×
08.09.2019
219.017.c934

Результат интеллектуальной деятельности: Жидкий органический носитель водорода, способ его получения и водородный цикл на его основе

Вид РИД

Изобретение

Аннотация: Изобретение относится к области водородной энергетики, органической химии и катализа, в частности к разработке составов химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования. Описан жидкий органический носитель водорода, состоящий из моно-, би- и трициклических ароматических, парафиновых и нафтеновых углеводородов, отличающийся тем, что суммарное содержание парафиновых и нафтеновых углеводородов не превышает 40% масс., суммарное содержание моно-, би- и трициклических ароматических углеводородов не менее 60% масс., а температурные пределы выкипания фракции составляют 160-360°С. Также описан способ получения жидкого органического носителя водорода глубокой гидроочистки легкого газойля каталитического крекинга и водородный цикл жидкого органического носителя водорода. Технический результат: повышение эффективности технологии получения ароматического концентрата. 3 н.п. ф-лы, 2 табл., 16 пр.

Изобретение относится к области водородной энергетики, органической химии и катализа, в частности к разработке составов химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования, и представляющих собой смесь моно-, би- и трициклических ароматических соединений, которые могут быть использованы в качестве аккумуляторов водорода для энергетических установок в промышленных масштабах, для автономных энергетических систем, включая наземные, водные и воздушные транспортные средства, стационарных объектов наземного и космического базирования, других устройств, оснащенных водородными двигателями, а также при создании жидких органических носителей водорода (ЖОНВ).

Существуют различные подходы к хранению водорода, например, в компримированном состоянии при высоком давлении, в жидком виде, физически адсорбированном пористыми материалами состоянии, в форме гидридов металлов и химических гидридов. Использование сжатого водорода вызывает опасения по поводу безопасности и стоимости. Криогенный водород имеет высокую плотность и приемлем при хранении в больших хранилищах. Однако для использования энергии транспортом существенны затраты на сжижение, есть проблемы с последующим испарением. Гидриды металлов имеют недостатки в области термодинамики реакции, малую скорость реакции или низкую емкость по водороду.

Ионные жидкости, например, простые соли 1-алкил(арил)-3-метилимидазолия N-бис(трифторметансульфонил)имидата обладают очень низким давлением паров, высокой плотностью и термической стабильностью, и могут обратимо присоединять 6-12 атомов водорода в присутствии классических катализаторов. Однако весьма существенным недостатком этих носителей водорода является их высокая стоимость.

Жидкие органические носители водорода являются одними из перспективных аккумуляторов этого энергоносителя, способны накапливать 5-8 мас. %, участвуют в обратимых реакциях гидрирования-дегидрирования при умеренных температурах, используемые гетерогенные катализаторы хорошо изучены, относительно недорогии имеют длительный рабочий цикл. Сами объекты, как правило, совместимы с существующей инфраструктурой хранения и распространения углеводородных топлив и могут быть получены из коммерчески доступных веществ.

Задачей настоящего изобретения является создание жидкого органического носителя водорода из доступного сырья (легкого газойля каталитического крекинга) с использованием хорошо изученных процессов переработки нефти.

Известен способ хранения водорода [RU 2333885. С2. Тарасов А.Л., Кустов Л.М., Кустов А.Л., Богдан В.И. Способ хранения водорода путем осуществления каталитических реакций гидрирования-дегидрирования ароматических субстратов под воздействием СВЧ (ВЧ)-излучения], в котором используются обратимые реакции гидрирования-дегидрирования ароматических соединений, интенсифицируемые под воздействием СВЧ (ВЧ)-излучения. Недостатком данного способа является требование к материалу каталитического реактора - он не должен поглощать СВЧ (ВЧ)-излучение, что исключает использование металлов. Использование других конструкционных материалов (стекло, кварц, керамика или другие композиционные материалы) удорожает процесс и ограничивает области применения носителей водорода.

