×
26.10.2019
219.017.dae2

Результат интеллектуальной деятельности: Способ получения никотиновой кислоты

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения никотиновой кислоты путём прямого газофазного окисления 3-пиколина кислородом воздуха, в котором 3-пиколин, воздух, воду и газы рецикла подают в реактор, состоящий из трубок с неподвижным слоем гранулированного катализатора, омываемых хладагентом. При доле рецикла 80-90% от общего объема реакционной смеси концентрация 3-пиколина на входе в реактор составляет 0,8-1,1 мол.%, а мольное соотношение 3-пиколина, кислорода и воды - 1:/11-21/:/18-26/. Используется ванадий-титановый оксидный катализатор, содержащий оксиды ванадия 5-20 мас.%, модифицирующие добавки - оксид церия или один или несколько оксидов металлов, выбранных из IV группы и V периода Периодической таблицы с суммарным содержанием оксидов модифицирующих элементов в пределах 1,2-10,0 мас.%, оксиды титана анатазной модификации не менее 60 мас.%. Отношение размера гранул катализатора к внутреннему диаметру трубки составляет 1:/5,8-8,4/, а максимальная температура в слое катализатора на 5-20°С выше, чем температура хладагента. После реактора реакционные газы направляют на стадию выделения никотиновой кислоты в твердую фазу, после чего часть газов отделяют и производят рецикл, а из другой части реакционных газов либо выделяют в жидкую фазу не прореагировавшие 3-пиколин и 3-пиридинкарбальдегид и возвращают их в каталитический процесс получения никотиновой кислоты, либо направляют другую часть реакционных газов на обезвреживание и последующий сброс в атмосферу. Технический результат - увеличение съема никотиновой кислоты с единицы массы катализатора и увеличение полноты использования исходного 3-пиколина. 3 з.п. ф-лы, 12 пр.

Изобретение относится к способу получения никотиновой кислоты. Никотиновая (3-пиридинкарбоновая) кислота относится к жизненно важным витаминам группы В, она участвует во многих окислительно-восстановительных процессах, в липидном и углеводном обмене, используется в медицине как лекарственное средство, выступает в качестве пищевых добавок и премиксов для животных, а также широко применяется в синтезе ряда ценных органических соединений.

Современные методы получения никотиновой кислоты основаны на газофазном окислении 3-метилпиридина (3-пиколина) на твёрдых катализаторах источником кислорода. От предшествующих жидкофазных технологий данные методы выгодно отличаются отсутствием токсичных жидких стоков и газовых выбросов, простотой и компактностью производства, более высоким качеством получаемой никотиновой кислоты. Однако существующие промышленные технологии характеризуются низкими технико-экономическими показателями, что обусловлено недостаточной производительностью реакционного объема и неполной утилизацией дорогостоящего сырья.

Существующий уровень техники в данном процессе характеризуется следующими изобретениями.

Известен (РФ2049089, С07D213/803, 26.01.94; US5728837, B01J23/22, 17.03.1998) способ получения никотиновой кислоты газофазным окислением 3-пиколина кислородом воздуха в присутствии водяного пара при мольных соотношениях реагентов 1:/15-40/:/10-70/ (3-пиколин:O2:H2O) и температурах 250-290°С. Используют ванадий-титановый катализатор V2O5/TiO2, /5-75/:/95-25/ мас.%, в виде порошка 0,5-1 мм. После реактора никотиновую кислоту десублимируют при температурах 160-180°С. Выход никотиновой кислоты составляет 82-86 мол.% при времени контакта 0,27-1,5 с и исходной концентрации 3-пиколина 0,4 мол.%.

Известен (EP0984005, C07D213/803, 01.09.1998; CA2281293, C07D213/807, 01.09.1998; US6229018, C07D 213/803, 08.05.2001) способ получения никотиновой кислоты газофазным окислением 3-пиколина кислородом в присутствии водяного пара и СО2 при мольных соотношениях 1:22:50:/0-9/ (3-пиколин:O2:H2O:CO2) и температуре 275°С. Используют ванадий-титановый катализатор /18-20/:/82-80/ мас.% в виде частиц 1-1,6 мм. После реактора никотиновую кислоту десублимируют при температуре ниже 235°С, а не прореагировавший 3-пиколин направляют обратно в реактор. Выход никотиновой кислоты за проход составляет 67 мол.% при массовой нагрузке по 3-пиколину WHSV=0,11 ч–1. С учетом рецикла общий выход никотиновой кислоты может достичь 90%.

