×
09.08.2019
219.017.bd1d

Результат интеллектуальной деятельности: СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области диагностирования технического состояния авиационных газотурбинных двигателей с учетом конкретных условий эксплуатации. Техническим результатом, достигаемым при использовании заявленного способа, является более полное использование потенциальных возможностей основных деталей двигателя по ресурсу за счет применения усовершенствованного механизма подсчета накопленной поврежденности. Достижение предельно допустимых значений накопленной поврежденности основных деталей при использовании заявленного способа происходит по истечении большего периода эксплуатации по сравнению с прототипом. Таким образом, использование заявленного способа снижает стоимость жизненного цикла двигателя. Указанный технический результат достигается тем, что в заявленном способе эксплуатации авиационного газотурбинного двигателя по его техническому состоянию, заключающемся в сравнении фактической наработки двигателя и накопленной поврежденности основных деталей двигателя с их предельно допустимыми значениями, определяемыми по результатам ресурсных испытаний на наземном стенде, и последующим определением остаточного ресурса двигателя и его основных деталей по результатам этого сравнения, при этом накопленную поврежденность основных деталей двигателя определяют как сумму произведений количества выделенных за полет типовых циклов нагружения, определяемых по диапазонам изменения циклической нагруженности основных деталей двигателя, в свою очередь определяемой по характерным параметрам работы двигателя, на соответствующую им единичную повреждаемость, предварительно весь диапазон эксплуатации авиационного газотурбинного двигателя в координатах полной температуры и полного давления на входе в двигатель делят на зоны, определяют для каждой основной детали и каждого типового цикла нагружения максимальную в каждой зоне единичную повреждаемость, далее во время полета регистрируют значения параметров и по завершении полета для определения накопленной поврежденности каждой основной детали используют единичную повреждаемость, соответствующую выделенной зоне по параметрам и пика каждого выделенного цикла нагружения, если пик выделенного цикла соответствует границе зон, то для определения накопленной поврежденности каждой основной детали используют единичную повреждаемость, принадлежащую одной из смежных зон, в которой ее значение будет наименьшим, кроме того, количество и размеры зон выбирают для каждой основной детали индивидуально. 1 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к области диагностирования технического состояния авиационных газотурбинных двигателей с учетом конкретных условий эксплуатации.

В качестве прототипа выбран известный способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию /RU №2236671, МПК G01M 15/00, опубликовано: 29.09.2004/, который предусматривает сравнение фактической наработки двигателя и параметра технического состояния деталей двигателя во время эксплуатации с их предельно допустимыми значениями и последующее определение остаточного ресурса двигателя и его деталей по результатам этого сравнения. При этом для основных деталей, т.е. для деталей, разрушение которых может привести к отказу с опасными последствиями, в качестве параметра технического состояния выбирают их накопленную поврежденность. Определение накопленной поврежденности основных деталей осуществляют с учетом их наработки на каждом конкретном режиме работы двигателя, а предельно допустимые значения поврежденности основных деталей определяют при работе двигателя на наземных стендах на назначенных режимах.

Недостатком известного способа является низкая точность определения остаточного ресурса двигателя вследствие необъективности механизма подсчета накопленной поврежденности, не учитывающего влияния полетных условий на единичную повреждаемость циклов нагружения. В известном способе при определении накопленной поврежденности каждой основой детали используют единственное значение единичной повреждаемости для каждого цикла нагружения, определенное при максимальных условиях нагружения всего диапазона эксплуатации. Однако, как показывает практика, около 80% эксплуатации двигателей высокоманевренного летательного аппарата осуществляется на дозвуковых скоростях и высотах до 10 километров, при которых нагруженность основных деталей двигателя значительно ниже максимальной. [Гогаев Г.П., Немцев Д.В. «Совершенствование методики контроля выработки ресурса по малоцикловой усталости основных деталей ГТД высокоманевренных ЛА», Сборник «XLII Международной молодежной научной конференции «Гагаринские чтения» МАИ, г. Москва, 2018 г., стр. 124-125]. Таким образом, использование указанного механизма подсчета приводит к неполному использованию потенциальных возможностей основных деталей двигателя по ресурсу и, как следствие, к увеличению стоимости жизненного цикла двигателя, за счет замены не исчерпавших ресурс основных деталей двигателя при ремонте.

Техническим результатом, достигаемым при использовании заявленного способа, является более полное использование потенциальных возможностей основных деталей двигателя по ресурсу, за счет применения усовершенствованного механизма подсчета накопленной поврежденности. Достижение предельно допустимых значений накопленной поврежденности основных деталей при использовании заявленного способа происходит по истечению большего периода эксплуатации по сравнению с прототипом. Таким образом, использование заявленного способа снижает стоимость жизненного цикла двигателя.

