИДО) функциями, который позволяет проводить селективную гидроочистку сернистого олефинсодержащего углеводородного сырья с получением продукта, удовлетворяющего требованиям к компонентам товарных бензинов, при минимальной потере октанового числа. 6 з.п. ф-лы, 2 табл., 10 пр.

Изобретение относится к области химии, в частности к способу приготовления катализаторов для процесса селективной гидроочистки бензинов каталитического крекинга (БКК), и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Одним из приоритетных направлений современной нефтепереработки сегодня является производство экологически чистых моторных топлив, удовлетворяющих требованиям современных спецификаций. Так, для автомобильного бензина содержание общей серы устанавливается на уровне менее 10 ppm. Кроме того, особое внимание уделяется содержанию таких компонентов как ароматические и непредельные углеводороды. Снизить концентрацию ароматических компонентов в товарных автомобильных бензинах до требований (Класса 5) только за счет процессов алкилирования и изомеризации практически невозможно, поскольку мощность данных установок невелика и значительно уступает производительности установок каталитического риформинга. Решение данной проблемы возможно за счет увеличения доли БКК в товарных бензинах. Однако, не смотря на хорошую детонационную стойкость (октановое число достигает 92-93 пункта), данный компонент не соответствует требованиям современных спецификаций по содержанию общей серы.

Для снижения содержания серы в БКК можно применять два подхода: предварительную глубокую гидроочистку вакуумного газойля (сырья процесса каталитического крекинга) и непосредственную гидроочистку бензина. Применение первого способа характеризуется не только высокими капитальными затратами на строительство установки, рассчитанной на высокие давления и температуры, но и значительными эксплуатационными затратами. Второй способ характеризуется меньшими капитальными и эксплуатационными затратами, чем первый, однако, его особенностью является то, что применение стандартных Ni(Co)Mo/Al2O3 катализаторов гидроочистки не позволяет проводить процесс эффективно, так как происходит снижение октанового числа бензина, поскольку наряду с гидрообессериванием протекает глубокое восстановление олефиновых углеводородов. В данном процессе необходимо применение селективного катализатора, обладающего высокой гидродесульфуризующей (ГДС) и низкой гидрирующей (ГИДО) функциями.

Существует два принципиальных подхода в разработке катализаторов для процесса селективной гидроочистки БКК:

1. Направленное формирование активной фазы с требуемым соотношением между активными центрами, на которых протекают реакции удаления серы и гидрирования олефинов (US 20050261124 A1 B01J 37/0203, B01J 23/88, B01J 23/882, B01J 35/002, B01J 37/346, C10G 45/04, C10G 45/08, B01J 37/20, B01J3 7/28, Y10S 502/506, Y10S 502/512; RU 2687734 B01J 37/02, B01J 23/882, B01J 21/04, B01J 31/04, C10G 45/08; US 8236723, B01J 37/0203, B01J 23/882, B01J 35/10, B01J 37/0009, B01J 37/20, B01J 35/1014, B01J 35/1042, B01J 35/1061, B01J 35/1066, C10G 2300/1044, C10G 2300/202, C10G 2300/207, C10G 2300/80, C10G 2400/02; WO 2007084438 A3 B01J 23/882, B01J 21/08, B01J 29/0341, B01J 37/0203, B01J 37/20, B01J 31/04, B01J 31/1805, B01J 31/181, B01J 31/183, B01J 31/2208, C10G 2300/1044, C10G 2300/202, C10G 2300/207, C10G 2300/4018, C10G 2300/80, C10G 2400/02). Недостатком такого способа синтеза является присутствие в катализаторе достаточного количества активных центров, на которых протекают реакции гидрирования непредельных углеводородов, что при получении компонента с низким содержанием серы приводит к значительному падению октанового числа.

2. Подавление гидрирующей активности за счет использования модифицирующих добавок (CN 1092663 86A B01J 23/002, B01J 23/8873, C10G 45/08, C10G 45/38, B01J 2523/00, C10G 2300/202, C10G 2300/305, C10G 2400/02; RU 2557248 B01J 23/74, ВО 1J 23/78, B01J 23/85, B01J 31/04, B01J 35/10, B01J 37/02, C10G 45/08; US 5348928, B01J 21/04, B01J 23/78, B01 23/88, B01J 37/04; US 5340466, C10G 45/60, C10G 45/08, US 5340466, C10G 45/60, C10G 45/08; US 5358633 C10G 45/08, C10G 2400/02; US 5525211 C10G 45/08, B01J23/005, B01J 23/85). Недостатком данного способа синтеза является частичное подавление активности центров гидродесульфуризации, что осложняет получение низкосернистого компонента из бензина каталитического крекинга с высоким содержанием серы.