Известен (US2005222421, B01J23/00, 05.04.2004; EP1584618, C07D 213/79, 30.06.2004) способ получения никотиновой кислоты газофазным окислением 3-пиколина кислородом (чистым, в составе воздуха или в составе обогащённого кислородом воздуха) в присутствии водяного пара при мольных соотношениях 1:/15-60/:/70-350/ (3-пиколин:O2:H2O) и температурах 250-350°С. Используют ванадий-титановый катализатор с содержанием оксида ванадия 2,5-20 мас.%, оксидов переходных металлов 0,1-10 мас.%, остальное - оксид титана. На выходе из реактора поток, содержащий никотиновую кислоту, отмывают водой от примесей не прореагировавшего 3-пиколина, после отгонки воды и 3-пиколина при 96-100°С 3-пиколин возвращают обратно в реактор. Выход никотиновой кислоты за проход составляет 78-90 мол.% при массовой нагрузке по 3-пиколину WHSV=0,01-0,1 ч–1.

Известен (EP2428505B1, C07D213/803, 10.08.2016) способ получения никотиновой кислоты газофазным окислением 3-пиколина источником кислорода в присутствии воды при мольных соотношениях 1:/10-40/:/20-80/, а лучше 1:/15-30/:/30-60/ (3-пиколин:O2:H2O) и температурах 240-380°С, а лучше при 250-290°С. Используют ванадий-титановый катализатор c добавками оксидов металлов при массовом соотношении оксида ванадия, оксидов металлов, оксида титана 1:/0,1-0,5/:/5-15/. В трубчатом реакторе применяют многослойную загрузку катализатора и инертного материала, после реактора никотиновую кислоту подвергают сложной многоступенчатой очистке и экстракции с применением растворителя при температуре 5-120°С с последующей сушкой при температуре 80-120°С, а получаемые в процессе газы из абсорбера, очищенной жидкости и маточного раствора рециркулируют. В результате получают продукт чистотой ~99,6%. Выход никотиновой кислоты составляет 85.9% при массовой нагрузке по 3-пиколину WHSV=0,01-2 ч–1, а лучше 0,02-0,75 ч–1. Не приводятся данные об исходной концентрации 3-пиколина, об условиях реализации процесса в реакторе, а также о размерах и форме используемого катализатора.

Известен (DE102004027414A1, C07D213/80, 04.06.2004) способ получения никотиновой кислоты газофазным окислением 3-пиколина кислородом воздухом в присутствии водяного пара при мольных соотношениях 1:/16-40/:/40-100/ (3-пиколин:O2:H2O) и температурах выше 290°С в обогреваемой трубке со стационарным слоем катализатора при отношении диаметра трубки к размеру катализатора ~4. Используют кольцеобразный и сферический ванадий-титановый катализатор с содержанием оксида ванадия не более 20%. Выход никотиновой кислоты составляет 73-87% при массовой нагрузке по 3-пиколину WHSV=0,03-0,18 ч–1.

Известен (CN104109116, C07D213/79, 11.06.2014) способ и установка получения никотиновой кислоты газофазным окислением 3-пиколина кислородом воздуха в присутствии водяного пара при мольных соотношениях 1:/10-40/:/20-40/ (3-пиколин:O2:H2O) и температурах 250-290°С. Используют ванадий-титановый катализатор с содержанием оксида ванадия 10-20%. После трубчатого реактора со стационарным слоем катализатора газовый поток охлаждают, затем никотиновую кислоту десублимируют при температуре 170-250°С, в десублиматор добавляют пар и никотиновую кислоту выгружают в виде суспензии, а остаточные реакционные газы после десублиматора, содержащие не прореагировавший 3-пиколин, возвращают в реактор. Выход никотиновой кислоты за проход составляет 85 мол.%. при массовой нагрузке по 3-пиколину WHSV=0,03 ч–1 и газовой нагрузке по реакционной смеси GHSV=1500-2000 ч–1. После перекристаллизации получают продукт чистотой 99.5%.

Известна (РФ 2109734, C07D213/79, 27.09.1998) установка получения никотиновой кислоты газофазным окислением 3-пиколина кислородом воздухом в присутствии водяного пара при температурах 245-270°С, с использованием катализатора в форме кольца размером 4-10 мм, включающая узел подачи реагирующих веществ, контактный трубчатый аппарат с системой циркуляции теплоносителя между трубками, десублиматор для выделения продуктов контактирования, узел сбора готовой продукции, систему автоматического управления процессом, систему трубопроводов для коммуникации потоков и рецикла газа, узел дожига части выбросных газов.

Известна также установка, усовершенствованная в части конструкции десублиматора (РФ 2275958, C07D213/79, 08.07.2004).

