×
23.08.2019
219.017.c265

Результат интеллектуальной деятельности: Гидролокационный способ обнаружения объекта и измерения его параметров

Вид РИД

Изобретение

№ охранного документа
0002697937
Дата охранного документа
21.08.2019
Аннотация: Изобретение относится к области гидроакустики и может быть использовано для построения систем автоматического обнаружения эхосигналов, принятых гидролокатором на фоне шумовой и реверберационной помехи и измерения параметров объекта при использовании псевдошумовых сигналов в условиях применения преднамеренных помех. Гидролокационный способ обнаружения объекта и измерения его параметров содержит излучение зондирующего сложного сигнала, формирование М-опорных сигналов, в полосе обработки от F до F, центральная частота которых сдвинута по частоте относительно друг друга на величину К, прием эхосигнала, определение М корреляционных функций между эхосигналом и каждым из М-опорных сигналов, измерение амплитуды корреляционных функций, выбор корреляционной функции с максимальной амплитудой, определение временного положения максимума корреляционной функции для определения дистанции до объекта, определение номера опорного сигнала для определения скорости объекта, отображение результата на индикаторе, временную реализацию излучаемого сигнала изменяют на каждой новой посылке, для чего на каждой новой посылке измеряют временную реализацию входной помехи, определяют ее спектр в полосе сигнала от Fдо F, определяют временную функцию выбранного спектра, определяют временное положение максимума корреляционной функции для определения дистанции, определяют номер опорного сигнала для определения скорости V, определяют радиальную скорость V объекта по величине изменения дистанции за время между двумя последующими излучениями различных псевдошумовых сигналов, сравнивают радиальные скорости, измеренные по изменению дистанции и по номеру канала опорной частоты, принимают решение об идентификации объекта при равенстве измеренных скоростей V=V, и предоставляют результат идентификации на систему отображения совместно с измеренными параметрами. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области гидроакустики и может быть использовано для построения систем автоматического обнаружения эхосигналов, принятых гидролокатором на фоне шумовой и реверберационной помехи и измерения параметров объекта при использовании псевдошумовых сигнлов в условиях применения преднамеренных помех.

Известны способы обнаружения эхосигнала, основанные на определении энергетического спектра электрического процесса, представляющего собой смесь электрического сигнала и нормальной стационарной шумовой помехи, изложенные, например, в работе Евтютов Е.С. и Митько В.Б. "Примеры инженерных расчетов в гидроакустике", Судостроение 1981 г, с. 77. Способ содержит спектральный анализ этого процесса, детектирование спектральных составляющих, интегрирование амплитудной огибающей и обнаружение сигнала при сравнении ее с порогом. Аналогичный способ обнаружения эхосигнала изложен в книге B.C. Бурдик "Анализ гидроакустических систем". Судостроение 1988 г. стр. 347 и содержит многоканальную по частоте фильтрацию, детектирование, выделение огибающей и сравнение с порогом.

Известен способ обнаружения эхосигнала, рассмотренный в книге Л. Рабинер, Б. Гоулд «Теория и применение цифровой обработки сигналов», Мир, Москва, 1978 г. Способ содержит излучение зондирующего сигнала длительностью Т на известной частоте; прием эхосигнала; дискретизацию входного сигнала, набор входных дискретизированных отсчетов длительностью Т; определение энергетического спектра с помощью быстрого преобразования Фурье (БПФ), сдвиг набора входного сигнала по времени, многократное повторение процедуры набора сдвинутых во времени входных дискретизированных отсчетов длительностью Т и определение энергетического спектра, выбор набора с максимальной энергией сигнала, принятие решение об обнаружении по набору с максимальной энергией сигнала.

Недостатком этих способов является то, что они используют тональный сигнал большой длительности и на выходе определяется спектр эхосигнала, по которому можно определить скорость сближения, но нельзя определить протяженность эхосигнала, что является одним из основных классификационных признаков.