Техническим решением настоящего изобретения является создание активных центров, в которых атомы модификатора (калия) и активного металла (молибдена) непосредственно связаны друг с другом, так как вносятся из одного соединения; преимущественно на данных активных центрах протекают реакции гидрирования, при чем за счет наличия модификатора активность таких центров будет невысокой. Использование комплексонатов кобальта позволяет сформировать высокоактивные центры, на которых преимущественно протекают реакции гидродесульфуризации, а за счет отсутствия последующего модифицирования катализатора щелочным соединением калия активность таких центров не подвергаются значительному подавлению. В результате такого способа синтеза увеличивается ГДС/ГИДО селективность катализатора.

Наиболее близким по своей технической сущности и достигаемому эффекту к предлагаемому техническому решению является способ приготовления катализатора, описанный в патенте RU 2557248 С2 B01J 23/74, B01J 23/78, B01J 23/85, B01J 31/04, B01J 35/10, B01J 37/02, C10G 45/08.

Способ приготовления катализатора селективного гидрообессеривания олефинсодержащего углеводородного сырья заключается в пропитке носителя раствором предшественников активного компонента при рН 2,5-4,0. При этом в пропиточном растворе в качестве соединения молибдена используется один из гетерополианионов ряда [Co2Mo10O38H4]6-, [Со(ОН)6Mo6O18]4-, [Ni(OH)6Mo6O18]4-, [Ni2Mo10O38H4]6-, [P2Mo5O23]6-, [SiMo12O40]4-, [PMo12O40]3-, в качестве соединения кобальта используется одно из ряда гидроксид кобальта Со(ОН)2⋅nH2O (n=0,5-5), кобальт углекислый CoCO3, кобальт углекислый основной 2СоСО3⋅3Со(ОН)2⋅nH2O (n=0,5-5), в качестве соединения металла I-A группы используется любое из ряда гидроксид калия KOH, карбонат калия K2CO3, гидроксид натрия NaOH, карбонат натрия Na2CO3, в качестве стабилизатора пропиточного раствора используют карбоновую кислоту, содержащую, по меньшей мере, одну карбоксильную группу и 1-20 углеродных атомов. Полученный по указанному способу катализатор селективного гидрообессеривания олефинсодержащего углеводородного сырья состоит из соединений металлов Со или Ni, Mo и Na или К.

Недостатком данного способа приготовления катализатора является то, что модифицирование активной фазы щелочным металлом происходит отдельным соединением калия, что приводит к подавлению активности не только центров ГИДО, но и ГДС. В результате снизить количество серы в БКК до требований современных спецификаций при типичных условиях проведения процесса в случае высокосернистого сырья достаточно сложно, так как не смотря на высокую селективность, ГДС активность катализатора, синтезированного таким способом, будет не достаточно высока для переработки высокосернистого сырья.

Техническим результатом настоящего изобретения является создание катализатора селективной гидроочистки олефинсодержащего углеводородного сырья с повышенными ГДС активностью и ГДС/ГИДО селективностью. Технический результат достигается за счет метода пропитки пористого носителя по влагоемкости растворами K2MoS4 и органического комплексоната кобальта, содержащего не менее двух атомов кислорода и не менее двух атомов углерода, в органическом растворителе; при этом содержание в прокаленном при 550°С катализаторе составляет Мо - 5-12 мас. %, Со - 0,5-4 мас. %, К - 3-10 мас. %. В качестве пористого носителя используют Al2O3, SiO2, их композиты или MgO. В качестве органического комплексоната используют один из ряда цитрат, ацетилацетонат, тартрат, лактат, гликолат, малонат или малат. Органический комплексонат кобальта формируется путем взаимодействия соединения кобальта из ряда гидроксид кобальта Со(ОН)2⋅H2O, кобальт углекислый СоСО3, кобальт углекислый основной 2СоСО3⋅3Со(ОН)2⋅H2O с органической кислотой из ряда винная, молочная, гликолевая, малоновая, яблочная. В качестве органического растворителя используют этанол, метанол, диметилформамид и ацетонитрил. После пропитки катализатор сушат при температуре 80-150°С в потоке воздуха или азота. Также после пропитки пористого носителя раствором K2MoS4 в органическом растворителе катализатор может подвергаться сушке при температуре 80-150°С в потоке воздуха или азота, а затем пропитываться раствором органического комплексоната кобальта.