Наиболее перспективным способом хранения водорода является использование пар органических соединений, способных превращаться в присутствии катализаторов в результате протекания реакций гидрирования-дегидрирования. Примером таких пар являются бензол-циклогексан и нафталин-декалин [Jpn. Patent No. 198469 А, 2001], а также антрацен-пергидроантрацен, фенантрен-пергидрофенантрен. Однако использование таких пар, предварительно выделенных соединений, в крупнотоннажных процессах обходится крайне дорого, если вообще возможно, что является недостатком данных носителей водорода.

Известен жидкий органический носитель водорода [K. , R. Aslam, A. Fischer, K. Stark, P. Wasserscheid, W. Arlt. Experimental assessment of the degree of hydrogen loading for the dibenzyl toluene based LOHC system // International Journal of hydrogen energy, V. 41, Is. 47, P. 22097-22103], основанный на использовании дибензилтолуола. Однако использование реактивных (специально синтезированных ароматических соединений) обходится дорого, что является недостатком данного носителя водорода.

Предложен состав жидкой при комнатной температуре смеси, содержащей два или более соединений, выбранных из изомеров бензилтолуола и/или дибензилтолуола в каталитических процессах для связывания водорода и/или его выделения [US 20150266731 A1, "Liquid compounds and method for the use there of as hydrogen stores", A. Boesmann, P. Wasserscheid, N. Brueckner, J. Dungs. Pub. No.: US 2015/0266731 A1, Pub. Data: Sep 24, 2015]. Недостатком данного жидкого носителя водорода является его невысокая емкость по водороду на единицу массы, т.к. используемые ароматические соединения представляют собой моноциклы, соединенные алкильными цепочками, которые имеют относительно низкую плотность. Данный состав является наиболее близким к предлагаемому, однако предлагаемый составосновывается на сырье, которое производится нефтеперерабатывающей промышленностью в огромных количествах, а именно на фракции или экстракте ароматических углеводородов, выделенных из глубоко гидроочищенного ЛГКК. По химическому составу предлагаемый ЖОНВ также принципиально отличается от запатентованного в [US 20150266731 А1, "Liquid compounds and method for the use there of as hydrogen stores", A. Boesmann, P. Wasserscheid, N. Brueckner, J. Dungs. Pub. No.: US 2015/0266731 A1, Pub. Data: Sep 24, 2015].

Предлагаемые результаты можно реализовать при проведении реакции в проточном реакторе. Можно рассчитать поглощение водорода исходя из содержания ароматических углеводородов в исходном сырье и в продукте гидрирования, однако в данном случае на входе в реактор и выходе из сепаратора стоят детекторы mass-flow, которые позволяют по разнице непосредственно определить выделение или поглощение водорода.

Техническим результатом настоящего изобретения является жидкий органический носитель водорода, способ его получения и водородный цикл жидкого органического носителя водорода.

Технический результат достигается тем, что способ получения жидкого органического носителя водорода включает глубокую гидроочистку легкого газойля каталитического крекинга до остаточного содержания серы менее 10 ppm с последующим фракционированием или с последующей экстракцией ароматических соединений N-метилпирролидоном, жидкий органический носитель водорода, полученный по этому способу, состоит из моно-, би- и трициклических ароматических, парафиновых и нафтеновых углеводородов, причем суммарное содержание парафиновых и нафтеновых углеводородов не превышает 40% масс., суммарное содержание моно-, би- и трициклических ароматических углеводородов не менее 60% масс., температурные пределы выкипания фракции ЖОНВ составляют 160-360°С, а водородный цикл, реализуемый с использованием полученного жидкого органического носителя, включает связывание водорода при температурах 60-160°С и его высвобождение из жидкого органического носителя водорода при температурах 320-350°С в присутствии гетерогенного катализатора, причем гетерогенный катализатор включает носитель - Al2O3 и нанесенный на него активный металл, выбранный из ряда Pt, Pd, их смеси, или Ni.