Известны способы обнаружения и измерения параметров эхосигналов от объектов с использованием, так называемых, сложных сигналов, при обработке которых на выходе формируется корреляционная функция эхосигнала и излученного зондирующего сигнала. Эти способы нашли применение в радиолокации и гидроакустике (Р. Бенжамин. Анализ радио и гидролокационных сигналов Воениздат М. 1969). Основные свойства этих сигналов определяются видом внутренней модуляции, которая определяет вид функции неопределенности. Для задач классификации в гидролокации наибольший интерес представляют псевдошумовые сигналы, которые имеют кнопочную функцию неопределенности, обеспечивающие хорошее разрешение по времени и по скорости. (В.А. Зарайский, A.M. Тюрин «Теория гидролокации» изд. ВМАОЛУ, Л. 1975 стр. 242). Как правило, обработка таких сигналов производится с использованием многоканальных корреляторов (там же стр. 255) или многоканальных согласованных фильтров (там же на стр. 333). Если гидролокатор неподвижен и объект локации неподвижен, то корреляция производится между излученным сигналом и принятым эхосигналом. Однако, такая ситуация практически никогда не встречается, и за счет собственного движения и движения цели происходит смещение спектра отраженного сигнала в соответствии с эффектом Доплера (там же стр. 200), в результате чего спектры не совпадают и не образуется свернутая корреляционная функция. Именно по этому, при приеме используют многоканальную обработку по частоте, где каждый канал соответствует определенной скорости цели.

Наиболее близким аналогом предлагаемого способа по количеству общих признаков является способ обработки сложного сигнала, приведенный в книге (В.А. Зарайский, A.M. Тюрин «Теория гидролокации» изд. ВМАОЛУ, Л. 1975 стр. 255).

Способ обработки сложного сигнала содержит следующие операции: излучение зондирующего сложного сигнала, формирования М-опорных сигналов, центральная частота которых сдвинута по частоте относительно излученного сигнала на величину К, прием эхосигнала, определение М корреляционных функций между эхосигналом и каждым из М-опорных сигналов, измерение амплитуды корреляционных функций, выбор корреляционной функции с максимальной амплитудой, определение временного положения максимума корреляционной функции для определения дистанции, определение номера опорного сигнала для определения скорости, отображение результата на индикаторе.

Недостатком этого способа является то, что формируется сложный сигнал одного вида, который может быть принят любым приемником, установленным на облучаемом объекте и переизлучен с искажениями структуры принятого сигнала. Принятый гидролокатором сигнал в этом случае, будет обработан согласованным фильтром и отнесен к реальному отраженному сигналу от реального объекта, что не будет соответствовать действительности, при этом объект обнаружения будет скрыт за ложными сигналами.

Задачей настоящего изобретения является обеспечение достоверности определения реального сигнала от реального объекта, при воздействии преднамеренных помех.

Технический результат заключается в обеспечении исключения возникновения ложных сигналов, от переизлучения зондирующего сигнала любым преднамеренным источником.

Для решения поставленной задачи в способ содержащий излучение зондирующего сложного сигнала, формирование М-опорных сигналов, в полосе обработки от Fмакс до Fмин, центральная частота которых сдвинута по частоте относительно друг друга на величину К, прием эхосигнала, определение М корреляционных функций между эхосигналом и каждым из М-опорных сигналов, измерение амплитуды корреляционных функций, выбор корреляционной функции с максимальной амплитудой, определение временного положения максимума корреляционной функции для определения дистанции до объекта, определение номера опорного сигнала для определения скорости объекта, отображение результата на индикаторе, введены новые признаки, а именно: временную реализацию излучаемого сигнала изменяют на каждой новой посылке, для чего на каждой новой посылке измеряют временную реализацию входной помехи, определяют ее спектр в полосе сигнала от Fмакс до Fмин, определяют временную функцию выбранного спектра, определяют коэффициент корреляции временной реализации предыдущего излученного сигнала и выбранной временной реализации помехи, измеренной по последующей посылке, и если коэффициент корреляции меньше 0,3 принимают решение, что временные реализации не коррелированы и излучают последнюю измеренную временную реализацию помехи, и по эхосигналу от этой посылки определяют дистанцию до объекта и скорость объекта.

Наилучший результат достигается, если выбирают все выбросы корреляционной функции и определяют ее среднее значение в качестве Апор, определяют корреляционную функцию с максимальной амплитудой Амакс, проверяют условие Амакс>2Апор, и если оно соблюдается, принимают решение о наличии сигнала от объекта.

