×
17.08.2019
219.017.c110

Результат интеллектуальной деятельности: Электродвигатель с внешним ротором и системой охлаждения статора

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, в частности, к охлаждению статора обращенной машины. Технический результат - повышение надежности и КПД. Электродвигатель с внешним ротором и системой охлаждения статора включает статический вал, установленный в подшипниковой опоре, концентрично которому установлен магнитопровод статора с рабочей обмоткой и ее лобовыми вылетами. Электродвигатель дополнительно снабжен полым цилиндром, внутри которого установлен магнитопровод статора. Цилиндр содержит крышки, герметично соединенные с валом и соответствующими торцами цилиндра, и две внутренние перегородки, образующие полости. Статический вал содержит каналы для подвода и отвода хладагента, каждый из которых сообщен с полостью цилиндра, расположенной со стороны подшипниковой опоры. Полость, расположенная со стороны свободного конца вала, снабжена штуцерами для подвода и отвода хладагента. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области электромашиностроения, а именно к электродвигателям закрытого исполнения с внешним ротором и системой охлаждения статора, и предназначено для использования в системах электроснабжения и электропривода автономных объектов (летательных аппаратов, автомобилей, средств водного транспорта), где требуется отводить значительное количество выделяющегося в закрытых электродвигателях тепла, обусловленного реализацией в них повышенных электромагнитных нагрузок.

Обеспечение работоспособности подшипниковых опор и эффективное охлаждение теплонапряженных узлов электродвигателей позволяют повысить их ресурс и обеспечить надежность эксплуатации.

Известна комбинированная система охлаждения закрытой электрической машины (RU 2201647, 2003), содержащая выполненные в корпусе статора и закрытые металлической оболочкой (нижней оболочкой) каналы принудительного жидкостного охлаждения и расположенный над ними закрытый с наружной стороны машины верхней металлической оболочкой и герметизированный от проникновения охлаждающей жидкости и наружного воздуха теплообменник в виде полости, относящейся к замкнутой системе принудительного воздушного охлаждения, и центробежный вентилятор, расположенный на валу машины. Внутренние полости машины сообщаются с каналами охлаждения воздуха через перепускные отверстия, выполненные по периметру статора с его торцов и изолированные от каналов охлаждения машины жидкостью, которые выполнены винтовыми и соединены гибкими шлангами с герметическими камерами подшипниковых щитов. Основания каналов жидкостного охлаждения и наружная поверхность нижней оболочки, являющейся основанием теплообменника, в этой системе выполнены гладкими.

Недостатками известного технического решения являются: низкая эффективность теплопередачи от корпуса к охлаждающей жидкости и от нагретого поступающего из внутренних полостей машины воздуха к охлаждающей жидкости, неравномерность охлаждения статора в осевом направлении, вызванная подогревом жидкости при движении ее в этой машине по винтовому каналу, протяженность которого превышает длину машины, а также значительное гидравлическое сопротивление для прохождения воздуха через входные отверстия в корпусе в теплообменник, следствием чего является низкий коэффициент полезного действия (КПД) циркуляции воздуха внутри машины и ее низкая эффективность.

Известна электрическая машина закрытого исполнения с жидкостным охлаждением сердечника статора (SU 1436195, 1988). Корпус машины содержит смежные контуры охлаждения в виде двухзаходных винтовых каналов, которые соединены между собой с одного из торцов корпуса с образованием общего последовательного контура, при этом один из двухзаходных винтовых каналов выполнен в виде трубки, расположенной в другом винтовом канале и имеющей с ним по всей длине непосредственный контакт.

Недостатками вышеуказанной конструкции являются сложность изготовления системы жидкостного охлаждения, а также отсутствие охлаждения подшипниковых щитов и воздуха, циркулирующего внутри электрической машины.

Известны электрические машины с жидкостным охлаждением статора проточным хладагентом. В одном техническом решении цилиндрический агрегат с канальным осевым охлаждением установлен внутри статора (US 8378534, 2013), в другом - в статоре содержатся трубчатые радиальные каналы (RU 2439768, 2012), по которым протекает хладагент. Недостатком этих конструкций является то, что лобовые вылеты обмоток принудительно не охлаждаются, что снижает эффективность системы охлаждения.