Согласно результатам проведенного патентного анализа, основными недостатками существующих способов получения никотиновой кислоты и установок для их реализации являются следующие:

1) Катализатор используют в виде порошка, гранул мелкого размера или в иной форме, не применимой для промышленной реализации процесса.

2) Отсутствуют количественные данные о рецикле реакционных газов.

3) Не приводятся данные об исходной концентрации 3-пиколина и не рассматривается возможность рециркуляции не прореагировавшего 3-пиколина.

4) Не рассматривается возможность сброса накапливающихся при рециркуляции избыточных продуктов - оксидов углерода и паров воды.

Наиболее близким техническим решением, выбранным в качестве прототипа, является (РФ 2371247, B01J23/22, 27.10.2009) способ получения никотиновой кислоты газофазным окислением 3-пиколина кислородом в присутствии водяного пара, который проводят при мольных соотношениях 1:/15-40/:/10-70/ и температурах 250-290°С, используют гранулированный бинарный ванадий-титановый катализатор /18-20/:/82-80/, либо ванадий-титановый катализатор, содержащий модифицирующие добавки - оксид церия или один или несколько оксидов металлов, выбранных из IV группы и V периода Периодической таблицы с суммарным содержанием оксидов модифицирующих элементов в пределах 1,2-10 мас.%, а после реактора никотиновую кислоту десублимируют при температурах 100-180°С. Выход никотиновой кислоты (Y) составляет 61-80 мол.% при времени контакта τ=3,5-5 с⋅г⋅мл–1 и исходной концентрации 3-пиколина С0=0,5-0,8 мол.%. Проведение процесса в элементе трубчатого реактора при загрузке 1,45 кг гранулированного катализатора и температуре в горячей точке 280°С приводит к увеличению активности катализатора, то есть к более высоким величинам конверсии сырья и константы скорости, но также к потере селективности по никотиновой кислоте, в результате чего удельный съём никотиновой кислоты, рассчитанный по формуле П=WHSV×0,01×Y×123/93, снижается с 32 мг/ч никотиновой кислоты с 1 г катализатора в лабораторном изотермическом реакторе до 18 мг/ч никотиновой кислоты с 1 г катализатора в элементе промышленного трубчатого реактора. Следует учесть, что съём никотиновой кислоты определен в расчете на ее полное извлечение из газовой фазы, без учета возможных потерь продукта в реальном процессе. Массовая нагрузка по 3-пиколину, рассчитанная по формуле WHSV=3600×τ–1×0,01×С0×4.15 (93/22,4=4.15 г/л – плотность 3-пиколина в газовой фазе), составила 0,02-0,03 ч–1. Бинарный ванадий-титановый катализатор не испытан в элементе промышленного реактора, недостатком также является отсутствие рецикла и низкий удельный съем никотиновой кислоты.

Изобретение решает задачу повышения эффективности процесса получения никотиновой кислоты.

Поставленная задача достигается тем, что никотиновую кислоту получают путём прямого газофазного окисления 3-пиколина кислородом воздуха, при котором 3-пиколин, воду, воздух и газы рецикла подают в реактор, состоящий из трубок с неподвижным слоем гранулированного катализатора, омываемых хладагентом, после реактора реакционные газы направляют на стадию выделения никотиновой кислоты в твердую фазу, после чего производят рецикл части реакционных газов, содержащих не прореагировавший 3-пиколин, воду и продукты реакции, обратно на вход реактора, а другую часть реакционных газов либо направляют на стадию выделения в жидкую фазу не прореагировавших 3-пиколина и 3-пиридинкарбальдегида, которые затем возвращают в каталитический процесс получения никотиновой кислоты, либо направляют на стадию обезвреживания с последующим сбросом в атмосферу.

Техническим результатом предлагаемого изобретения является повышение производительности по никотиновой кислоте и увеличение полноты использования исходного 3-пиколина.