Поставленная задача решается тем, что ЛГКК с высоким содержанием ароматических углеводородов подвергается гидроочистке в жестких условиях (высокое давление, высокая температура) с целью удаления серы при минимальном гидрировании ароматических углеводородов. Полученный гидрогенизат стабилизируется путем отгонки от него H2S, углеводородных газов и бензина - отгона. По первому варианту из стабильного гидрогенизата выделяют фракцию 160-360°С для дальнейшего использования в качестве жидкого органического носителя водорода. По второму варианту из стабильного гидрогенизата путем экстракции N-метилпирролидоном извлекается концентрат моно-, би- и трициклических ароматических углеводородов, который используется как жидкий органический носитель водорода. Гетерогенный катализатор включает носитель - Al2O3 и нанесенный на него активный металл, выбранный из ряда Pt и/или Pd в количестве от 0,1 до 2,0% масс., или Ni в количестве 6-12% масс.

Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л. В этих условиях происходит увеличение количества моноциклических ароматических углеводородов [Н.М. Максимов, А.В. Моисеев, Н.Н. Томина, А.А. Пимерзин. Химические превращения компонентов легкого газойля каталитического крекинга в процессе гидроочистки на алюмокобальтмолибденовом, алюмоникельвольфрамовом катализаторах // ХТТМ, №6, 2017, с. 38-41]. Характеристика исходного ЛГКК, фракции глубоко гидроочищенного ЛГКК и концентрата моно-, би- и трициклических ароматических углеводородов приведена в таблице 1.

Гидроочищенный ЛГКК стабилизирован. Эксперименты по гидрированию-дегидрированию фракции и экстракта проводились на этой же лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 60-160°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 320-350°С. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе.

Катализаторы, содержащие платину и/или палладий, готовили адсорбционной пропиткой носителя из водных растворов в присутствии конкурента (уксусной кислоты) в количестве 0,4-0,6 мл ледяной СН3СООН на 10 мл пропиточного раствора. Объем пропиточного раствора был постоянным, и составлял 10 мл. Носитель, предварительно прокаленный γ-Al2O3, в количестве 5 г, заливался пропиточным раствором на 24 часа. После стадии сорбции пропиточный раствор сливался с готового катализатора. Никель наносили на поверхность носителя из водного раствора гексагидрата нитрата никеля по влагоемкости. Катализаторы сушили при 80, 100 и 110°С. Активация (восстановление) катализатора по описанной выше программе проводилась непосредственно в реакторе.

Состав катализаторов и результаты гидрирования-дегидрирования в объемах поглощенного и выделенного водорода, приведены в таблице 2.

ПРИМЕРЫ

Пример 1. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и отбирали фракцию 160-360°С. Эксперименты по гидрированию-дегидрированию фракции проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 60°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 340°С, на Pt/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,60 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 3,14 г водорода на 100 г ЖОНВ.

Пример 2. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и отбирали фракцию 160-360°С. Эксперименты по гидрированию-дегидрированию фракции проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1, часа. Гидрирование проводилось при 4,0 МПа, при температуре 120°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 340°С, на Pt-Pd/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,57 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 3,13 г водорода на 100 г ЖОНВ.

Пример 3. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья -1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и отбирали фракцию 160-360°С. Эксперименты по гидрированию-дегидрированию фракции проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 160°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 350°С, на Pt-Pd/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,68 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 3,63 г водорода на 100 г ЖОНВ.

Пример 4. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание МоО3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и отбирали фракцию 160-360°С. Эксперименты по гидрированию-дегидрированию фракции проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 120°С и ОСПС = 4 ч-1, дегидрирование при давлении ОД МПа и температуре 340°С, на Pt-Pd/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,52 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 2,75 г водорода на 100 г ЖОНВ.

Пример 5. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и отбирали фракцию 160-360°С. Эксперименты по гидрированию-дегидрированию фракции проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 160°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 320°С, на Pd/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,59 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 3,09 г водорода на 100 г ЖОНВ.

Пример 6. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и отбирали фракцию 160-360°С. Эксперименты по гидрированию-дегидрированию фракции проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 60°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 320°С, на Ni/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,37 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 1,99 г водорода на 100 г ЖОНВ.