Для того, чтобы избежать ошибки при обнаружении, определяют временное положение максимума корреляционной функции для определения дистанции, определяют номер опорного сигнала для определения скорости Vкан, определяют радиальную скорость Vрад объекта по величине изменения дистанции за время между двумя последующими излучениями различных псевдошумовых сигналов, сравнивают радиальные скорости, измеренные по изменению дистанции и по номеру канала опорной частоты, принимают решение об идентификации объекта при равенстве измеренных скоростей Vкон=Vрад, и предоставляют результат идентификации на систему отображения совместно с измеренными параметрами.

Поясним существо предлагаемого технического решения. Известно, что при работе гидролокатора в реальных условиях могут приниматься не только эхосигналы, отраженные от объектов, но и сигналы, которые принимаются морскими животными и переизлучаются в случайные промежутки времени. (У. Таволга «Морская биоакустика» Л. Судостроение 1969 г. стр. 330). Кроме того, имеются так называемые, средства гидроакустического противодействия, задачами которого является создание ответной помехи, в результате многократного переизлучения принятых сигналов гидролокатора. (Ю.А. Корякин, С.А. Смирнов, Г.В. Яковлев «Корабельная гидроакустическая техника» Санкт-Петербург «Наука» 2004 г. стр. 346). И в том и в другом случае на вход гидролокатора поступают сигналы похожие на излученный гидролокатором сигнал. Следует иметь в виду, что такой сигнал поступает только в том случае, если он был излучен гидролокатором и принят гидролокатором за время обработки информации на установленной шкале дистанции. Как правило, все гидролокаторы имеют стандартный набор сигналов, который не изменяется за время работы. Поэтому, при работе случайные имитируемые сигналы могут поступать на вход приемного устройства в любое время включенного состояния гидролокатора и обрабатываться как реальные эхосигналы от цели. Ситуация существенно изменится, если гидролокатор на каждой посылке будет изменять характеристики излучаемых сигналов. К таким сигналам относятся псевдошумовые сложные сигналы, которые имеют случайный спектр, и при их последовательном излучении корреляция между сигналами последовательных излучений будет отсутствовать. Такие сигналы можно сформировать из случайной последовательности чисел или из реализаций шумового процесса, действующего на входе приемного устройства системы цифровой обработки. Приемные тракты гидролокаторов при обработке этих сигналов разрабатываются с учетом изменения частоты эхосигнала при движении цели. Как правило, такой диапазон изменения частоты не очень широк по сравнению с частотой излучения. Измеряется и запоминается любая временная реализация шумового входного процесса. После измерения выбранная временная реализация подается на анализатор спектра, где определяется ее спектр. Этот спектр существенно шире, чем спектр сигнала излучения, поэтому относительно центральной частоты спектра выбираются спектральные отсчеты равные спектру зондирующего сигнала от Fмакс до Fмин и с помощью «обратного преобразования Фурье» формируется временная реализация псевдошумового сигнала, которая используется для излучения. Поскольку шумовой процесс на входе приемного устройства является событием случайным, то все формируемые из этих процессов сигналы будут независимы: Это относится, прежде всего, к тому случаю, когда на входе действует случайный шумовой процесс, но в гидролокации имеет место донная и поверхностная реверберация, которая может воздействовать на вход приемного устройства и после окончания цикла излучения - прием. Это событие может привести к зависимости последовательных временных реализаций, для чего имеет смысл проверить, насколько временная реализация предыдущего процесса отличается от временной реализации предполагаемого излучения. Определяется коэффициент корреляции между излученной временной реализацией и предполагаемой временной реализацией. Критерием независимости является коэффициент корреляции меньше 0,3, что выбрано из результатов экспериментальных данных. В дальнейшем оценку дистанции и скорости можно использовать для идентификации отраженных сигналов, полученных на последовательных циклах излучения - прием. Обработка принятых эхосигналов не отличается от прототипа и содержит формирование М - опорных сигналов и многоканальную взаимно корреляционную обработку принятых эхосигналов с новыми М-опорными сигналами. Результатом этой обработки является определение дистанции, определение номера опорного сигнала для определения скорости. За время между посылками взаимное положение гидролокатора и объекта может измениться, а также в районе работы могут появиться другие объекты. Поэтому необходимо провести идентификацию полученных эхосигналов в соседних циклах излучения прием с использованием различных зондирующих сигналов. Для этой цели используются оценки дистанции и скорости, полученные при последовательных измерениях. За известное время между излучениями определяется радиальная скорость или скорость сближения, как отношение разности дистанций ко времени между посылками. Эта оценка радиальной скорости должна быть равна оценке скорости, полученной по результатам взаимно-корреляционной обработки по номеру частотного канала из М - опорных частот. Проведенная таким образом идентификация позволяет определять эхосигналы, полученные от одного объекта с использованием разных зондирующих сигналов.