Указанный технический результат достигается тем, что в заявленном способе эксплуатации авиационного газотурбинного двигателя по его техническому состоянию, заключающемся в сравнении фактической наработки двигателя и накопленной поврежденности основных деталей двигателя с их предельно допустимыми значениями, определяемыми по результатам ресурсных испытаний на наземном стенде, и последующим определением остаточного ресурса двигателя и его основных деталей по результатам этого сравнения, при этом накопленную поврежденность основных деталей двигателя определяют как сумму произведений количества выделенных за полет типовых циклов нагружения, определяемых по диапазонам изменения циклической нагруженности основных деталей двигателя, в свою очередь определяемой по характерным параметрам работы двигателя, на соответствующую им единичную повреждаемость, согласно заявленному способу предварительно весь диапазон эксплуатации авиационного газотурбинного двигателя в координатах полной температуры и полного давления на входе в двигатель делят на зоны, определяют для каждой основной детали и каждого типового цикла нагружения максимальную в каждой зоне единичную повреждаемость, далее во время полета регистрируют значения параметров и по завершению полета для определения накопленной поврежденности каждой основной детали используют единичную повреждаемость, соответствующую выделенной зоне по параметрам и пика каждого выделенного цикла нагружения, если пик выделенного цикла соответствует границе зон, то для определения накопленной поврежденности каждой основной детали используют единичную повреждаемость, принадлежащую одной из смежных зон, в которой ее значение будет наименьшим, кроме того количество и размеры зон выбирают для каждой основной детали индивидуально.

Разделение диапазона эксплуатации авиационного газотурбинного двигателя на зоны в координатах полной температуры и полного давления на входе в двигатель, и определение для каждой выделенной зоны максимальной единичной повреждаемости позволяет использовать в механизме подсчета накопленной поврежденности различные значения единичной повреждаемости. Таким образом, в отличие от прототипа, где используется максимальная единичная повреждаемость всего диапазона эксплуатации, осуществляется ситуативный выбор зоны, по замеренным параметрам и соответствующим во времени пику выделенного цикла нагружения. Если пик выделенного цикла соответствует границе зон, то для определения накопленной поврежденности каждой основной детали используют единичную повреждаемость, принадлежащую одной из смежных зон, в которой ее значение будет наименьшим, в результате подсчет накопленной поврежденности будет максимально приближен к полетным условиям. Таким образом, в заявленном способе учитываются полетные условия, при которых был реализован выделенный цикл нагружения. Индивидуальный выбор количества и размера зон разбиения диапазона эксплуатации позволяет достичь необходимой точности подсчета накопленной поврежденности для каждой основной детали двигателя. Использование параметров и для представления диапазона эксплуатации обусловлено тем, что именно эти параметры среди прочих полетных параметров определяют условия термомеханического нагружения основных деталей.

Заявленный способ осуществляется следующим образом, в процессе эксплуатации сравнивают фактическую наработку двигателя и накопленную поврежденность его основных деталей с их предельно допустимыми значениями, определяемыми по результатам ресурсных испытаний на наземном стенде. Программа этих испытаний формируется разработчиком двигателя с учетом технических требований к двигателю и предусматривает выполнение определенного количества циклов нагружения и время наработки на назначенных режимах, что определяет предельные значения фактической наработки и накопленной поврежденности.

На этапе проектирования и доводки двигателя, с целью упрощения учета многообразия режимов его работы, проводят схематизацию нагружения. За основной характерный параметр работы двигателя, определяющий режим нагружения, принимают частоту вращения ротора. Для схематизации нагружения двигателя весь диапазон изменения его работы по частоте вращения разделяют на ряд назначенных режимов и определяют диапазоны значений частот вращения соответствующих им. Количество назначенных режимов работы двигателя и соответственно типовых циклов нагружения могут варьировать и определяют с учетом технических требований к двигателю, его системы управления, влияния изменения частоты вращения ротора на выработку циклической долговечности основных деталей двигателя, а также назначения летательного аппарата, в составе которого данные двигатели применяются.

