×
08.09.2019
219.017.c94f

Результат интеллектуальной деятельности: СПОСОБ ЛАЗЕРНОГО УПРОЧНЕНИЯ МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к химико-термической обработке металлических, в первую очередь стальных, поверхностей с применением лазерных установок и оригинальных химических составов и может быть использовано для нанесения покрытий на любые поверхности. На металлическую поверхность наносят коксующийся термореактивный полимерный состав, превращающийся после прогрева в единую макромолекулу, содержащую одновременно атомы азота, титана и углерода. Под воздействием температуры, создаваемой лазерным лучом, состав деструктурирует, высвобождая высокоактивные атомы азота, титана и углерода, которые вступают в реакцию с образованием преимущественно нитрида титана с примесями карбида железа в среде пористого кокса. Затем температуру поднимают для деструкции кокса, а на оплавленной поверхности железоуглеродистого сплава остается более легкий слой твердых частиц. Способ обеспечивает повышение твердости и термической устойчивости железоуглеродистых сплавов за счет образования на их поверхности слоя нитрида титана с примесью карбида титана. 4 пр.

Изобретение относится к области химико-термической обработки железоуглеродистых металлических поверхностей, обеспечивающей повышение твердости, других прочностных свойств и термостойкости материала.

Известно, что наиболее высокой поверхностной твердостью и термостойкостью обладают нитриды и карбиды отдельных видов металлов, которые по указанным показателям превосходят любые марки сталей. А среди нитридов по показателю микротвердости (2000 кг/мм2, на уровне алмаза) и температуре плавления (3000°С) на первом месте стоит нитрид титана, образующийся при взаимодействии атомов азота и титана. Однако осуществить процесс образования нитрида титана на упрочняемой металлической поверхности путем нанесения титана и воздействием на него азота невозможно, поскольку температура плавления титана (1668°С) выше температуры плавления сталей, а реакция образования нитрида проходит при 1200°С, т.е. намного ниже температуры плавления титана. Кроме того, газообразный азот невозможно удержать на поверхности металла.

Авторами разработан способ осуществления химико-термической обработки металлических, в первую очередь стальных поверхностей, с использованием лазерных установок и оригинальных химических составов.

Известен способ повышения поверхностной твердости и износостойкости покрытий путем напыления самофлюсующегося порошкового сплава из смеси хрома, никеля, марганца, бора, кремния и железа (А.С. СССР №1615222 А1, КЛ С23С 4/04, В23К 26/00 опубл. 23.12.90). Недостатком указанного способа является низкая прочность и термическая устойчивость по сравнению с нитридами большинства металлов.

Ближайшим прототипом заявляемого изобретения является способ обработки поверхности железоуглеродистых сплавов, включающий нанесение износостойкого покрытия из самофлюсующегося сплава на поверхность трения и последующее оплавление его лазерным лучом (см. патент RU 2161211 С1 от 12.01.2000 г.).

Метод применим для нанесения покрытий на любые поверхности, а не только на поверхности трения.

Однако самофлюсующийся сплав, представляющий собой смесь из семи порошков металлов, включая молибден и ниобий, с добавками бора и кремния, уступает по показателю поверхностной твердости и термостойкости нитридам любых металлов и особенно нитриду титана. Кроме того, порошки таких металлов, как молибден, ниобий и др., представляют собой крайне дорогие компоненты, получаемые по сложным технологиям.

Целью заявляемого изобретения является повышение твердости и термической устойчивости железоуглеродистых сплавов за счет образования на их поверхности слоя нитрида титана с примесью карбида титана.

Поставленная цель достигается тем, что на металлическую поверхность наносится коксующийся термореактивный полимерный состав, превращающийся после прогрева при температуре ~ 120÷170°С в единую макромолекулу, содержащую одновременно атомы азота, титана и углерода, которая под воздействием температуры 1200÷1300°С, создаваемой лазерным лучом, деструктурирует, высвобождая высокоактивные атомы азота, титана и углерода, которые вступают в реакцию, образуя преимущественно нитрид титана с примесями карбида железа в среде пористого кокса, сохраняющегося при температуре 1200÷1300°С, после чего температуру поднимают до 1600÷1800°С, при этом кокс деструктурирует, а на оплавленной поверхности железоуглеродистого сплава остается более легкий слой твердых частиц нитрида титана с примесью карбида титана (температура плавления которых ~ 3000°С).

Пример 1.