Исходные соединения для приготовления совместного пропиточного раствора, состав и текстурные характеристики используемых носителей приведены в табл. 1.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1

Для приготовления пропиточного раствора 32,9 г додекамолибдофосфорной кислоты Н3[PMo12O40], 19,5 г карбоната калия K2CO3, 10,5 г гидрокарбоната кобальта 2CoCO3⋅3Со(ОН)2⋅H2O и 20,6 г моногидрата лимонной кислоты C6H8O7⋅H2O последовательно растворяют в 117 см3 воды при 40-60°С и перемешивании.

Носитель - смесь оксида алюминия γ-Al2O3 (95% мас.) и оксида кремния SiO2 (5% мас.) - массой 100 г заливают пропиточным раствором, имеющим температуру 35°С. Носитель выдерживают в пропиточном растворе в течение 30 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 140°С в течение 4 ч в потоке воздуха.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо -12,0; Со - 3,9; К - 7,5; остальное - носитель (табл. 1).

Примеры 2-10 иллюстрируют предлагаемое техническое решение.

Пример 2

Катализатор готовят методом последовательной пропитки носителя, представляющего собой оксид алюминия γ-Al2O3 массой 100 г. На первом этапе готовят пропиточный раствор 1, растворяя 21,5 г тетратиомолибдата калия K2MoS4 в 109 см3 метанола СН3ОН при температуре 40-60°С. Далее носитель заливают приготовленным пропиточным раствором 1 при температуре 40°С и выдерживают в нем в течение 30 мин. Полученный образец сушат в токе азота N2 при температуре 150°С в течение 4 ч. На втором этапе готовят пропиточный раствор 2, растворяя последовательно 3,8 г карбоната кобальта CoCO3, 5,3 г винной кислоты C4H6O6 в 80 см3 метанола СН3ОН при температуре 40-60°С. Полученный после сушки в токе азота N2 при температуре 150°С в течение 4 ч образец заливают приготовленным пропиточным раствором 2 при температуре 40°С и выдерживают в нем в течение 30 мин. Полученный катализатор сушат в потоке азота N2 при температуре 150°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 5,5; Со - 1,7; K - 4,5; остальное - носитель (табл. 1).

Пример 3

Катализатор готовят методом пропитки носителя массой 100 г, представляющего собой смесь оксида алюминия γ-Al2O3 (95% мас.) и оксида кремния SiO2 (5% мас.). Для приготовления совместного пропиточного раствора 38,9 г тетратиомолибдата калия K2MoS4, 20,4 г цитрата кобальта Со3(C6H5O7)2 последовательно растворяют в 180 см3 ацетонитрила CH3CN при температуре 40-60°С. Носитель заливают пропиточным раствором при температуре 35°С и выдерживают в нем в течение 30 мин. Полученный катализатор сушат в токе воздуха при температуре 130°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 8,6; Со - 2,6; K - 7,0; остальное - носитель (табл. 1).

Пример 4

Катализатор готовят методом пропитки носителя массой 100 г, представляющего собой оксид кремния SiO2. Для приготовления совместного пропиточного раствора 48,7 г тетратиомолибдата калия K2MoS4, 30,2 г ацетилацетоната кобальта Со(C5H7O2)2 последовательно растворяют в 200 см3 диметилформамида (CH3)2NC(O)H при температуре 30-50°С. Носитель заливают пропиточным раствором при температуре 35°С и выдерживают в нем в течение 30 мин. Полученный катализатор сушат в токе воздуха при температуре 110°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 10,0; Со - 3,1; K - 8,1; остальное - носитель (табл. 1).