На примере выделения в диапазоне изменения работы двигателя по частоте вращения назначенных режимов: МГ - малый газ, КР - крейсерский режим, МАХ - максимальный режим, - выделяют следующие типовые циклы нагружения:

N1 - соответствует изменению частоты вращения n0-nМАХ-n0;

N2 - соответствует изменению частоты вращения nМГ-nМАХ-nМГ;

N3 - соответствует изменению частоты вращения nКР-nМАХ-nКР,

где n0 - частота вращения, равная нулю (двигатель выключен);

nМГ - диапазон частот вращения на режиме малого газа;

nКР - диапазон частот вращения на крейсерском режиме;

nМАХ - диапазон частот вращения на максимальном режиме.

Контроль фактической наработки в эксплуатации осуществляют путем определения в каждом полете или наземной работе длительности наработки на каждом из назначенных режимов работы двигателя. Полученные значения суммируют со значениями, накопленными на соответствующих режимах за предыдущий период эксплуатации, далее суммарные значения сравнивают с предельно допустимыми для каждого из режимов, определенными по итогам ресурсных испытаний на наземном стенде.

Для подсчета накопленной поврежденности на этапе проектирования и доводки авиационного газотурбинного двигателя весь диапазон его эксплуатации делят на зоны. Диапазон эксплуатации определяют в координатах параметров, характеризующих полетные условия. Обычно полетные условия характеризуются значениями скорости (число Маха [М]) и высоты полета [Н] (фиг. 1). В заявленном способе в качестве параметров, характеризующих полетные условия используют полную температуру и полное давление на входе в двигатель. При различных сочетаниях параметров [М] и [Н] параметры на входе в двигатель и могут быть сходными, кроме того и - классические возмущающие воздействия теории систем управления авиационных силовых установок, которые совместно с заданным режимом работы двигателя однозначно определяют условия термомеханического нагружения узлов и деталей.

Таким образом, становится возможным группировать различные условия по значениям параметров [М] и [Н], обладающие сходными значениями параметров и на входе в двигатель. Параметры и измеряют непосредственно на двигателе или рассчитывают по замеряемым непосредственно на двигателе параметрам.

Пример возможного разделения диапазона эксплуатации двигателя на зоны в координатах параметров и представлен на фиг. 2. Размеры и количество зон выбирают общими для всех основных деталей, либо устанавливают для каждой основной детали индивидуально.

После определения типовых циклов нагружения и разделения диапазона эксплуатации двигателя в координатах параметров и проводят расчеты параметров теплового и напряженно-деформированного состояния всех основных деталей двигателя. На основе проведенных расчетов определяют для каждой основной детали и каждого типа цикла нагружения во всех выделенных зонах полетных условий значение количества циклов до разрушения Np, обратная величина которой является единичной повреждаемостью П:

где Пkij - - единичная повреждаемость;

Npij - расчетное число циклов до разрушения;

i - типовой цикл (N1, N2, N3 и т.д.);

j - рассматриваемая зона (1, 2, 3, и т.д.);

k - рассматриваемая основная деталь (диск компрессора, диск турбины, корпус камеры сгорания и т.д.).

Единичная повреждаемость основной детали [Пkij] - это повреждаемость за один цикл нагружения. Количество циклов до разрушения вычисляют по известным формулам, например эмпирической формуле Мэнсона, или определяют экспериментальными методами.

В силу отсутствия экспериментальных кривых малоцикловой усталости для большинства авиационных материалов, широкое применение при определении количества циклов до разрушения получила модифицированная формула Мэнсона [Демьянушко И.В., Биргер И.А., «Расчет на прочность вращающихся дисков», - М.: Машиностроение, 1978 г., 135 с, формула 4.38]:

где Δε - размах упругопластических деформаций;

Np - число циклов до разрушения;

σm - среднее напряжение цикла;

Е - модуль упругости при заданной температуре;

ψ - относительное сужение образца при одноосном разрыве;

σв - предел прочности.

При определении количества циклов нагружения до разрушения и соответственно единичных повреждаемостей для каждой выделенной зоны диапазона эксплуатации двигателя проводят расчеты при максимальных значениях параметров и выделенной зоны.

В результате проведения всех необходимых расчетов для каждой основной детали формируют матрицу единичных повреждаемостей всех типовых циклов нагружения в каждой зоне диапазона эксплуатации двигателя. Пример матрицы представлен в таблице 1.

В эксплуатации для контроля достижения накопленной поврежденности предельных значений, разрабатывают алгоритмы обработки регистрируемой полетной информации, позволяющие выделять типовые циклы нагружения. В основе указанных алгоритмов лежит функция изменения частоты оборотов двигателя во времени.