Блок схема устройства, реализующая предлагаемый способ, представлена на фиг. 1.

На фиг. 1 представлен гидролокатор 1 с антенной и системой цифровой обработки, первый выход которого последовательно соединен со спецпроцессором 2, в состав которого входят последовательно соединенные блок 3 многоканальной корреляционной обработки, блок 4 определения амплитуд выбросов корреляционной функции, блок 5 выбора Амакс и Апор из выбросов корреляционной функции, блок 6 определения дистанции и скорости, блок 7 идентификации по скорости, блок 8 принятия решения, выход которого через первый вход система 9 управления и отображения соединен с гидролокатором 1. Второй выход гидролокатора 1 через последовательно соединенные блок 10 измерения входной помехи, блок 11 спектрального анализа, блок 12 выбора полосы шумового сигнала, через первый вход блок 13 формирования псевдошумового сигнала соединен с блоком 14 формирования банка опорных сигналов, выход которого соединен со вторым входом блока 3. Второй выход блока 13 соединен двусторонней связью со вторым входом блока управления и отображения.

Измерение взаимно-корреляционной функции и определение коэффициента корреляции между процессами - это известные операции, которые характеризуют степень схожести двух сигналов, и достаточно подробно используются в современной технике. (Дж. Бендат, А. Пирсол «Измерение и анализ случайных процессов» Мир М 1971 стр. 44-47, стр. 196). Процедуры обработки псевдошумовых сигналов достаточно подробно изложены в книге Я.Д. Ширман «Разрешения и сжатие сигналов» М. Сов. радио 1974 г, а так же в книге Г.И. Тузов «Статистическая теория приема сложных сигналов» М Сов. Радио 1977 г. Гидролокатор является известным устройством, который давно используется в отечественном приборостроении. (А.Н. Яковлев, Г.П. Каблов. «Гидролокаторы ближнего действия». Л. Судостроение. 1983.). В настоящее время практически вся гидроакустическая аппаратура выполняется на спецпроцессорах, которые преобразуют акустический сигнал в цифровой вид и производят в цифровом виде формирование характеристик направленности, многоканальную обработку и обнаружение сигнала, а также измерение амплитуд эхосигналов и временных отсчетов, а так же принятие решения о цели. Эти вопросы достаточно подробно рассмотрены в литературе. (Ю.А. Корякин, С.А. Смирнов, Г.В. Яковлев «Корабельная гидроакустическая техника» Санкт-Петербург. «Наука.» 2004 г. Стр. 95-99, стр. 237-255). Использование цифровой техники позволяет оперативно обрабатывать информацию любой сложности на основе разработанных алгоритмов. Эти вопросы достаточно подробно рассмотрены в книге «Применение цифровой обработки сигналов» п/р Оппенгейма М. Мир. 1980 г. В процессоре реализуются все блоки предлагаемого устройства такие, как спектральная обработка на основе БПФ, корреляционная обработка, блоки памяти, процедуры сравнения, накопления, принятия решения и корректировки. Практически все указанные процедуры могут быть реализованы на современных компьютерах и ноутбуках, в которых реализованы вычислительные программы Matlab, Matcad и др. (А.Б. Сергиенко Цифровая обработка сигналов СПб. «БХВ - Петербург» 2011 г.). При использовании цифровой техники в качестве спектрального анализа применяют процедуры быстрого преобразования Фурье (БПФ), которые обеспечивают выделение и измерение энергетического спектра шумового электрического процесса по всем пространственным каналам вертикального статического веера характеристик направленности. ("Применение цифровой обработки сигналов", п\р Оппенгейма, изд. Мир М. 1980 г. стр. 296.). Там же на стр. 389-436 рассмотрены принципы цифрового преобразования и обработки сигналов. Описание способа целесообразно совместить с описанием работы устройства (фиг. 1) При включении с помощью блока 9 управления и отображения гидролокатора, включается приемный тракт и на выходе системы цифровой обработки приемного тракта отображается входная помеха в виде временной реализации в полосе приемного тракта. До излучения зондирующего сигнала на входе будет действовать нормальный стационарный некоррелированный шум. Этот шум будет поступать на вход блока 10 измерения входной помехи, где будут запоминаться временные последовательные реализации шумового процесса. Число этих реализаций может быть достаточно большим, что бы обеспечить работу в реальных условиях. Временные реализации подаются последовательно