Пример 5

Катализатор готовят методом последовательной пропитки носителя массой 100 г, представляющего собой смесь оксида алюминия γ-AlO3 (90% мас.) и оксида кремния SiO2 (10% мас.). На первом этапе готовят пропиточный раствор 1, растворяя 52,5 г тетратиомолибдата калия K2MoS4 в 205 см3 этанола С2Н5ОН при температуре 40-60°С.Далее носитель заливают приготовленным пропиточным раствором 1 при температуре 45°С и выдерживают в нем в течение 30 мин. Полученный образец сушат в токе азота N2 при температуре 105°С в течение 4 ч. На втором этапе готовят пропиточный раствор 2, растворяя последовательно 9,3 г гидрокарбоната кобальта 3CoCO3⋅2Со(ОН)2⋅H2O, 7,8 г молочной кислоты С3Н6О3 в 100 см3 этанола С2Н5ОН при температуре 40-60°С. Полученный после сушки в токе азота N2 при температуре 105°С в течение 4 ч образец заливают пропиточным раствором 2 при температуре 45°С и выдерживают в нем в 30 мин. Полученный катализатор сушат в токе азота N2 при температуре 105°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 10,5; Со - 3,2; K - 8,5; остальное - носитель (табл. 1).

Пример 6

Катализатор готовят методом пропитки носителя массой 100 г, представляющего собой смесь оксида алюминия γ-Al2O3 (85% мас.) и оксида кремния SiO2 (15% мас.). Для приготовления совместного пропиточного раствора 11,6 г гидроксида кобальта Со(ОН)2⋅H2O, 8,3 г гликолевой кислоты С2Н4О3 и 65,6 г тетратиомолибдата калия K2MoS4 последовательно растворяют в 230 см3 этанола С2Н5ОН при температуре 30-50°С. Носитель заливают пропиточным раствором при температуре 30°С и выдерживают в нем в течение 30 мин. Полученный катализатор сушат в токе азота N2 при температуре 80°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 12,0; Со - 3,7; K - 9,8; остальное - носитель (табл. 1).

Пример 7

Катализатор готовят методом последовательной пропитки носителя массой 100 г, представляющего собой смесь оксида алюминия γ-Al2O3 (95% мас.) и оксида кремния SiO2 (15% мас.). На первом этапе готовят пропиточный раствор 1, растворяя 40,2 г тетратиомолибдата калия K2MoS4 в 180 см3 этанола С2Н5ОН при температуре 30-50°С. Далее носитель заливают приготовленным пропиточным раствором 1 при температуре 40°С и выдерживают в нем в течение 30 мин. Полученный образец сушат в токе азота N2 при температуре 120°С в течение 4 ч. На втором этапе готовят пропиточный раствор 2, растворяя последовательно 7,1 г карбоната кобальта CoCO3, 6,9 г малоновой кислоты С3Н4О4 в 90 см3 этанола С2Н5ОН при температуре 30-50°С. Полученный после сушки в токе азота N2 при температуре 120°С в течение 4 ч образец заливают пропиточным раствором 2 при температуре 40°С и выдерживают в нем в течение 30 мин. Полученный катализатор сушат в токе азота N2 при температуре 120°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 8,8; Со - 2,7; K - 7,2; остальное - носитель (табл. 1).

Пример 8

Катализатор готовят методом последовательной пропитки носителя массой 100 г, представляющего собой оксид кремния SiO2. На первом этапе готовят пропиточный раствор 1, растворяя 48,7 г тетратиомолибдата калия K2MoS4 в 205 см3 диметилформамида (CH3)2NC(O)H при температуре 30-50°С. Далее носитель заливают приготовленным пропиточным раствором 1 при температуре 30°С и выдерживают в нем в течение 30 мин. Полученный образец сушат в токе воздуха при температуре 110°С в течение 4 ч. На втором этапе готовят пропиточный раствор 2, растворяя 30,2 г ацетилацетоната кобальта Co(C5H7O2)2 в 100 см3 диметилформамида (CH3)2NC(O)H при температуре 30-50°С. Полученный после сушки в токе воздуха при температуре 110°С в течение 4 ч образец заливают пропиточным раствором 2 при температуре 30°С и выдерживают в нем в течение 30 мин. Полученный катализатор сушат в токе воздуха при температуре 110°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 10,0; Со - 3,1; K - 8,1; остальное - носитель (табл. 1).