Известен статор электрической машины с жидкостным охлаждением проточным хладагентом (RU 2546964, 2015), содержащий корпус, рубашку охлаждения с каналами для проточного хладагента, магнитопровод с рабочей обмоткой с ее лобовыми частями и теплоотводящий элемент, состоящий из цилиндра и отходящих от него в радиальном направлении тепловых труб, заполненных рабочей жидкостью.

Недостатками этой конструкции являются ограниченные функциональные возможности, сложность изготовления рубашки охлаждения с каналами и ее монтаж, низкий теплоотвод потерь, в силу того, что хладагент не омывает всю полость магнитопровода статора с обмоткой.

Во всех представленных выше аналогах и в других документах (RU 2226027, RU 2513042, RU 2539691, RU 2580951, RU 2609466, US 20120286595, US 20140265657, DE 102012019749, WO 2006106086, WO 2018088945) электродвигатель содержит ротор, вращающийся внутри статора, соответственно все конструктивные особенности представленных выше технических решений невозможно применить для конструкции электродвигателя с внешним ротором, вращающимся над статором.

Основным преимуществом конструкций электродвигателя с внешним ротором на постоянных магнитах является его меньшая масса по сравнению с массой традиционного электродвигателя с внутренним ротором. Так электродвигатель с внешним ротором серии EMRAX фирмы Enstroj (Словения) мощностью 200 кВт имеет массу 20 кг, а электродвигатель с внутренним ротором от 60 до 100 кг. Применение электродвигателей с внешним ротором сдерживалось отсутствием надежных цифровых электронных систем управления, которые обеспечивают переключение силовых обмоток электродвигателя для создания вращающегося магнитного поля.

Наиболее близким аналогом, выбранным в качестве прототипа, является электродвигатель с внешним ротором, статор которого имеет жидкостное охлаждение проточным хладагентом (US 20170018997, 2017), включающий вал, установленный в подшипниковой опоре, концентрично которому установлен магнитопровод статора с рабочей обмоткой и ее лобовыми вылетами. Система охлаждения статора включает цилиндрический агрегат охлаждения с каналами для проточного хладагента, наружная поверхность которого соприкасается с внутренней поверхностью статора.

Недостатком технического решения является то, что в конструкции электродвигателя для внешнего ротора используют расположенные внутри статора две опоры с подшипниками, внутренние обоймы которых установлены на вращающемся валу, жестко связанного с внешним ротором, что усложняет трансмиссию и снижает ее надежность. Используется специальный агрегат охлаждения цилиндрической формы, наружная поверхность которого не охватывает лобовые вылеты рабочих обмоток и ограничена внутренней поверхностью статора. Технологически затруднительно обеспечить полный контакт наружной поверхности цилиндра со статором, что снижает эффективность теплоотвода к трубкам с хладагентом, расположенным внутри агрегата охлаждения.

Техническая проблема, решаемая заявляемым изобретением, заключается в повышении надежности, энергоэффективности и минимизации тепловыделений в электродвигателе с внешним ротором и системой охлаждения статора.

Технический результат, обеспечиваемый предлагаемым изобретением, заключается в повышении надежности и увеличении КПД электродвигателя с внешним ротором и системой охлаждением статора.

Заявленный технический результат достигается за счет того, что электродвигатель с внешним ротором и системой охлаждения статора включает вал, установленный в подшипниковой опоре, концентрично которому установлен магнитопровод статора с рабочей обмоткой и ее лобовыми вылетами, причем вал выполнен статическим, электродвигатель снабжен полым цилиндром, внутри которого установлен магнитопровод статора, цилиндр содержит крышки, герметично соединенные с валом и соответствующими торцами цилиндра, и две внутренние перегородки, образующие полости, статический вал содержит каналы для подвода и отвода хладагента, каждый из которых сообщен с полостью цилиндра, расположенной со стороны подшипниковой опоры, а полость, расположенная со стороны свободного конца вала, снабжена штуцерами для подвода и отвода хладагента.

Существенность отличительных признаков заявляемого технического решения подтверждается тем, что совокупность всех конструктивных признаков, описывающая изобретение, достаточна для решения указанной технической проблемы и достижения заявленного технического результата.