на блок 11 спектрального анализа, на выходе которого формируется спектр входного шума в полосе приемного тракта. Спектральный анализ является известной операцией, которая выполняется с использованием процедуры «быстрого преобразования Фурье». Для работы гидролокатора используется псевдошумовые сигналы, полоса которых значительно меньше, чем полоса входного шумового сигнала. Система управления и отображения задает параметры зондирующего сигнала, такие как длительность сигнала излучения и ширина полосы частот. В блоке 12 выбираются частотные составляющие в заданной полосе, которые передаются в блок 13 формирования псевдошумового сигнала и анализа случайности. По полученному из блока 12 спектру в блоке 13 производится «обратное преобразование Фурье», в результате которого создается временная реализация с выбранной полосой и длительностью, задаваемой из блока 9. Эта временная реализация через блок 9 передается в гидролокатор для излучения и эта же реализация поступает в блок 14 формирования банка опорных частот, где формируются копии излученного сигнала,, но сдвинутые друг относительно друга по частоте в интервале заданных скоростей движения обнаруженных объектов. Анализ случайности производится в блоке 13 по значению коэффициента корреляции между последовательными сформированными реализациями зондирующего сигнала. При коэффициенте корреляции больше 0,3 излучение очередного подготовленного сигнала не производится. После излучения зондирующего сигнала гидролокатор 1 переходит в режим приема отраженных эхосигналов, которые поступают в спецпроцессор 2 на вход блока 3 многоканальной корреляционной обработки. На второй вход блока 3 подаются опорные сигналы из блока 14, и в блоке 3 производится последовательная взаимно корреляционная обработка принятой временной реализации с набором опорных сигналов. Таким образом, на выходе блока 3 образуется массив корреляционных функций принятых временных реализаций с опорными сигналами. Этот набор корреляционных функций передается в блок 4 определения амплитуд выбросов корреляционных функций, где производится измерение их амплитуд. После чего в блоке 5 производится определение Апор как среднего значения из всего набора амплитуд. Известно, что максимальная амплитуда корреляционной функции для сигнала с известным опорным сигналом всегда больше среднего значения выбросов этой корреляционной функции с неизвестным опорным сигналом. Поэтому условием обнаружения эхосигнала является превышение максимальной амплитуды выброса с Амакс>2Апор. Для этой амплитуды определяется время Т и номер канала опорной частоты, которая соответствует скорости движения обнаруженного объекта и передается в блок 6 определения дистанции по времени задержки и скорости по номеру опорного канала. По первой посылке значения дистанции и скорости передается в блок 9 управления и отображения через блоки 7 и 8 без дополнительной обработки. По второй посылке оценки дистанции и скорости будут получены для другого зондирующего сигнала, поэтому необходимо полученные оценки идентифицировать между собой. В качестве признака идентификации предлагается использовать оценку скорости, полученную по номеру опорного канала Vк и оценку скорости, полученную как Vp=(Д21)\T. Если Vк=Vp, то это означает, что оценки получены по одной и той же цели, для которой дистанции Д2 соответствует излученному сигналу на данный момент измерения, а Д1, излученному на предыдущий момент измерения. Идентификация производится в блоке 7 и результат передается через блок 8 в блок 9. Поскольку для реальной цели дистанция и скорость являются не случайными, а детерминированными оценками, то значение скорости, полученные по номеру опорного канала и по изменению дистанций, будут совпадать при последовательных измерениях. Повышение достоверности объясняется тем, что имитированные сигналы будут соответствовать предыдущей посылке, и они не будут оптимально обрабатываться для излученного зондирующего сигнала на последующей посылке.

Таким образом, используя последовательную процедуру формирования независимых псевдошумовых сложных сигналов, корреляционную обработку поступающих временных реализаций, определения корреляционных функций с использованием многоканальной корреляционной обработки для независимых последовательных зондирующих сигналов, можно повысить достоверность работы гидролокатора в условиях применения преднамеренных помех.