В реактор, снабженный обогревом и мешалкой, загружают эпоксидированный новолак (новолачную смолу промышленной марки ЭН-6), представляющий собой продукт эпоксидирования фенолформальдегидного новолака (в отвержденном состоянии имеет коксовое число 45%) (А), температуру повышают до +50°С, затем добавляют триэтаноламинотитанат (промышленная марка ТЭАТ) (Б) и коксующийся нефтяной пек (В) в соотношении А:Б:В=60:25:15. Смесь разбавляют добавкой ацетона до 5%. Приготовленную пастообразную смесь шпателем наносят на упрочняемую поверхность слоем 10 мм (или наливом при большем разбавлении). Затем нанесенный состав отверждают при 150°С в течение 12 минут. Отвержденный состав представляет собой полимер (макромолекула), с прочностью при сжатии 150 МПа, температурой начала деструкции 380°С, после деструкции при 1000°С коксовый остаток ~ 50%.

Отвержденное покрытие не разрушается под действием колебаний температур от -110°С до +120°С, случайных ударов и может быть подвергнуто лазерному воздействию в любое время после его отверждения.

Воздействие лазерным лучом осуществляют в два этапа. Первый этап -1250°С 12 минут, в течение которого полимер деструктирует, высвобождая чрезвычайно активные при этой температуре атомы титана, поглощающие также активные атомы азота*(* Поглощение азота титаном при высоких температурах описано во многих работах.), и атомы углерода, катализирующие реакцию образования нитрида титана. При этом подвижные атомы азота не рассеиваются благодаря образованию кокса - 50% от исходной массы. Второй этап - 1700°С 7 минут, во время которого деструктирует кокс и все возможные примеси, а на оплавленной поверхности металла образуется слой нитрида титана с примесью карбида титана (имеют температуру плавления ~ 3000°С), с микротвердостью 1900 кг/мм2 (на уровне алмаза).

Пример 2.

Осуществляют аналогично примеру 1, но соотношение компонентов наносимой смеси А:Б:В=70:10:20, которую наносят слоем 15 мм, отверждают при 120°С в течение 30 минут и подвергают лазерному воздействию при 1200°С в течение 20 минут, а затем 1800°С в течение 5 минут.Микротвердость покрытия 1950 кг/мм2. Термостойкость ~ 3000°С.

Пример 3.

Осуществляют аналогично примеру 1, но соотношение компонентов берут А:Б:В=50:40:10 и наносят слоем 5 мм, отверждают при 170°С в течение 5 минут и подвергают лазерному воздействию при 1300°С в течение 5 минут, а затем при 1600°С в течение 20 минут. Микротвердость покрытия 1850 кг/мм2. Термостойкость ~ 3000°С.

Пример 4.

Осуществляют аналогично примеру 1, но лазерному воздействию подвергают при 1800°С в течение 20 минут. Микротвердость покрытия 1950 кг/мм2. Термостойкость ~ 3000°С.

Способ лазерного упрочнения металлических поверхностей, включающий операцию нанесения износостойкого покрытия с последующим оплавлением лазерным лучом, отличающийся тем, что в качестве упрочняющего покрытия применяют отверждающуюся смесь эпоксидированного новолака (А), триэтаноламинотитаната (Б) и нефтяного пека (В) в соотношении А:Б:В от 70:10:20 до 50:40:10, которую наносят на поверхность металла слоем толщиной от 5 до 15 мм и отверждают при температуре от 120 до 170°С в течение от 5 до 30 минут, после чего подвергают воздействию лазерного луча, доводя температуру до 1200÷1300°С и поддерживая ее в течение от 5 до 20 минут до образования кокса и в его среде нитрида титана, затем повышают температуру до 1600÷1800°С и поддерживают ее в течение от 5 до 20 минут до деструкции и удаления кокса и примесей.
Источник поступления информации: Роспатент

Показаны записи 11-11 из 11.
16.06.2023
№223.018.7a92

Смазочное масло для трансмиссий и шарниров винтов вертолетов

Изобретение относится к смазочным композициям, предназначенным преимущественно для трансмиссий, шлицевых соединений и высоконагруженных подшипниковых узлов с игольчатыми подшипниками вертолетов, работающих при качательном движении с малыми амплитудами, то есть в условиях, когда в механизме...
Тип: Изобретение
Номер охранного документа: 0002739323
Дата охранного документа: 22.12.2020
Показаны записи 11-20 из 44.
27.05.2015
№216.013.4ec1