В предлагаемом изобретении никотиновую кислоту получают путём прямого газофазного окисления 3-пиколина кислородом воздуха, при котором 3-пиколин, воду, воздух и газы рецикла подают в реактор, состоящий из трубок с неподвижным слоем гранулированного катализатора, омываемых хладагентом, процесс проводят при соотношении размеров катализатора и внутреннего диаметра трубки 1:/5,8-8,4/, разности между температурой теплоносителя и максимальной температурой в слое катализатора 5-20°С, на ванадий-титановом оксидном катализаторе, содержащем оксиды ванадия 10-20 мас.%, модифицирующие добавки - оксид церия или один или несколько оксидов металлов, выбранных из IV группы и V периода Периодической таблицы с суммарным содержанием оксидов модифицирующих элементов в пределах 1,2-10 мас.%, оксиды титана анатазной модификации не менее 60 мас.% и имеющем общую удельную поверхность 14-35 м2/г, из реактора реакционные газы направляют на стадию выделения никотиновой кислоты в твердую фазу, после чего производят рецикл части реакционных газов, содержащих не прореагировавший 3-пиколин, воду и продукты реакции, обратно на вход реактора в количестве, исключающем чрезмерное накопление продуктов реакции, паров воды и оксидов углерода и обеспечивающем концентрацию 3-пиколина на входе в реактор 0,8-1,1 мол.% при соотношении реагентов 3-пиколина, кислорода, паров воды в диапазоне 1:/11-21/:/18-26/, а другую часть реакционных газов либо направляют на стадию выделения в жидкую фазу не прореагировавших 3-пиколина и 3-пиридинкарбальдегида, которые затем возвращают в каталитический процесс получения никотиновой кислоты, либо направляют на стадию обезвреживания с последующим сбросом в атмосферу.

Предлагаемое техническое решение обеспечивает увеличение съема никотиновой кислоты с единицы массы катализатора (производительности катализатора) и способствует улучшению экономических показателей. При доле рецикла 80-90% от общего объема реакционной смеси и степени выделения в жидкую фазу и возврата 3-пиколина и 3-пиридинальдегида 80-90%, общий выход никотиновой кислоты в процессе составляет 83-92 мол.%, а съем никотиновой кислоты с единицы массы катализатора составляет 32-53 мг·ч-1·г-1.

Способ получения никотиновой кислоты согласно предлагаемому изобретению иллюстрируется следующими примерами.

В сравнительных примерах 1-2 процесс проводят в элементе промышленного трубчатого реактора при соотношении размеров катализатора и внутреннего диаметра трубки 1:5,8. Реактор представляет собой стальную трубку длиной 6 м, омываемую хладагентом, температуру внутри реактора регулируют путем изменения температуры хладагента. В реактор загружают изготовленный согласно патенту РФ 2371247 ванадий-титановый оксидный катализатор в форме колец 4×2×5 мм. Эквивалентный размер гранул катализатора, определяемый как 1,5⋅d⋅h/(0.5·d+h), где d – внешний диаметр гранулы катализатора, h – высота гранулы катализатора, составил 4,3 мм. Массовую нагрузку по 3-пиколину WHSV (определяемую как отношение часового массового расхода подаваемого в реактор 3-пиколина к массе загруженного катализатора) варьируют в пределах 0,012-0,017 ч–1 изменением массы загружаемого катализатора 1,44-2,0 кг. Газовую смесь, содержащую 0,5 мол.% 3-пиколина, при соотношении реагентов 3-пиколина, кислорода, паров воды 1:33:40 подают в реактор, после реактора никотиновую кислоту кристаллизуют в емкости при температуре 100-237°С.

Степень переработки сырья определяют как разность мольных потоков свежего и сбрасываемого 3-пиколина, отнесенная к потоку свежего 3-пиколина, подаваемого в систему.

Селективность по никотиновой кислоте определяют как мольный поток никотиновой кислоты на выходе из реактора, отнесенный к мольному потоку израсходованного в реакторе 3-пиколина.

Съем никотиновой кислоты определяют как массу никотиновой кислоты, собранной в емкости за единицу времени, отнесенную к массе загруженного катализатора.

Пример 1. Сравнительный

Загружают 1,45 кг гранулированного ванадий-титанового оксидного катализатора состава, мас.%: 21,8 V2O5, 77 TiO2 и 1,2 SnO2, с поверхностью 30 м2/г, и процесс проводят без рецикла в условиях, близких к прототипу; температуру хладагента поддерживают равной 275°С, а температуру в горячей точке катализаторного слоя в реакторе - на 5,4°С выше температуры хладагента; WHSV = 0,017ч–1.

Степень переработки сырья составляет 95,4%. Селективность по никотиновой кислоте составляет 84,1 мол.%. Съем никотиновой кислоты с единицы массы катализатора составляет 17,5 мг·ч-1·г-1.

Пример 2. Сравнительный

Процесс проводят как в примере 1, но катализатор загружают в количестве 2,0 кг, WHSV = 0,012 ч–1.

Степень переработки сырья составляет 98,6%. Селективность по никотиновой кислоте составляет 81,8 мол.%. Съем никотиновой кислоты с единицы массы катализатора составляет 12,2 мг·ч-1·г-1.