Пример 7. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и отбирали фракцию 160-360°С. Эксперименты по гидрированию-дегидрированию фракции проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 120°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 340°С, на Ni/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,52 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 2,81 г водорода на 100 г ЖОНВ.

Пример 8. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание МоО3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и отбирали фракцию 160-360°С. Эксперименты по гидрированию-дегидрированию фракции проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 160°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 350°С, на Ni/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,65 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 3,52 г водорода на 100 г ЖОНВ.

Пример 9. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и подвергали экстракции ароматических соединений N-метилпирролидоном. Эксперименты по гидрированию-дегидрированию экстракта проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 60°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 340°С, на Pt/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 1,05 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 5,47 г водорода на 100 г ЖОНВ.

Пример 10. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и подвергали экстракции ароматических соединений N-метилпирролидоном. Эксперименты по гидрированию-дегидрированию экстракта проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 120°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 340°С, на Pt-Pd/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 1,02 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 5,57 г водорода на 100 г ЖОНВ.

Пример 11. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и подвергали экстракции ароматических соединений N-метилпирролидоном. Эксперименты по гидрированию-дегидрированию экстракта проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 160°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 350°С, на Pt-Pd/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 1,12 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 5,96 г водорода на 100 г ЖОНВ.

Пример 12. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и подвергали экстракции ароматических соединений N-метилпирролидоном. Эксперименты по гидрированию-дегидрированию экстракта проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 120°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 340°С, на Pt-Pd/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 1,04 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 5,43 г водорода на 100 г ЖОНВ.

Пример 13. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и подвергали экстракции ароматических соединений N-метилпирролидоном. Эксперименты по гидрированию-дегидрированию экстракта проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 160°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 320°С, на Pd/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,59 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 3,09 г водорода на 100 г ЖОНВ.

Пример 14. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание МоО3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и подвергали экстракции ароматических соединений N-метилпирролидоном. Эксперименты по гидрированию-дегидрированию экстракта проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 60°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 320°С, на Ni/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,85 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 4,53 г водорода на 100 г ЖОНВ.

Пример 15. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и подвергали экстракции ароматических соединений N-метилпирролидоном. Эксперименты по гидрированию-дегидрированию экстракта проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 120°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 340°С, на Ni/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,98 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 5,27 г водорода на 100 г ЖОНВ.

Пример 16. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и подвергали экстракции ароматических соединений N-метилпирролидоном. Эксперименты по гидрированию-дегидрированию экстракта проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 160°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 350°С, на Ni/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 1,09 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 5,91 г водорода на 100 г ЖОНВ.


Жидкий органический носитель водорода, способ его получения и водородный цикл на его основе
Источник поступления информации: Роспатент

Показаны записи 21-30 из 191.
26.08.2017
№217.015.d9b0

Способ компенсации оптических аберраций с использованием деформируемого зеркала

Изобретение относится к способам, которые обеспечивают компенсацию оптических аберраций с использованием деформируемого зеркала, и может быть использовано в активных и адаптивных оптических системах, предназначенных для компенсации аберраций волнового фронта светового излучения. Способ...
Тип: Изобретение
Номер охранного документа: 0002623661
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.df33

Способ приготовления кисломолочногопродукта

Изобретение относится к молочной промышленности. Подготовленное молоко подвергают действию электрического тока в катодном пространстве диафрагменного электролизера с плоскими электродами из нержавеющей стали 10Х17Н13М2Т при объемной плотности тока 2 А/см и катодной плотности тока 0,018 А/см в...
Тип: Изобретение
Номер охранного документа: 0002625030
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.f51a

Катализатор, способ его приготовления и процесс селективной гидроочистки бензина каталитического крекинга

Изобретение относится к области химии, в частности к катализаторам для селективной гидроочистки бензинов каталитического крекинга, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Заявляется катализатор селективной гидроочистки бензина каталитического...
Тип: Изобретение
Номер охранного документа: 0002637808
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f85d