А именно:

- выполнение вала статическим с одной подшипниковой опорой, расположенной сбоку от статора (вместо традиционных двух опор внутри статора), на внешней обойме подшипника которой расположен ротор с постоянными магнитами, позволяет уменьшить наружный диаметр статора, снизить его массу, повысить надежность электродвигателя и увеличить его ресурс;

- расположение магнитопровода статора внутри полого цилиндра, крышки которого герметично соединенные с валом и соответствующими торцами цилиндра, позволяет организовать эффективное конвективное охлаждение статического вала и магнитопровода статора без попадания жидкости в зазор между магнитопроводом и внешним ротором, а также защитить смазку подшипникового узла от взаимодействия с хладагентом, что обеспечивает повышение надежности и увеличении КПД электродвигателя;

- установка внутри цилиндра двух внутренних перегородок, образующих полости, позволяет организовать раздельный подвод хладагента в полости с лобовыми вылетами обмоток со стороны подшипниковой опоры и со стороны свободного конца вала, обеспечив тем самым конвективное охлаждения лобовых вылетов обмоток, при этом практически исчезает температурная неравномерность по длине магнитопровода, стабилизируется также температурное состояние подшипниковой опоры, что способствует обеспечению надежности электродвигателя;

- организация подвода и отвода хладагента к полостям цилиндра в виде каналов внутри статического вала и штуцеров, установленных в крышке цилиндра со стороны свободного конца вала, позволяет повысить надежность электродвигателя, так как каналы охлаждения предельно просты и отсутствуют прокладки на его вращающихся элементах.

Существенные признаки могут иметь развитие и продолжение - внутренние перегородки цилиндра могут быть выполнены перфорированными, образующими сообщенные между собой полости.

Выполнение внутренних перегородок перфорированными, образующими сообщенные между собой полости, позволяет ускорить процесс охлаждения магнитопровода путем интенсификации процесса теплопереноса от магнитопровода к жидкости, протекающей в пазах обмоток из-за неполного их заполнения, что способствует увеличению КПД электродвигателя.

Настоящее изобретение поясняется следующим подробным описанием электродвигателя с внешним ротором и системой охлаждения статора и его работы со ссылкой на фигуру, где изображен продольный разрез электродвигателя, а стрелками показано движение хладагента.

На чертеже приняты следующие обозначения

1 - вал;

2 - магнитопровод статора;

3 - лобовой вылет;

4 - лобовой вылет;

5 - цилиндр;

6 - крышка;

7 - крышка;

8 - канал охлаждения;

9 - канал охлаждения;

10 - полость у свободного конца вала;

11 - полость у подшипникового узла;

12 - полость цилиндра;

13 - штуцер;

14 - штуцер;

15 - выводные электропроводящие болты;

16 - перегородки;

17 - ротор;

18 - постоянные магниты;

19 - прокладка для герметизации вала с крышкой 6;

20 - прокладка для герметизации вала с крышкой 7;

21 - прокладка для герметизации цилиндра 5 с крышкой 6;

22 - прокладка для герметизации цилиндра 5 с крышкой 7;

23 - прокладка для герметизации штуцера 13 с крышкой 6;

24 - прокладка для герметизации штуцера 14 с крышкой 6;

25 - прокладка для герметизации выводного болта 15 с крышкой 6;

26 - подшипниковая опора.

Электродвигатель включает статический вал 1, установленный в подшипниковой опоре 26, концентрично которому установлен магнитопровод статора 2 с рабочей обмоткой и ее лобовыми вылетами 3 и 4. Электродвигатель снабжен полым цилиндром 5, внутри которого установлен магнитопровод статора 2. Цилиндр 5 содержит изоляционные крышки 6 и 7, герметично соединенные с валом 1 и соответствующими торцами цилиндра 5, и две внутренние перегородки 16, образующие полости 10, 11 и 12. Статический вал 1 содержит канал 8 для подвода хладагента в полость 11, расположенную со стороны подшипниковой опоры 26, и канал 9 для отвода хладагента из нее. Полость 10, расположенная со стороны свободного конца вала 1, снабжена штуцером 13 для подвода хладагента и штуцером 14 для его отвода. На внешней части подшипниковой опоры 26 расположен ротор 17 с постоянными магнитами 18. Крышка 6 имеет отверстие для вывода электропроводящих болтов 15 (на фигуре показан один выводной болт). Магнитопровод статора 2 выполнен из шихтованных в аксиальном направлении листов электротехнической стали.

Герметизация цилиндра 5 обеспечивается посредством резиновых прокладок: герметизация статического вала 1 с внешней и внутренней крышками 6 и 7 обеспечивается прокладками 19 и 20, герметизация крышек 6 и 7 цилиндра 5 с соответствующими торцами цилиндра 5 выполнена посредством прокладок 21 и 22, герметизация штуцеров 13 и 14 с внешней крышкой 6 выполнена посредством прокладок 23 и 24, герметизация выводного болта с внешней крышкой 6 посредством прокладки 25.