Примеры 1-2 демонстрируют, что при ведении процесса в элементе промышленного трубчатого реактора в условиях, близких к прототипу, имеет место низкий съем никотиновой кислоты вследствие низкой исходной концентрации 3-пиколина и снижения селективности по никотиновой кислоте в результате ее доокисления.

В примерах 3-11 процесс проводят в элементе промышленного трубчатого реактора при соотношении размеров катализатора и внутреннего диаметра трубки 1:/5,8-8,4/. Реактор представляет собой стальную трубку длиной 6 м, омываемую хладагентом, температуру внутри реактора регулируют путем изменения температуры хладагента. В реактор загружают 2,0 кг изготовленного согласно патенту РФ 2371247 оксидного ванадий-титанового катализатора в форме колец 4×2×5 мм. Эквивалентный размер гранул катализатора составил 4,3 мм. Массовую нагрузку по 3-пиколину WHSV варьируют в пределах 0,023-0,061 ч–1 изменением исходной концентрации 3-пиколина в реакционной смеси 0,8-1,10 мол.% и общего потока газа, подаваемого в систему. Газовую смесь при соотношении реагентов 3-пиколина, кислорода, паров воды в диапазоне 1:/11-21/:/18-26/ подают в реактор, после выделения никотиновой кислоты в твердую фазу отделяют 80-90% от общего объёма газового потока, содержащего в газовой фазе не прореагировавший 3-пиколин и 3-пиридинкарбальдегид, а также пары воды и оксиды углерода, и производят рецикл этого газового потока, который после смешения со свежими потоками 3-пиколина, воздуха и воды подают на вход указанного выше элемента промышленного трубчатого реактора.

3-Пиридинкарбальдегид является промежуточным продуктом окисления 3-пиколина и наряду с 3-пиколином является источником никотиновой кислоты.

Пример 3.

Процесс проводят как в примере 2, но при соотношении размеров катализатора и внутреннего диаметра трубки 1:7,0; разности между максимальной температурой в слое катализатора и температурой хладагента 6,5°С; WHSV=0,034ч–1. Исходную газовую смесь подают в реактор, после выделения никотиновой кислоты отделяют 87% от общего объёма газового потока, содержащего не прореагировавший 3-пиколин и 3-пиридинкарбальдегид в газовой фазе, а также пары воды и оксиды углерода, и производят рецикл этого газового потока, который после смешения со свежими потоками 3-пиколина, воздуха и воды подают на вход указанного выше реактора, при соотношении реагентов 3-пиколина, кислорода, паров воды 1:21:25 и исходной концентрации 3-пиколина на входе в реактор 0,8 мол.%.

Степень переработки сырья в процессе составляет 96,9%. Селективность по никотиновой кислоте составляет 87,1 мол.%. Съем никотиновой кислоты с единицы массы катализатора составляет 32,8 мг·ч-1·г-1.

Пример 4.

Процесс проводят как в примере 3, но загружают кольцеобразный катализатор состава, мас.%: 25 V2O5, 72 TiO2, 3,0 Nb2O5, с поверхностью 24 м2 /г; соотношение размеров катализатора и внутреннего диаметра трубки составляет 1:8,4; максимальную температуру в катализаторном слое в реакторе поддерживают на 10,5°С выше температуры хладагента; WHSV=0,061ч–1; доля рецикла составляет 85%; соотношение реагентов 3-пиколина, кислорода воздуха, паров воды – 1:11:20, а исходная концентрация 3-пиколина на входе в реактор 1,0 мол. %.

Степень переработки сырья в процессе составляет 91,6%. Селективность по никотиновой кислоте составляет 90,2 мол. %. Съем никотиновой кислоты с единицы массы катализатора составляет 47,5 мг·ч-1·г-1.

Пример 5.

Процесс проводят как в примере 3, но загружают кольцеобразный катализатор состава, мас.%: 21,1 V2O5, 76,9 TiO2, 2,0 CeO2, с поверхностью 22 м2/г; соотношение размеров катализатора и внутреннего диаметра трубки составляет 1:6,3; максимальную температуру в катализаторном слое в реакторе поддерживают на 8,1°С выше температуры хладагента; WHSV=0,038ч–1; доля рецикла составляет 80%; соотношение реагентов 3-пиколина, кислорода воздуха, паров воды – 1:11:18, а исходная концентрация 3-пиколина на входе в реактор 1,1 мол.%.

Степень переработки сырья в процессе составляет 96,7%. Селективность по никотиновой кислоте составляет 90,2 мол.%. Съем никотиновой кислоты с единицы массы катализатора составляет 40,3 мг·ч-1·г-1.

Пример 6.