Адсорбент для очистки сточных вод от ионов меди

Изобретение относится к охране окружающей среды. Предложен сорбент для очистки сточных вод от меди. Сорбент представляет собой отработанный в процессе фильтрации пива кизельгур, подвергнутый сушке при 50-200°C и последующей термохимической активации при 60-100°C. Активацию проводят в 2,0-2,5 М...
Тип: Изобретение
Номер охранного документа: 0002639803
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.f8cd

Способ получения изопропилбензола

Изобретение относится к способу получения изопропилбензола алкилированием бензола пропиленом и переалкилированием полиалкилибензолов. Способ характеризуется тем, что реакции алкилирования и переалкилирования проводят раздельно, причем реакцию алкилирования проводят в жидкой фазе с применением...
Тип: Изобретение
Номер охранного документа: 0002639706
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.0516

Способ производства фруктового продукта в виде пластинок из груш, яблок и виноградного сырья

Изобретение относится к пищевой промышленности, в частности к изготовлению фруктового продукта в виде пластинок из груш, яблок и виноградного сырья. Пищевой продукт готовят путем подготовки груш и яблок. Удаляют несъедобные части и кожуру. Режут на ломтики толщиной 5-8 мм, обрабатывают в...
Тип: Изобретение
Номер охранного документа: 0002630702
Дата охранного документа: 12.09.2017
19.01.2018
№218.016.078f

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Изобретение относится к способу приготовления катализатора для глубокой гидроочистки нефтяных фракций. Способ включает пропитку алюмооксидного носителя раствором соединений металлов VIII, VI и V групп. При этом готовят совместный пропиточный раствор MoO и/или WO, не обязательно VO, от 0,33 до...
Тип: Изобретение
Номер охранного документа: 0002631424
Дата охранного документа: 22.09.2017
20.01.2018
№218.016.0f39

Способ получения 1н-бензо[f]хромен-2-ил(арил)кетонов

Изобретение относится к способу получения 1-бензо[ƒ]хромен-2-ил(арил)кетонов реакцией замещенных 1-[(диметиламино)метил]-2-нафтолов с 3-(диметиламино)-1-арил-проп-2-ен-1-онами. Полученные соединения являются перспективными исходными соединениями для синтеза фармакологически активных веществ....
Тип: Изобретение
Номер охранного документа: 0002633368
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0f41

Расплавляемый электролит для химического источника тока

Изобретение относится к расплавляемому электролиту для химического источника тока, включающему при следующем соотношении компонентов, мас. %: фторид лития 1,57…1,63, хромат лития 64,59…66,29, хлорид калия 16,38…18,52, хромат калия 15,32…15,70. Технический результат – снижение температуры...
Тип: Изобретение
Номер охранного документа: 0002633360
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.1152

Погружной скважинный генератор газопаровой смеси

Изобретение относится к области промышленной теплоэнергетики и может быть применено для генерирования газопаровой смеси с целью термической обработки скважин в нефтедобывающей промышленности. Техническим результатом изобретения является обеспечение надежного функционирования генератора...
Тип: Изобретение
Номер охранного документа: 0002633983
Дата охранного документа: 20.10.2017
Показаны записи 21-30 из 43.
19.08.2018
№218.016.7e15

Способ гидроочистки углеводородного сырья

Изобретение относится к области гидроочистки нефтяных фракций. Описан способ гидрообработки, который ведут путем контактирования сырья с системой катализаторов, на первой ступени с катализатором при содержании компонентов, мас.%: оксид кобальта - 3,5-6,0; оксид молибдена 14,0-20,0; оксид...
Тип: Изобретение
Номер охранного документа: 0002664325
Дата охранного документа: 16.08.2018
29.12.2018
№218.016.ac84

Катализатор селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья и способ его приготовления