Пример 9

Катализатор готовят методом последовательной пропитки носителя массой 100 г, представляющего собой оксид алюминия γ-Al2O3. На первом этапе готовят пропиточный раствор 1, растворяя 38,2 г тетратиомолибдата калия K2MoS4 в 165 см3 ацетонитрила CH3CN при температуре 40-60°С. Далее носитель заливают приготовленным пропиточным раствором 1 при температуре 40°С и выдерживают в нем в течение 30 мин. Полученный образец сушат в токе азота N2 при температуре 95°С в течение 4 ч. На втором этапе готовят пропиточный раствор 2, растворяя последовательно 6,8 г гидрокарбоната кобальта 2CoCO3⋅3Со(ОН)2⋅H2O, 8,5 г яблочной кислоты C4H6O5 в 80 см3 ацетонитрила CH3CN при температуре 40-60°С. Полученный после сушки в токе азота N2 при температуре 95°С в течение 4 ч образец заливают пропиточным раствором 2 при температуре 40°С и выдерживают в нем в течение 30 мин. Полученный катализатор сушат в потоке азота N2 при температуре 95°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо -8,5; Со - 2,6; K - 6,9; остальное - носитель (табл. 1).

Пример 10

Катализатор готовят методом пропитки носителя массой 100 г, представляющего собой оксид магния MgO. Для приготовления совместного пропиточного раствора 65,6 г тетратиомолибдата калия K2MoS4 и 13,3 г ацетилацетоната кобальта Со(C5H7O2)2 последовательно растворяют в 130 см диметилформамида (CH3)2NC(O)H при температуре 40-60°С. Носитель заливают пропиточным раствором при температуре 45°С и выдерживают в нем в течение 30 мин. Полученный катализатор сушат в токе воздуха при температуре 110°С в течение 4 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: Мо - 5,5; Со - 1,7; K - 4,5; остальное - носитель (табл. 1).

Катализаторы испытывали в процессе гидроочистки широкой фракции БКК, с содержанием серы 0,22% мас. и олефинов 26,6% мас. и октановым числом 84,0 п. (по исследовательскому методу). В трубчатый реактор загружали 15 см3 катализатора в виде частиц размером 0,25-0,50 мм, приготовленных путем измельчения и рассеивания исходных гранул катализатора, разбавленного SiC до общего объема 30 см3. Далее катализатор сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси H2S и Н2 (5 об. % H2S) при объемном расходе смеси 500 ч-1. Условия испытания: давление водорода 1,5 МПа, соотношение водород/сырье 200 нл/л, объемная скорость подачи сырья 1,0 ч-1, температура в реакторе 320°С.

Гидрогенизаты отделяли от водорода в сепараторах высокого и низкого давления, затем подвергали обработке 10%-ным раствором NaOH в течение 15 мин, отмывали дистиллированной водой до нейтральной реакции промывных вод, высушивали над прокаленным CaCl2 Содержание серы в сырье и полученных гидрогенизатах определяли согласно ГОСТ Р 52660, содержание олефиновых углеводородов - по ГОСТ 2070, октановое число -исследовательским методом по ГОСТ 8226.

Селективность катализаторов в отношении реакций гидрообессеривания оценивался по величине ГДС/ГИДО селективности (S), рассчитанному по формуле:

где xS и хОУ - конверсия серосодержащих соединений и олефинов, соответственно %.

Результаты испытаний катализаторов представлены в табл. 2.

Катализаторы, приготовленные заявляемым способом, превосходят по активности и селективности прототип. Показатели процесса при гидроочистке БКК позволяют сделать вывод о высокой эффективности заявляемых способов приготовления катализаторов селективной гидроочистки олефинсодержащего углеводородного сырья.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 191.
26.08.2017
№217.015.d9b0

Способ компенсации оптических аберраций с использованием деформируемого зеркала

Изобретение относится к способам, которые обеспечивают компенсацию оптических аберраций с использованием деформируемого зеркала, и может быть использовано в активных и адаптивных оптических системах, предназначенных для компенсации аберраций волнового фронта светового излучения. Способ...
Тип: Изобретение
Номер охранного документа: 0002623661
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.df33