Гидролокационный способ обнаружения объекта и измерения его параметров
Гидролокационный способ обнаружения объекта и измерения его параметров
Источник поступления информации: Роспатент

Показаны записи 21-30 из 97.
10.05.2018
№218.016.4357

Гидролокатор с трактом прослушивания эхо-сигналов

Гидролокатор с трактом прослушивания эхо-сигналов относится к гидроакустической технике и может быть использован для точного преобразования спектра эхо-сигналов целей, обнаруженных активным гидролокатором, и их классификации на слух оператором гидролокатора. Задача предлагаемого изобретения...
Тип: Изобретение
Номер охранного документа: 0002649655
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.43c1

Гидроакустический способ управления торпедой

Гидроакустический способ управления торпедой, содержащий выпуск торпеды, которая излучает зондирующие сигналы через фиксированные промежутки времени, прием эхосигналов гидролокатором освещения ближней обстановки, выделение классификационных признаков, определение класса объекта, формирование...
Тип: Изобретение
Номер охранного документа: 0002649675
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4674

Концентратомер подвижных инфузорий в жидких средах

Изобретение относится к области фотометрии жидких сред. Концентратомер жидких сред содержит источник излучения, кювету, фильтр низких частот, усилитель, интегратор, задающий генератор. В состав устройства введены фотопреобразующий усилитель, устройство задержки, устройство выделения сигнала,...
Тип: Изобретение
Номер охранного документа: 0002650424
Дата охранного документа: 13.04.2018
10.05.2018
№218.016.468a

Гидролокационный способ классификации подводных объектов в контролируемой акватории

Изобретение относится к гидроакустическим методам освещения акватории и может быть использовано для построения и разработки гидролокационных станций освещения подводной обстановки в акватории. Гидролокационный способ обнаружения подводных объектов в контролируемой акватории, при котором...
Тип: Изобретение
Номер охранного документа: 0002650419
Дата охранного документа: 13.04.2018
10.05.2018
№218.016.4765

Способ определения параметров цели гидролокатором

Изобретение относится к области гидроакустики и может быть использовано для автоматического обнаружение цели, определения ее параметров при использовании зондирующих сигналов большой длительности на фоне реверберационных помех. Предложен способ, содержащий излучение зондирующего сигнала...
Тип: Изобретение
Номер охранного документа: 0002650835
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4788

Гидроакустический модуль сейсмокосы и способ его изготовления

Изобретение относится к технике морских гибких протяженных буксируемых антенн, служащих для измерения звукового поля в воде и применяемых в геофизике и гидроакустике. В гидрофонном модуле приемники акустического давления жестко связаны капроновой нитью, на концах которой закреплены...
Тип: Изобретение
Номер охранного документа: 0002650834
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.478b

Способ определения скорости звука гидролокатором по трассе распространения сигнала до цели

Изобретение относится к области гидроакустики и предназначено для измерения скорости звука гидролокатором по трассе распространения до цели. Полученная оценка скорости звука позволит повысить достоверность при определении основных параметров цели. Предложен способ определения скорости звука по...
Тип: Изобретение
Номер охранного документа: 0002650829
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.479d

Устройство получения информации о шумящем в море объекте

Изобретение относится к области гидроакустики и предназначено для определения параметров объектов, шумящих в море. Заявлено устройство, содержащее многоэлементную акустическую приемную антенну шумопеленгования, блок формирования веера характеристик направленности в горизонтальной и вертикальной...
Тип: Изобретение
Номер охранного документа: 0002650830
Дата охранного документа: 17.04.2018
18.05.2018
№218.016.512f

Устройство и способ энергосбережения автономного приемопередатчика морского радиогидроакустического буя

Изобретение относится к области функционирования морских радиогидроакустических буев (РГБ), предназначенных для приема/передачи информации о подводной обстановке по гидроакустическому каналу и радиоканалу. РГБ используются в военных целях, а также при исследованиях и мониторинге Мирового океана...
Тип: Изобретение
Номер охранного документа: 0002653403
Дата охранного документа: 08.05.2018
29.05.2018
№218.016.540e