Процесс проводят как в примере 3, но загружают кольцеобразный катализатор состава, мас.%: 17,5 V2O5, 80 TiO2, 2,5 ZrO2, с поверхностью 26 м2/г; соотношение размеров катализатора и внутреннего диаметра трубки составляет 1:7,5 максимальную температуру в катализаторном слое в реакторе поддерживают на 7,1°С выше температуры хладагента; WHSV=0,038ч–1; доля рецикла составляет 90%; соотношение реагентов 3-пиколина, кислорода воздуха, паров воды – 1:12:25, а исходная концентрация 3-пиколина на входе в реактор 0,8 мол. %.

Степень переработки сырья в процессе составляет 96,1%, селективность по никотиновой кислоте – 90,2 мол.%, а съем никотиновой кислоты с единицы массы катализатора составляет 34,3 мг·ч-1·г-1.

Пример 7.

Процесс проводят как в примере 3, но загружают кольцеобразный катализатор состава, мас.%: 16,8 V2O5, 80 TiO2, 3,2 Sb2O3, с поверхностью 32 м2/г; соотношение размеров катализатора и внутреннего диаметра трубки составляет 1:8,4; максимальную температуру в катализаторном слое в реакторе поддерживают на 9,8°С выше температуры хладагента; WHSV=0,052ч–1; доля рецикла составляет 85%; соотношение реагентов 3-пиколина, кислорода воздуха, паров воды – 1:13:24, а исходная концентрация 3-пиколина на входе в реактор 0,85 мол.%.

Степень переработки сырья в процессе составляет 92,7%. Селективность по никотиновой кислоте составляет 87,3 мол.%. Съем никотиновой кислоты с единицы массы катализатора составляет 41,2 мг·ч-1·г-1.

Пример 8.

Процесс проводят как в примере 3, но загружают кольцеобразный катализатор , состава, мас.%: 18 V2O5, 80 TiO2, 2,0 TeO2, с поверхностью 35 м2/г; соотношение размеров катализатора и внутреннего диаметра трубки составляет 1:7,0; максимальную температуру в катализаторном слое в реакторе поддерживают на 8,3°С выше температуры хладагента; WHSV=0,034ч–1; доля рецикла составляет 85%; соотношение реагентов 3-пиколина, кислорода воздуха, паров воды – 1:14:25, а исходная концентрация 3-пиколина на входе в реактор 0,80 мол.%.

Степень переработки сырья в процессе составляет 96,7%. Селективность по никотиновой кислоте составляет 86,7 мол.%. Съем никотиновой кислоты с единицы массы катализатора составляет 32,5 мг·ч-1·г-1.

Пример 9.

Процесс проводят как в примере 3, но загружают кольцеобразный катализатор, состава, мас.%: 18 V2O5, 80,0 TiO2, 2 MoO3, с поверхностью 28 м2/г; соотношение размеров катализатора и внутреннего диаметра трубки составляет 1:5,8; максимальную температуру в катализаторном слое в реакторе поддерживают на 8,3°С выше температуры хладагента; WHSV=0,026ч–1; доля рецикла составляет 82%; соотношение реагентов 3-пиколина, кислорода воздуха, паров воды – 1:14:22, а исходная концентрация 3-пиколина на входе в реактор 0,90 мол. %.

Степень переработки сырья в процессе составляет 97,6%. Селективность по никотиновой кислоте составляет 89,3 мол. %. Съем никотиновой кислоты с единицы массы катализатора составляет 28,9 мг·ч-1·г-1.

Пример 10.

Процесс проводят как в примере 3, но загружают кольцеобразный катализатор состава, мас.%: 16,5 V2O5, 73,5 TiO2, 2,0 SiO2, 8,0 TeO2, с поверхностью 30 м2/г; соотношение размеров катализатора и внутреннего диаметра трубки составляет 1:5,8; максимальную температуру в катализаторном слое в реакторе поддерживают на 7,2°С выше температуры хладагента; WHSV=0,023ч–1; доля рецикла составляет 80%; соотношение реагентов 3-пиколина, кислорода воздуха, паров воды – 1:16:25, а исходная концентрация 3-пиколина на входе в реактор 0,80 мол.%.

Степень переработки сырья в процессе составляет 98,3%. Селективность по никотиновой кислоте составляет 86,2 мол.%. Съем никотиновой кислоты с единицы массы катализатора составляет 25,1 мг·ч-1·г-1.

Пример 11.

Процесс проводят как в примере 4, но оставшиеся после отделения 15% общего объема газового потока после десублиматора перед обезвреживанием направляют на стадию выделения в жидкую фазу остаточного 3-пиколина и 3-пиридинкарбальдегида, которые затем возвращают в процесс.