Экологически чистый смазочный материал и способ его производства

Настоящее изобретение относится к экологически чистому смазочному материалу для лубрикации зоны контакта «колесо-рельс» рельсового транспорта, содержащему в качестве базового масла биоразлагаемое масло или смесь по меньшей мере одного базового масла, выбранного из смазочного базового масла типа...
Тип: Изобретение
Номер охранного документа: 0002551679
Дата охранного документа: 27.05.2015
10.08.2015
№216.013.6cfb

Эпоксидная композиция для покрытий

Изобретение относится к эпоксидным композициям, предназначенным для нанесения покрытий, обеспечивающих выполнение высоких экологических требований, в частности для применения в бассейнах для разведения рыб, а также для использования в емкостях для питьевой воды, зубных пломбах и других целей....
Тип: Изобретение
Номер охранного документа: 0002559457
Дата охранного документа: 10.08.2015
10.02.2016
№216.014.c285

Способ нанесения антифрикционных покрытий на упорные поверхности пятникового узла

Изобретение относится к области нанесения антифрикционных покрытий преимущественно на упорные поверхности пятникового узла грузовых вагонов и может быть также использовано в узлах трения различных машин. Способ нанесения антифрикционных покрытий на упорные поверхности пятникового узла грузовых...
Тип: Изобретение
Номер охранного документа: 0002574548
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.ca9a

Способ электродуговой металлизации

Изобретение относится к способу электродуговой металлизации путем распыления расплавленной дугой бронзы под действием потока азота, исключающего окисление и выгорание легирующих элементов, повышающего коррозионную стойкость, твердость и износостойкость покрытий. На металлизируемую поверхность...
Тип: Изобретение
Номер охранного документа: 0002577873
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.cb8b

Способ восстановления размеров корпуса моторно-осевого подшипника электровоза электродуговой металлизацией

Изобретение относится к способу восстановления размеров корпуса моторно-осевого подшипника электровоза при помощи электродуговой металлизации. Способ восстановления размеров корпуса моторно-осевого подшипника электровоза электродуговой металлизацией. На внешнюю поверхность корпуса упомянутого...
Тип: Изобретение
Номер охранного документа: 0002577874
Дата охранного документа: 20.03.2016
10.04.2016
№216.015.30af

Способ нанесения антифрикционных покрытий на стальную поверхность

Изобретение относится к способу нанесения антифрикционных покрытий на стальную поверхность, в частности стальную сердцевину подпятникового узла тележки вагона и другие узлы трения. Осуществляют предварительную обработку стальной поверхности фосфатирующим составом. На стальную поверхность...
Тип: Изобретение
Номер охранного документа: 0002580766
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.38c1

Способ получения термостойких антифрикционных покрытий

Изобретение относится к области получения термостойких полимерных покрытий с использованием политетрафторэтилена с улучшенными антифрикционными свойствами для применения в узлах трения, работающих в особо жестких условиях - при температуре до +250-+320°C и воздействии любых агрессивных сред, и...
Тип: Изобретение
Номер охранного документа: 0002582695
Дата охранного документа: 27.04.2016
27.05.2016
№216.015.4230

Способ упрочнения стальной поверхности

Изобретение относится к металлургии, а именно к химико-термической обработке, и может найти применение в машиностроении для обеспечения повышения эксплуатационных характеристик деталей машин. Способ упрочнения поверхности стального изделия включает нанесение борсодержащей обмазки и последующую...
Тип: Изобретение
Номер охранного документа: 0002585151
Дата охранного документа: 27.05.2016
13.01.2017
№217.015.692e

Антифрикционная прокладка подпятника и подшипника скольжения

Изобретение относится к машиностроению, в частности, к конструкции антифрикционной прокладки подпятника и подшипника скольжения. Антифрикционная прокладка подпятника и подшипника скольжения представляет собой содержащий фторопласт антифрикционный элемент, наклеенный на металлическое основание....
Тип: Изобретение
Номер охранного документа: 0002591952
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6c2d

Способ упрочнения поверхности стального колеса железнодорожного транспорта

Изобретение относится к области машиностроения и может быть использовано для повышения эксплуатационных характеристик трущихся поверхностей колес железнодорожного транспорта и других целей. Способ упрочнения поверхности стального колеса железнодорожного транспорта включает нанесение...
Тип: Изобретение
Номер охранного документа: 0002592651
Дата охранного документа: 27.07.2016
+ добавить свой РИД