Определение циклов нагружения осуществляют в следующей последовательности:

1) Для циклограммы изменения частоты оборотов двигателя за один полет определяют все экстремумы временной функции n=ƒ(τ) (Фиг. 3);

2) В соответствии с методами схематизации случайных процессов (ГОСТ 25.101-83) выделяют все циклы нагружения функции n=ƒ(τ) (Фиг. 4);

Во время полета с необходимой периодичностью регистрируют параметры и После выделения типовых циклов нагружения определяют значения регистрируемых параметров и соответствующих во времени пикам выделенных циклов. (Фиг. 4) По принадлежности выбранных параметров и к выделенной зоне диапазона эксплуатации двигателя выбирают соответствующую зоне единичную повреждаемость, которую в дальнейшем используют для подсчета накопленной поврежденности. В случае если пик выделенного цикла соответствует границе зон, то для определения накопленной поврежденности каждой основной детали используют единичную повреждаемость, принадлежащую одной из смежных зон, в которой ее значение будет наименьшим.

Накопленная поврежденность каждой основной детали определяется как сумма произведений выделенных за полет типовых циклов нагружения на единичную повреждаемость, соответствующую выделенной зоне диапазона эксплуатации двигателя, в которой реализовался пик выделенного цикла нагружения.

где - накопленная основной деталью поврежденность;

Пkij - единичная повреждаемость;

Npij - расчетное число циклов до разрушения;

i - номер типового цикла (N1, N2, N3 и т.д.);

j - рассматриваемая зона (1, 2, 3, и т.д.);

k - рассматриваемая основная деталь (диск компрессора, диск турбины, корпус камеры сгорания и т.д.).

Затем значение накопленной за полет поврежденности каждой основной детали суммируют с поврежденностью соответствующей основной детали, накопленной за предыдущий период эксплуатации, и сравнивают с предельными значениями накопленной поврежденности, определяемыми по результатам ресурсных испытаний на наземном стенде.

На основе оценки результатов сравнения фактической наработки и накопленной поврежденности с их предельно допустимыми значениями принимают решение о возможности дальнейшей эксплуатации. При достижении предельных значений фактической наработки двигателя или накопленной поврежденности какой-либо основной детали двигателя, формируется предупреждающее информационное сообщение о необходимости прекращения эксплуатации.

Как показывает опыт, часто отстранение двигателя от эксплуатации происходит по параметру накопленной поврежденности его основных деталей, таким образом новый подход к подсчету накопленной поврежденности основных деталей позволит увеличить время эксплуатации двигателя «на крыле», тем самым снижая стоимость жизненного цикла изделия.

Изобретение проиллюстрировано следующими чертежами:

На фиг. 1 показан диапазон эксплуатации двигателя в координатах [М] и [Н].

На фиг. 2 показан диапазон эксплуатации двигателя, разделенный на зоны в координатах и

На фиг. 3 показана циклограмма изменения частоты оборотов двигателя за один полет.

На фиг. 4 показано выделение типовых циклов нагружения.


СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 110.
09.08.2019
№219.017.bd20

Способ управления двухвальным газотурбинным двигателем с регулируемыми направляющими аппаратами компрессора и вентилятора

Изобретение относится к авиадвигателестроению, а именно к управлению двухвальным газотурбинным двигателем с регулируемыми направляющими аппаратами. Способ управления двухвальным газотурбинным двигателем с регулируемыми направляющими аппаратами компрессора и вентилятора включает управление...
Тип: Изобретение
Номер охранного документа: 0002696516
Дата охранного документа: 02.08.2019
10.08.2019
№219.017.bd61

Поворотное осесимметричное сопло турбореактивного двигателя

Изобретение относится к турбореактивным двигателям для авиационной техники, в частности к конструкции реактивных сопел. Поворотное осесимметричное сопло турбореактивного двигателя содержит неподвижный корпус, подвижный корпус, управляющие гидроцилиндры, а также пневмоцилиндры. Неподвижный...
Тип: Изобретение
Номер охранного документа: 0002696833
Дата охранного документа: 06.08.2019
10.08.2019
№219.017.bd88

Кольцевой объёмный оптический резонатор

Изобретение к лазерной технике. Кольцевой объемный оптический резонатор содержит ограниченную наружной и внутренней стенками кольцевую замкнутую полость с впускным отверстием для активной среды и отводным отверстием, образующую коаксиальные поверхности, систему зеркал, установленных вдоль...
Тип: Изобретение
Номер охранного документа: 0002696944
Дата охранного документа: 07.08.2019
10.08.2019
№219.017.bd93