Степень выделения в жидкую фазу и возврата 3-пиколина и 3-пиридинкарбальдегида составляет 80-90%. Степень переработки сырья в процессе составляет 96,1-98,1%.

Пример 12.

Процесс проводят как в примере 9, но оставшиеся после отделения 8% общего объема газового потока после десублиматора перед обезвреживанием направляют на стадию выделения в жидкую фазу остаточного 3-пиколина и 3-пиридинкарбальдегида, которые затем возвращают в процесс.

Степень выделения в жидкую фазу и возврата 3-пиколина и 3-пиридинкарбальдегида составляет 80÷90%. Степень переработки сырья в процессе составляет 99,5-99,7%.

Примеры 3-10 иллюстрируют, что комплекс технических приемов по изобретению, а именно рецикл на вход трубчатого реактора 80-90% реакционных газов после выделения никотиновой кислоты, соотношение реагентов 3-пиколина, кислорода, паров воды на входе в реактор 1:/11-21/:/18-26/, соотношение размеров катализатора и внутреннего диаметра трубки 1:/5,8-8,4/, разность температур горячей точки и хладагента 6,5-11°С позволяет при окислении 0,8-1,1 мол.% 3-пиколина кислородом воздуха увеличить съем никотиновой кислоты с единицы массы катализатора до 25-48 мг·ч-1·г-1, по сравнению с величиной 12-18 мг·ч-1·г-1 в схеме без рецикла.

Увеличение концентрации 3-пиколина в исходной реакционной смеси требует уменьшения доли рецикла, для поддержания соотношения между 3-пиколином и кислородом не менее 11 (примеры 2-4).

Технический прием – выделение в жидкую фазу не прореагировавших 3-пиколина и 3-пиридинкарбальдегида из сбрасываемых газов и их возврат в каталитический реактор получения никотиновой кислоты - позволяет существенно увеличить степень переработки ценного исходного сырья в промышленном процессе (примеры 11-12).

Источник поступления информации: Роспатент

Показаны записи 11-19 из 19.
26.10.2019
№219.017.db0a

Способ переработки тяжелого нефтяного сырья на катализаторе защитного слоя

Изобретение описывает способ переработки тяжелого нефтяного сырья на защитном слое катализатора, в котором тяжелое нефтяное сырье пропускают через неподвижный слой катализатора при температуре 300-600°С, скорости подачи сырья через катализатор 0,2-2г-сырья/г-катализатора/ч, в присутствии...
Тип: Изобретение
Номер охранного документа: 0002704122
Дата охранного документа: 24.10.2019
09.03.2020
№220.018.0ad5

Способ получения малосернистого дизельного топлива и малосернистого бензина

Изобретение относится к каталитическим способам переработки смесевых дизельных фракций первичного и смеси дизельных и бензиновых фракций вторичного происхождения с высоким содержанием серы с получением смеси сверхмалосернистых фракций бензиновых и дизельных углеводородов. Описан способ...
Тип: Изобретение
Номер охранного документа: 0002716165
Дата охранного документа: 06.03.2020
21.03.2020
№220.018.0e57

Катализатор, способ его приготовления и способ переработки тяжелого углеводородного сырья

Изобретение относится к составу катализатора, способу его приготовления и процессу переработки тяжелого углеводородного сырья в его присутствии с целью получения нефтепродуктов с высокой добавочной стоимостью. Описан катализатор переработки тяжелого углеводородного сырья, полученный...
Тип: Изобретение
Номер охранного документа: 0002717095
Дата охранного документа: 18.03.2020
04.07.2020
№220.018.2e6e

Биокатализатор, способ его приготовления и способ получения сложных эфиров с использованием этого биокатализатора

Группа изобретение относится к разработке биокатализатора, предназначенного для процессов этерификации различных органических кислот. Предложены биокатализатор для получения сложных эфиров в процессе ферментативной этерификации органических кислот, способ его приготовления и способ получения...
Тип: Изобретение
Номер охранного документа: 0002725474
Дата охранного документа: 02.07.2020
24.07.2020
№220.018.3666

Способ получения малосернистого дизельного топлива

Изобретение описывает способ получения малосернистого дизельного топлива, заключающийся в превращении смеси вторичных дизельных фракций с высоким содержанием серы с прямогонными дизельными фракциями при повышенном давлении и нагревании в потоке водородсодержащего газа в присутствии...
Тип: Изобретение
Номер охранного документа: 0002727189
Дата охранного документа: 21.07.2020
12.04.2023
№223.018.453d