При использовании в конструкции электродвигателя перфорированных перегородок 16 площадь проходного сечения штуцера 13 выше значения эквивалентной площади канала 8 в статическом валу 1, что обеспечивает проток хладагента по пазам обмоток (коэффициент их заполнения меньше единицы) или по дополнительным каналам внутри статора при подводе хладагента к электродвигателю от одного источника.

Предложенное устройство работает следующим образом. При подключении выводного болта 15 к силовым выводам системы управления электродвигателя по обмотке электродвигателя начинает проходить ток, который создает магнитное поле магнитопровода статора 2. Это магнитное поле, взаимодействуя с магнитным полем возбуждения постоянных магнитов 18 ротора 17, образует электромагнитный момент, в результате чего ротор 17 начинает вращаться в подшипниковой опоре 26.

Отвод тепловых потерь, возникающих в магнитопроводе статора 2, из-за потерь на перемагничивании и вихревых токов в материале магнитопровода статора 2, а так же в обмотках, обусловленных их активным сопротивлением, обеспечивается по законам теплопереноса, при протекании хладагента под давлением по телу магнитопровода статора 2, обмотки и лобовых вылетов 3 и 4. Хладагент протекает по двум контурам:

- в первом контуре через входной штуцер 13 хладагент попадает в полость 10 цилиндра 5, в которой он охлаждает лобовой вылет 3 и торец магнитопровода статора 2, после этого хладагент под давлением выходит из полости 10 через выходной штуцер 14;

- во втором контуре через входной канал 8 охлаждения хладагент попадает в полость 11 цилиндра 5, в которой он охлаждает лобовой вылет 4 и торец магнитопровода статора 2, после хладагент под давлением выходит из полости 11 через выходной канал 9 охлаждения.

Чтобы исключить попадание хладагента в радиальный зазор между магнитопроводом статора 2 и ротором 17, на внешней части магнитопровода статора 2 расположен цилиндр 5, внешние и внутренние изоляционные крышки 6 и 7 которого герметично прилегают к статическому валу 1 и цилиндру 5. Хладагент не поступает в зазор и не создает дополнительного механического трения, он также не поступает в подшипниковую опору 26, тем самым не подвергая смешению подшипниковой смазки с хладагентом.

Цилиндр 5 выполнен из жесткого стекловолоконного материала с целью обеспечения механической прочности и минимизации потерь на вихревые токи. Герметизация внутренних полостей цилиндра от окружающей среды обеспечивается посредством резиновых прокладок 19, 20, 21, 22, 23, 24, 25.

При перфорированных перегородках 16 обеспечивается теплосъем от статора 2 также за счет протекания хладагента в пазах обмоток и каналах.

Заявляемое техническое решение позволяет реализовать электродвигатель с внешним ротором и конвективной системой охлаждения статора с надежной трансмиссией путем установки магнитопровода статора внутри герметичного цилиндра, упрощения конструкции каналов охлаждения, защиты смазки подшипниковой опоры от взаимодействия с хладагентом и стабилизации его температурного состояния.

Таким образом у электродвигателя с внешним ротором и системой охлаждения статора повышается надежность, энергоэффективность и минимизируется тепловыделение, увеличивается КПД на 1-2%, а также повышается плотность тока в обмотке, за счет того что хладагент омывает всю полость магнитопровода статора и его обмотки с лобовыми вылетами, при этом хладагент не поступает в радиальный зазор внешнего ротора, не создавая тем самым дополнительных потерь энергии на трение.


Электродвигатель с внешним ротором и системой охлаждения статора
Электродвигатель с внешним ротором и системой охлаждения статора
Источник поступления информации: Роспатент

Показаны записи 91-100 из 204.
09.06.2018
№218.016.5c6f

Планетарный редуктор силовой установки

Изобретение относится к машиностроению и может быть использовано в высоконагруженных зубчатых редукторах. Планетарный редуктор силовой установки содержит корпус, ведомое зубчатое колесо внутреннего зацепления, связанное с выходным валом, зубчатые сателлиты, установленные на неподвижных осях, и...
Тип: Изобретение
Номер охранного документа: 0002655968
Дата охранного документа: 30.05.2018
20.06.2018
№218.016.64b4