Способ приготовления кисломолочногопродукта

Изобретение относится к молочной промышленности. Подготовленное молоко подвергают действию электрического тока в катодном пространстве диафрагменного электролизера с плоскими электродами из нержавеющей стали 10Х17Н13М2Т при объемной плотности тока 2 А/см и катодной плотности тока 0,018 А/см в...
Тип: Изобретение
Номер охранного документа: 0002625030
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.f51a

Катализатор, способ его приготовления и процесс селективной гидроочистки бензина каталитического крекинга

Изобретение относится к области химии, в частности к катализаторам для селективной гидроочистки бензинов каталитического крекинга, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Заявляется катализатор селективной гидроочистки бензина каталитического...
Тип: Изобретение
Номер охранного документа: 0002637808
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f85d

Адсорбент для очистки сточных вод от ионов меди

Изобретение относится к охране окружающей среды. Предложен сорбент для очистки сточных вод от меди. Сорбент представляет собой отработанный в процессе фильтрации пива кизельгур, подвергнутый сушке при 50-200°C и последующей термохимической активации при 60-100°C. Активацию проводят в 2,0-2,5 М...
Тип: Изобретение
Номер охранного документа: 0002639803
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.f8cd

Способ получения изопропилбензола

Изобретение относится к способу получения изопропилбензола алкилированием бензола пропиленом и переалкилированием полиалкилибензолов. Способ характеризуется тем, что реакции алкилирования и переалкилирования проводят раздельно, причем реакцию алкилирования проводят в жидкой фазе с применением...
Тип: Изобретение
Номер охранного документа: 0002639706
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.0516

Способ производства фруктового продукта в виде пластинок из груш, яблок и виноградного сырья

Изобретение относится к пищевой промышленности, в частности к изготовлению фруктового продукта в виде пластинок из груш, яблок и виноградного сырья. Пищевой продукт готовят путем подготовки груш и яблок. Удаляют несъедобные части и кожуру. Режут на ломтики толщиной 5-8 мм, обрабатывают в...
Тип: Изобретение
Номер охранного документа: 0002630702
Дата охранного документа: 12.09.2017
19.01.2018
№218.016.078f

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Изобретение относится к способу приготовления катализатора для глубокой гидроочистки нефтяных фракций. Способ включает пропитку алюмооксидного носителя раствором соединений металлов VIII, VI и V групп. При этом готовят совместный пропиточный раствор MoO и/или WO, не обязательно VO, от 0,33 до...
Тип: Изобретение
Номер охранного документа: 0002631424
Дата охранного документа: 22.09.2017
20.01.2018
№218.016.0f39

Способ получения 1н-бензо[f]хромен-2-ил(арил)кетонов

Изобретение относится к способу получения 1-бензо[ƒ]хромен-2-ил(арил)кетонов реакцией замещенных 1-[(диметиламино)метил]-2-нафтолов с 3-(диметиламино)-1-арил-проп-2-ен-1-онами. Полученные соединения являются перспективными исходными соединениями для синтеза фармакологически активных веществ....
Тип: Изобретение
Номер охранного документа: 0002633368
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0f41

Расплавляемый электролит для химического источника тока

Изобретение относится к расплавляемому электролиту для химического источника тока, включающему при следующем соотношении компонентов, мас. %: фторид лития 1,57…1,63, хромат лития 64,59…66,29, хлорид калия 16,38…18,52, хромат калия 15,32…15,70. Технический результат – снижение температуры...
Тип: Изобретение
Номер охранного документа: 0002633360
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.1152

Погружной скважинный генератор газопаровой смеси

Изобретение относится к области промышленной теплоэнергетики и может быть применено для генерирования газопаровой смеси с целью термической обработки скважин в нефтедобывающей промышленности. Техническим результатом изобретения является обеспечение надежного функционирования генератора...
Тип: Изобретение
Номер охранного документа: 0002633983
Дата охранного документа: 20.10.2017
Показаны записи 21-30 из 57.
08.11.2018
№218.016.9a94

Альтернативное моторное топливо

Изобретение описывает альтернативное моторное топливо с октановым числом по исследовательскому методу не менее 90,0 единиц, давлением насыщенных паров не менее 35,0 кПа и не более 100,0 кПа, включающее в себя углеводородную фракцию и алифатические спирты, при этом углеводородная фракция...
Тип: Изобретение
Номер охранного документа: 0002671639
Дата охранного документа: 06.11.2018
08.11.2018
№218.016.9b0a