Формованный углеродный сорбент с гликолевой кислотой, способ его получения и способ лечения бактериального вагиноза

Группа изобретений относится к формованному углеродному сорбенту, его получению и применению в медицине в качестве аппликатора для лечения бактериального вагиноза. Модифицированный сорбент представляет собой формованный мезопористый углеродный сорбент цилиндрической формы и геометрическими...
Тип: Изобретение
Номер охранного документа: 0002751000
Дата охранного документа: 07.07.2021
12.04.2023
№223.018.48aa

Катализатор для процесса гидроизомеризации бензолсодержащих бензиновых фракций

Предложен катализатор для процесса гидроизомеризации бензолсодержащих бензиновых фракций, содержащий Pt в количестве 0,1-0,5 мас.% и Cl в количестве 0,1-0,5 мас.%, нанесенные на поверхность носителя, а также цеолит в количестве 10,0-30,0 мас.% и γ-AlO - остальное в качестве носителя, при этом...
Тип: Изобретение
Номер охранного документа: 0002762251
Дата охранного документа: 17.12.2021
14.05.2023
№223.018.54b5

Способ приготовления катализатора и способ получения изопропилбензола с использованием этого катализатора

Изобретение относится к способу получения изопропилбензола в процессе алкилирования бензола пропиленом при температуре 170-230°C, давлении от атмосферного до 50 атм, мольном отношении бензол/пропилен в исходной смеси от 4:1 до 10:1, весовой скорости подачи исходной смеси от 0,2 до 10 ч с...
Тип: Изобретение
Номер охранного документа: 0002737897
Дата охранного документа: 04.12.2020
14.05.2023
№223.018.5696

Способ приготовления катализатора и способ получения изопропилбензола (варианты)

Изобретение относится к способам алкилирования бензола изопропиловым спиртом. Алкилирование осуществляют в проточном реакторе, имеющем две реакционные зоны, в первой из которых в качестве катализатора используют γ-AlOи поддерживают температуру не ниже 450°γС, а во второй зоне используют...
Тип: Изобретение
Номер охранного документа: 0002734985
Дата охранного документа: 27.10.2020
Показаны записи 11-15 из 15.
27.06.2019
№219.017.992b

Катализатор и способ получения n-метиланилина

Изобретение относится к нефтехимическому синтезу - к способам получения N-метиланилина алкилированием анилина метанолом и может быть использовано в производстве антидетонационных добавок к бензинам, в производстве красителей и других продуктов органического синтеза. Описан катализатор на основе...
Тип: Изобретение
Номер охранного документа: 0002346740
Дата охранного документа: 20.02.2009
05.07.2019
№219.017.a5c0

Катализатор изомеризации н-бутана в изобутан, способ его приготовления и процесс получения изобутана с использованием данного катализатора

Настоящее изобретение относится к катализатору для процесса изомеризации н-бутана в изобутан, включающему в свой состав оксид металла III-IV групп, анион кислородсодержащей кислоты, причем он представляет собой каталитический комплекс общей формулы ZrO*aAn, где: х=1-2, у=2-3, An - анион серной...
Тип: Изобретение
Номер охранного документа: 0002693464
Дата охранного документа: 03.07.2019
26.10.2019
№219.017.dade

Способ получения никотиновой кислоты

Изобретение относится к способу получения никотиновой кислоты путём прямого газофазного окисления 3-пиколина кислородом или обогащённым кислородом воздухом, в котором 3-пиколин, кислород, воду и газы рецикла подают в реактор, состоящий из трубок с неподвижным слоем гранулированного...
Тип: Изобретение
Номер охранного документа: 0002704139
Дата охранного документа: 24.10.2019
26.10.2019
№219.017.daed

Способ получения никотиновой кислоты

Изобретение относится к способу получения никотиновой кислоты путём прямого газофазного окисления 3-пиколина кислородом воздуха, в котором 3-пиколин, воздух, воду и газы рецикла подают в реактор, состоящий из трубок с неподвижным слоем гранулированного катализатора, омываемых хладагентом. При...
Тип: Изобретение
Номер охранного документа: 0002704137
Дата охранного документа: 24.10.2019
15.04.2020
№220.018.14af

Способ получения этилена из легковозобновляемого непродовольственного растительного сырья

Изобретение относится к способу получения этилена из легковозобновляемого растительного сырья, не имеющего продовольственной ценности. Предложен способ получения этилена из легковозобновляемого растительного сырья непродовольственного назначения, который включает измельчение сырья,...
Тип: Изобретение
Номер охранного документа: 0002718762
Дата охранного документа: 14.04.2020
+ добавить свой РИД