Смазочная композиция для поршневых двигателей

Изобретение относится к смазочным композициям для поршневых двигателей, в частности к всесезонным смазочным композициям для авиационных поршневых двигателей, и направлено на улучшение эксплуатационных характеристик смазочной композиции требуемой вязкости при использовании ее для смазки...
Тип: Изобретение
Номер охранного документа: 0002658016
Дата охранного документа: 19.06.2018
20.06.2018
№218.016.6504

Установка для газодинамических испытаний

Изобретение относится к области промышленной аэродинамики и может быть использовано для проведения газодинамических испытаний авиационной и ракетной техники. Устройство содержит испытательную камеру с аэродинамическим соплом, источник сжатого воздуха с магистралью высокого давления, систему...
Тип: Изобретение
Номер охранного документа: 0002658152
Дата охранного документа: 19.06.2018
01.07.2018
№218.016.69b6

Коническая зубчатая передача

Изобретение относится к машиностроению и может быть использовано в высоконагруженных зубчатых передачах. Коническая зубчатая передача содержит ведущий и ведомый валы с пересекающимися осями, и установленные на валах конические зубчатые колеса с круговыми зубьями и равными делительными шагами...
Тип: Изобретение
Номер охранного документа: 0002659318
Дата охранного документа: 29.06.2018
03.07.2018
№218.016.69db

Устройство для анализа динамических процессов в рабочих колесах турбомашин

Изобретение может быть использовано для анализа быстропротекающих процессов в рабочих колесах турбомашин в процессе поузловой доводки рабочих колес турбин и компрессоров газотурбинных двигателей. Устройство обеспечивает анализ динамических процессов в рабочих колесах турбомашин в режиме...
Тип: Изобретение
Номер охранного документа: 0002659428
Дата охранного документа: 02.07.2018
03.07.2018
№218.016.69f5

Рабочая жидкость для гидравлических систем

Изобретение относится к рабочим (гидравлическим) жидкостям и может быть использовано в областях техники, требующих применения в гидросистемах рабочих жидкостей с большим диапазоном рабочих температур и обладающих повышенной пожаробезопасностью, в частности, в авиационной технике. Рабочая...
Тип: Изобретение
Номер охранного документа: 0002659393
Дата охранного документа: 02.07.2018
03.07.2018
№218.016.6a00

Рабочее колесо компрессора газотурбинного двигателя

Изобретение относится к авиационному двигателестроению, в частности к осевым компрессорам авиационных газотурбинных двигателей. Рабочее колесо осевого компрессора газотурбинного двигателя содержит диск с конусообразной наружной поверхностью, ориентированной меньшим основанием к входному торцу...
Тип: Изобретение
Номер охранного документа: 0002659416
Дата охранного документа: 02.07.2018
03.07.2018
№218.016.6a15

Комплекс для подвода криогенной жидкости в емкости, газификации криогенной жидкости и хранения газа высокого давления

Изобретение относится к устройствам для наполнения сосудов высокого давления газами и предназначено для автономного использования. Комплекс для подвода криогенной жидкости в емкости, газификации криогенной жидкости и хранения газа высокого давления включает резервуар криогенной жидкости, насос,...
Тип: Изобретение
Номер охранного документа: 0002659414
Дата охранного документа: 02.07.2018
04.07.2018
№218.016.6a40

Способ изготовления изделий из трубных заготовок

Изобретение относится к способу изготовления изделия из трубных заготовок и может быть использовано в технологических процессах изготовления теплообменных панелей методом лазерной сварки. Охлаждают их по объему путем подачи охлаждающей жидкости в полости свариваемых заготовок до момента...
Тип: Изобретение
Номер охранного документа: 0002659539
Дата охранного документа: 02.07.2018
05.07.2018
№218.016.6bff

Устройство для измерения температуры в газовом потоке

Изобретение относится к области измерительной техники и может быть использовано для диагностики технического состояния газотурбинных двигателей в процессе их разработки, производства и испытаний. Заявленное устройство для измерения температуры в газовом потоке содержит камеру с оптически...
Тип: Изобретение
Номер охранного документа: 0002659723
Дата охранного документа: 03.07.2018
Показаны записи 91-100 из 121.
08.07.2018
№218.016.6e86