Компрессор двухконтурного газотурбинного двигателя

Изобретение относится к области авиационного двигателестроения, а именно к конструкции компрессоров высокого давления двухконтурного газотурбинного двигателя. Компрессор двухконтурного газотурбинного двигателя содержит корпус регулируемых направляющих аппаратов, промежуточный корпус, механизм...
Тип: Изобретение
Номер охранного документа: 0002696839
Дата охранного документа: 06.08.2019
12.09.2019
№219.017.ca6b

Охлаждаемая турбина двухконтурного газотурбинного двигателя

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности к двигателям, применяемым в качестве привода газоперекачивающих агрегатов и энергоустановок, и может быть использовано при разработке энергоустановок с охлаждением масла в замкнутой циркуляционной системе и для...
Тип: Изобретение
Номер охранного документа: 0002699870
Дата охранного документа: 11.09.2019
12.09.2019
№219.017.ca79

Роторная машина объемного типа

Изобретение относится к области энергетического и транспортного машиностроения и может быть использовано для привода потребителей механической энергии, а также в качестве составной части двигателя внутреннего сгорания, в том числе и газотурбинных двигателей. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002699864
Дата охранного документа: 11.09.2019
02.10.2019
№219.017.d132

Двухконтурный газотурбинный двигатель

Изобретение относится к газотурбинным двигателям, а именно к системам наддува опор. Известный двухконтурный газотурбинный двигатель, содержащий систему наддува опор, включающую полости наддува опор и предмасляные полости компрессора низкого давления и компрессора высокого давления, полость...
Тип: Изобретение
Номер охранного документа: 0002700110
Дата охранного документа: 12.09.2019
12.10.2019
№219.017.d555

Газотурбинный двигатель

Изобретение относится к области газотурбинного двигателестроения, а именно к системам наддува опор газотурбинных двигателей. Газотурбинный двигатель, содержащий компрессор низкого давления с опорами, компрессор высокого давления с опорой, турбину высокого давления и турбину низкого давления с...
Тип: Изобретение
Номер охранного документа: 0002702713
Дата охранного документа: 09.10.2019
12.10.2019
№219.017.d559

Способ управления турбокомпрессорной установкой

Изобретение относится к способам управления работой турбокомпрессорных установок и может быть использовано для управления процессом возникновения критических нестационарных автоколебаний компрессора нагнетателя, возникающих при испытаниях преимущественно авиационных газотурбинных двигателей...
Тип: Изобретение
Номер охранного документа: 0002702714
Дата охранного документа: 09.10.2019
15.10.2019
№219.017.d59f

Газотурбинный двигатель

Изобретение относится к области эксплуатации газотурбинных двигателей в промышленности в качестве привода газоперекачивающих агрегатов, в частности к дополнительным устройствам, обеспечивающим очистки проточных частей и внутренних каналов газотурбинных двигателей от загрязнений и топливных...
Тип: Изобретение
Номер охранного документа: 0002702782
Дата охранного документа: 11.10.2019
Показаны записи 1-4 из 4.
09.11.2018
№218.016.9b59

Промежуточный корпус компрессора двухконтурного турбореактивного двигателя

Изобретение относится к области турбомашиностроения, а именно к элементам конструкции промежуточных корпусов газотурбинных двигателей. Указанный технический результат достигается тем, что промежуточный корпус турбомашины с разделителем потока, содержащий силовые стойки, размещенные между...
Тип: Изобретение
Номер охранного документа: 0002672015
Дата охранного документа: 08.11.2018
24.01.2020
№220.017.f92c

Устройство отклонения вектора реверсированной тяги турбореактивного двигателя

Изобретение относится к выходным устройствам газотурбинных двигателей авиационного применения, предназначенным для отклонения вектора тяги турбореактивного двигателя летательного аппарата, используемого в полете совместно с управляющими поверхностями летательного аппарата. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002711743
Дата охранного документа: 21.01.2020
03.06.2023
№223.018.7671

Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию

Изобретение относится к области эксплуатации и диагностики авиационных газотурбинных двигателей. Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию включает определение накопленной повреждаемости каждой основной детали двигателя с учетом режимов работы...
Тип: Изобретение
Номер охранного документа: 0002796563
Дата охранного документа: 25.05.2023
16.06.2023
№223.018.7c41

Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию

Изобретение относится к области диагностирования технического состояния авиационных газотурбинных двигателей с учетом конкретных условий эксплуатации. Техническим результатом, достигаемым при использовании заявленного способа, является более полное использование потенциальных возможностей...
Тип: Изобретение
Номер охранного документа: 0002742321
Дата охранного документа: 04.02.2021
+ добавить свой РИД