Изобретение относится к катализатору селективного гидрообессеривания высокосернистого олефинсодержащего углеводородного сырья и способу его получения. Катализатор содержит как минимум один из следующих гетерополианионов [SiWO], [SiWO], [SiWO], [PWO], [PWO], [PWO], [Ni(OH)WO], [Fe(OH)WO] и...
Тип: Изобретение
Номер охранного документа: 0002676260
Дата охранного документа: 27.12.2018
20.02.2019
№219.016.bf71

Способ приготовления катализаторов для глубокой гидроочистки нефтяных фракций

Изобретение относится к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций. Описан способ приготовления катализатора для глубокой гидроочистки нефтяных фракций, включающий пропитку алюмооксидного носителя раствором соединений металлов VIII и VI групп,...
Тип: Изобретение
Номер охранного документа: 0002385764
Дата охранного документа: 10.04.2010
15.03.2019
№219.016.e0cc

Способ снижения содержания бензола в бензиновых фракциях

Изобретение относится к содержанию бензола в товарных бензинах. Заявлен способ снижения содержания бензола в бензиновых фракциях путем гидрирования и изомеризации в присутствии катализаторов при повышенных температуре и давлении сырья, состоящего из смеси фракции НК-85С стабильного риформата,...
Тип: Изобретение
Номер охранного документа: 0002322478
Дата охранного документа: 20.04.2008
29.04.2019
№219.017.4177

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Катализатор глубокой гидроочистки нефтяных фракций содержит оксид...
Тип: Изобретение
Номер охранного документа: 0002386476
Дата охранного документа: 20.04.2010
13.06.2019
№219.017.812f

Способ подготовки катализаторов гидрогенизационных процессов к окислительной регенерации

Изобретение относится к способу подготовки катализаторов гидроочистки к окислительной регенерации путем обработки пассивированного сульфидного катализатора, содержащего NiO, VO, FeO, смесью бутилцеллозольва и нефраса, в которой растворен комплексообразователь, выбранный из щавелевой, винной или...
Тип: Изобретение
Номер охранного документа: 0002691078
Дата охранного документа: 10.06.2019
14.07.2019
№219.017.b412

Катализатор глубокой гидроочистки вакуумного газойля и способ его приготовления

Изобретение относится к области производства катализаторов гидроочистки. Описан катализатор гидроочистки вакуумного газойля, состоящий из MoO, WO и NiO, содержание в прокаленном катализаторе MoO составляет 1,5-7,5 мас. %, WO - 15-25 мас. %, NiO - 3-5 мас. %, остальное – носитель. Носитель...
Тип: Изобретение
Номер охранного документа: 0002694370
Дата охранного документа: 12.07.2019
06.09.2019
№219.017.c7c6

Катализатор защитного слоя и способ его использования

Изобретение относится к области химии, в частности к катализаторам защитного слоя для гидроочистки тяжелых нефтяных фракций. Катализатор состоит из трех слоев, расположенных с возрастанием общего содержания оксидов металлов в каждом последующем слое, при этом первый по ходу движения защитный...
Тип: Изобретение
Номер охранного документа: 0002699225
Дата охранного документа: 04.09.2019
06.09.2019
№219.017.c7c7

Способ гидрогенизационного облагораживания остаточного нефтяного сырья

Изобретение относится к области нефтепереработки. Изобретение касается способа гидрогенизационного облагораживания остаточного нефтяного сырья на стационарных слоях катализаторов, включающий стадии: гидродеметаллизации нефтяного сырья, последующего гидрогенизационного обессеривания и...
Тип: Изобретение
Номер охранного документа: 0002699226
Дата охранного документа: 04.09.2019
02.10.2019
№219.017.ce7d

Состав и способ приготовления катализаторов гидроочистки смеси дизельных фракций

Изобретение относится к способу приготовления катализатора гидроочистки нефтяных фракций, включающему пропитку носителя раствором соединений металлов VI группы и оксикарбоната никеля или кобальта, из совместного пропиточного раствора, содержащего фосфорно-молибденовый или фосфорно-вольфрамовый...
Тип: Изобретение
Номер охранного документа: 0002700712
Дата охранного документа: 19.09.2019
+ добавить свой РИД