Гомополярный магнитный подшипник для высокоскоростных электрических машин

Изобретение относится к электротехнике и может быть использовано в высокоскоростных электрических машинах. Технический результат: состоит в повышении надежности, повышении к.п.д. за счет снижения потерь на вихревые токи и гистерезис, а также в снижении массогабаритных показателей за счет...
Тип: Изобретение
Номер охранного документа: 0002660447
Дата охранного документа: 06.07.2018
17.11.2018
№218.016.9e4f

Многофазный синхронный генератор с однополупериодным выпрямителем

Изобретение относится к области энергомашиностроения, в частности к устройствам, использующимся в системах автономного электроснабжения. Технический результат: повышение надежности многофазного синхронного генератора с возможностью подключения в трехфазную сеть, а также повышение...
Тип: Изобретение
Номер охранного документа: 0002672562
Дата охранного документа: 16.11.2018
24.01.2019
№219.016.b388

Устройство для выведения малых космических аппаратов

Изобретение относится к системам разделения космических аппаратов (КА) и м.б. использовано для запуска на орбиту малых КА массой от 1 до 50 кг. Устройство для выведения КА (2) содержит основание (3), на котором КА удерживается гибкими токопроводящими пластинами (1). Пластины подключены к блоку...
Тип: Изобретение
Номер охранного документа: 0002677974
Дата охранного документа: 22.01.2019
14.02.2019
№219.016.ba48

Способ автоматизированной очистки солнечных панелей

Изобретение относится к области электроэнергетики, энергосбережения и может быть использовано для очистки солнечных панелей от снега и льда в зимнее время. Технический результат: повышение эффективности работы солнечных панелей и увеличение их кпд, а также возможность постоянного использования...
Тип: Изобретение
Номер охранного документа: 0002679771
Дата охранного документа: 12.02.2019
23.02.2019
№219.016.c5cf

Измерительная система для определения истинного объёмного газосодержания

Изобретение относится к измерительным системам для определения физических свойств двухфазных потоков, а именно к измерительным системам для определения истинного объемного газосодержания потока масловоздушной эмульсии в трубопроводе. Измерительная система включает горизонтальный цилиндрический...
Тип: Изобретение
Номер охранного документа: 0002680417
Дата охранного документа: 21.02.2019
23.02.2019
№219.016.c60b

Способ определения истинного объёмного газосодержания

Изобретение относится к способам определения физических свойств двухфазных потоков, а именно к способам определения истинного объемного газосодержания потока масловоздушной эмульсии в трубопроводе, в частности в системах смазки газотурбинных двигателей. Способ заключается в том, что в...
Тип: Изобретение
Номер охранного документа: 0002680416
Дата охранного документа: 21.02.2019
20.04.2019
№219.017.357f

Магнитопровод статора электромеханических преобразователей энергии

Изобретение относится к электротехнике и может быть использовано в электромеханических преобразователях энергии автономных объектов. Техническим результатом является повышение надежности, энергоэффективности и минимизация тепловыделений, повышение к.п.д. на 1-2%. Магнитопровод статора содержит...
Тип: Изобретение
Номер охранного документа: 0002685420
Дата охранного документа: 18.04.2019
29.05.2019
№219.017.6395

Способ и устройство монтажа ротора в статор электрической машины

Изобретение относится к области машиностроения, в частности к устройствам, обеспечивающим технологическую сборку электрических машин, позволяющих осуществить установку ротора с постоянными магнитами и с установленными подшипниками в магнитопровод статора. Технический результат - упрощение...
Тип: Изобретение
Номер охранного документа: 0002688186
Дата охранного документа: 21.05.2019
30.05.2019
№219.017.6b9b

Способ и устройство для запуска газотурбинного двигателя

Изобретение относится к области авиастроения, в частности к устройствам, обеспечивающим запуск газотурбинного двигателя. Предлагается способ запуска газотурбинного двигателя посредством стартера. Вращают собственную турбину магнитоэлектрического генератора, приводя во вращение и сам...
Тип: Изобретение
Номер охранного документа: 0002689499
Дата охранного документа: 28.05.2019
20.06.2019
№219.017.8ccb

Устройство защиты от короткого замыкания магнитоэлектрического генератора

Изобретение относится к области электромашиностроения и может быть использовано в магнитоэлектрических генераторах. Техническим результатом является повышение эксплуатационного ресурса обмотки статора, защита от короткого замыкания и соответственно увеличение надежности магнитоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002691735
Дата охранного документа: 18.06.2019
+ добавить свой РИД