Способ переработки нефтяных остатков

Изобретение относится к способу переработки тяжелых нефтяных остатков, включающему вакуумную перегонку мазута с выделением прямогонного вакуумного дистиллята и гудрона, коксование гудрона с последующим разделением жидких продуктов коксования на бензиновую, дизельную фракции и тяжелую газойлевую...
Тип: Изобретение
Номер охранного документа: 0002671640
Дата охранного документа: 06.11.2018
29.12.2018
№218.016.ac84

Катализатор селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья и способ его приготовления

Изобретение относится к катализатору селективного гидрообессеривания высокосернистого олефинсодержащего углеводородного сырья и способу его получения. Катализатор содержит как минимум один из следующих гетерополианионов [SiWO], [SiWO], [SiWO], [PWO], [PWO], [PWO], [Ni(OH)WO], [Fe(OH)WO] и...
Тип: Изобретение
Номер охранного документа: 0002676260
Дата охранного документа: 27.12.2018
20.02.2019
№219.016.bf71

Способ приготовления катализаторов для глубокой гидроочистки нефтяных фракций

Изобретение относится к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций. Описан способ приготовления катализатора для глубокой гидроочистки нефтяных фракций, включающий пропитку алюмооксидного носителя раствором соединений металлов VIII и VI групп,...
Тип: Изобретение
Номер охранного документа: 0002385764
Дата охранного документа: 10.04.2010
22.02.2019
№219.016.c5a2

Способ гидрогенизационной переработки углеводородного сырья

Изобретение относится к способу гидрогенизационной переработки углеводородного сырья и может быть использовано в нефтеперерабатывающей промышленности. Изобретение касается способа гидрогенизационной переработки углеводородного сырья, при котором сырье пропускают через реактор с неподвижным...
Тип: Изобретение
Номер охранного документа: 0002680386
Дата охранного документа: 20.02.2019
15.03.2019
№219.016.e0cc

Способ снижения содержания бензола в бензиновых фракциях

Изобретение относится к содержанию бензола в товарных бензинах. Заявлен способ снижения содержания бензола в бензиновых фракциях путем гидрирования и изомеризации в присутствии катализаторов при повышенных температуре и давлении сырья, состоящего из смеси фракции НК-85С стабильного риформата,...
Тип: Изобретение
Номер охранного документа: 0002322478
Дата охранного документа: 20.04.2008
29.04.2019
№219.017.4177

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Катализатор глубокой гидроочистки нефтяных фракций содержит оксид...
Тип: Изобретение
Номер охранного документа: 0002386476
Дата охранного документа: 20.04.2010
08.06.2019
№219.017.75b4

Способ получения канцерогенно безопасных ароматических наполнителей и пластификаторов каучука и резины

Изобретение относится к области нефтепереработки, а более конкретно к производству канцерогенно безопасных ароматических наполнителей и пластификаторов каучука и резины. Способ получения канцерогенно безопасных ароматических наполнителей и пластификаторов каучука и резины заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002690926
Дата охранного документа: 06.06.2019
09.06.2019
№219.017.7646

Способ восстановления активности цеолитсодержащего катализатора

Изобретение относится к способу восстановления активности цеолитсодержащего катализатора процесса изодепарафинизации дизельного топлива в присутствии водородсодержащего газа и может быть использовано в нефтепереработке. Предлагается способ восстановления активности цеолитсодержащего...
Тип: Изобретение
Номер охранного документа: 0002690947
Дата охранного документа: 07.06.2019
13.06.2019
№219.017.8103

Способ приготовления каталитически-сорбционного материала для удаления хлора и способ удаления хлорорганических соединений

Настоящее изобретение относится к способу приготовления каталитически-сорбционного материала для удаления хлора, включающему синтез инертного носителя, его пропитку растворами нитрата никеля и ацетата магния, причем в качестве компонента носителя, повышающего структурные характеристики, такие...
Тип: Изобретение
Номер охранного документа: 0002691071
Дата охранного документа: 10.06.2019
+ добавить свой РИД