Способ определения текущих координат цели в бистатическом режиме гидролокации

Изобретение относится к области гидроакустики и может быть использовано для обеспечения обнаружения и оценки текущих координат морских объектов в заданных районах мирового океана. Техническим результатом от использования изобретения является: определение истинных координат цели, обнаруженной...
Тип: Изобретение
Номер охранного документа: 0002653956
Дата охранного документа: 15.05.2018
Показаны записи 21-30 из 72.
20.06.2015
№216.013.56b4

Способ автоматической классификации

Изобретение относится к области гидроакустики и может быть использовано для построения систем классификации обнаруженных объектов гидролокатором освещения ближней обстановки. Использование способа позволит повысить вероятность правильной классификации. Способ содержит излучение зондирующего...
Тип: Изобретение
Номер охранного документа: 0002553726
Дата охранного документа: 20.06.2015
10.07.2015
№216.013.5c65

Способ обработки гидроакустического сигнала шумоизлучения объекта

Настоящее изобретение относится к области гидроакустики и может быть использовано для разработки гидроакустической аппаратуры различного назначения. Способ позволяет автоматически обнаруживать гидроакустические сигналы шумоизлучения объектов. Способ обработки гидроакустического сигнала...
Тип: Изобретение
Номер охранного документа: 0002555194
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6bd1

Способ измерения толщины льда

Изобретение относится к области гидроакустики и предназначено для разработки гидроакустической аппаратуры, используемой при плавании в ледовой обстановке. Способ заключается в том, что излучают из подводного положения носителя в направлении льда высокочастотные зондирующие гидроакустические...
Тип: Изобретение
Номер охранного документа: 0002559159
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c68

Способ оценки дистанции до шумящего в море объекта

Использование: изобретение относится к области гидроакустики и может быть использовано для определения дистанции до шумящего объекта. Сущность: прием гидроакустического шумового сигнала производят половинами гидроакустической антенны, измеряют взаимный спектр между гидроакустическими шумовыми...
Тип: Изобретение
Номер охранного документа: 0002559310
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.7300

Способ адаптивной обработки сигнала шумоизлучения

Изобретение относится к области гидроакустики и может быть использовано в процессе проектирования гидроакустической аппаратуры специального назначения. Использование изобретения может повысить эффективность использования гидроакустической аппаратуры. Способ адаптивной обработки сигнала...
Тип: Изобретение
Номер охранного документа: 0002561010
Дата охранного документа: 20.08.2015
10.12.2015
№216.013.9650

Гидроакустический способ определения пространственных характеристик объекта

Использование: изобретение относится к области гидроакустики и может быть использовано для измерения высоты объекта над уровнем дна. Сущность: гидроакустический способ определения пространственных характеристик объекта, содержащий излучение зондирующего сигнала в момент времени t, приема...
Тип: Изобретение
Номер охранного документа: 0002570100
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.979a

Способ классификации шумящих объектов

Изобретение относится к области гидроакустики и может быть использовано для разработки систем классификации, использующих спектральные и корреляционные признаки. Технический результат заключается в повышении вероятности правильной классификации обнаруженных источников шумоизлучения. Способ...
Тип: Изобретение
Номер охранного документа: 0002570430
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9b7f

Способ измерения дистанции гидролокатором

Использование: изобретение относится к области гидроакустики и может быть использовано при разработке гидроакустической аппаратуры для повышения точности измерения дистанции, а также при проведении мониторинга морских районов. Сущность: способ измерения дистанции гидролокатором содержит...
Тип: Изобретение
Номер охранного документа: 0002571432
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9e8d

Способ обработки сигнала шумоизлучения объекта

Использование: изобретение относится к гидроакустике и может быть использовано при разработке гидроакустической аппаратуры, предназначенной для обнаружения шумящих объектов. Сущность: способ обработки сигнала шумоизлучения объекта содержит прием временной последовательности сигнала...
Тип: Изобретение
Номер охранного документа: 0002572219
Дата охранного документа: 27.12.2015
20.04.2016
№216.015.34d5

Способ измерения скорости звука

Настоящее изобретение относится к области гидроакустики и предназначено для определения скорости звука по трассе. Способ заключается в следующем. Неподвижный источник излучает через постоянные промежутки времени Т постоянные по длительности зондирующие сигналы. Сигналы распространяются в...
Тип: Изобретение
Номер охранного документа: 0002581416
Дата охранного документа: 20.04.2016
+ добавить свой РИД