×
02.10.2019
219.017.d132

Результат интеллектуальной деятельности: Двухконтурный газотурбинный двигатель

Вид РИД

Изобретение

Аннотация: Изобретение относится к газотурбинным двигателям, а именно к системам наддува опор. Известный двухконтурный газотурбинный двигатель, содержащий систему наддува опор, включающую полости наддува опор и предмасляные полости компрессора низкого давления и компрессора высокого давления, полость наддува опор и предмасляные полости турбины, клапан суфлирования компрессора, клапан суфлирования турбины, питающий воздуховод, выполненный единым для всей системы наддува опор двигателя, сообщенный с клапаном переключения и, по меньшей мере, с двумя входами, разнесенными вдоль газовоздушного тракта, один из входов которого сообщен с одной из ступеней компрессора высокого давления, а другой установлен в газовоздушном тракте за компрессором низкого давления, полости наддува опор компрессора низкого давления и компрессора высокого давления и полость наддува опор турбины воздуховодами сообщены друг с другом и через подвижные уплотнения с газовоздушным трактом двигателя, воздуховод, сообщающий полость наддува компрессора высокого давления и полость наддува турбины, расположен в межвальной зоне, образованной валами высокого и низкого давления, предмасляные полости сообщены с одноименными полостями наддува и полостями маслосистемы через подвижные уплотнения, предмасляные полости компрессоров низкого и высокого давления сообщены воздуховодами с клапаном суфлирования компрессора, а предмасляные полости турбины сообщены воздуховодами с клапаном суфлирования турбины, по предложению, в межвальной зоне полость наддува турбины объединена с предмасляной полостью турбины, клапан суфлирования компрессора и клапан суфлирования турбины своими выходами сообщены с областью низкого давления, при этом отношение газодинамической площади проходного сечения клапана суфлирования компрессора μF к газодинамической площади проходного сечения клапана суфлирования турбины μF равно 0,4…0,7, где μ - коэффициент расхода клапана суфлирования компрессора; F - геометрическая площадь проходного сечения клапана суфлирования компрессора; μ - коэффициент расхода клапана суфлирования турбины; F - геометрическая площадь проходного сечения клапана суфлирования турбины. Для двигателей авиационного назначения клапан суфлирования компрессора и клапан суфлирования турбины своими выходами могут быть сообщены в качестве области низкого давления с окружающей средой, а для двигателей наземного назначения клапан суфлирования компрессора и клапан суфлирования турбины своими выходами могут быть сообщены в качестве области низкого давления с пространством шахты наземной установки (градирни) или с пространством устройства очистки отходящих газов или с пространством устройства с регулируемым уровнем давления. Реализация данного изобретения позволяет повысить ресурс и надежность элементов конструкции двигателя за счет исключения попадания масла в газовоздушный тракт двигателя, исключения образования кокса на горячих элементах конструкции ротора, а также за счет стабильного охлаждения валов роторов холодным воздухом. Также данное изобретение обеспечивает отсутствие паров масла в системе кондиционирования самолета и в системе жизнеобеспечения летчика. 2 з.п. ф-лы, 1 ил.

Изобретение относятся к газотурбинным двигателям, а именно к системам наддува опор, используемым для двигателей авиационного назначения или приводов газоперекачивающих агрегатов или энергоустановок и предназначено для предотвращения попадания масла в газовоздушный тракт двигателя и внутренние полости роторов, что приводит к попаданию паров масла в систему кондиционирования самолета, а также к образованию кокса на горячих элементах конструкции роторов.

Наиболее близким по технической сущности и достигаемому результату является двухконтурный газотурбинный двигатель, содержащий систему наддува опор, включающую полости наддува опор и предмасляные полости компрессора низкого давления и компрессора высокого давления, полость наддува опор и предмасляные полости турбины, клапан суфлирования компрессора, клапан суфлирования турбины, питающий воздуховод, выполненный единым для всей системы наддува опор двигателя сообщенный с клапаном переключения и, по меньшей мере, с двумя входами, разнесенными вдоль газовоздушного тракта, один из входов которого сообщен с одной из ступеней компрессора высокого давления, а другой установлен в газовоздушном тракте за компрессором низкого давления, полости наддува опор компрессора низкого давления и компрессора высокого давления и полость наддува опор турбины воздуховодами сообщены друг с другом и через подвижные уплотнения с газовоздушным трактом двигателя, воздуховод, сообщающий полость наддува компрессора высокого давления и полость наддува турбины, расположен в межвальной зоне, образованной валами высокого и низкого давления, предмасляные полости сообщены с одноименными полостями наддува и полостями маслосистемы через подвижные уплотнения, предмасляные полости компрессоров низкого и высокого давления сообщены воздуховодами с клапаном суфлирования компрессора, а предмасляные полости турбины сообщены воздуховодами с клапаном суфлирования турбины,

/RU №2153590 С1 МПК F02C 7/06 Опубликовано 27.07.2000 г./

Недостатком данного решения является то, что, во-первых, сообщение полости наддува турбины и предмасляной полости турбины через подвижное уплотнение в межвальной зоне предполагает прохождение вдоль валов ротора высокого и низкого давления минимального расхода воздуха, который определяется зазором в подвижном уплотнении. Это может привести к натиранию валов о воздушную среду и как следствие к повышению температуры валов ротора высокого и ротора низкого давления, образующих межвальную зону. Особенно это актуально в случае использования материала валов, который обладает требуемыми прочностными характеристиками, но имеет ограничение по применению при высоких температурах.

Во-вторых, если отсутствует настройка по перепадам давления на клапанах суфлирования компрессора и турбины, которая определяется площадью проходного сечения клапана, то возможны варианты как течения холодного воздуха от компрессора к турбине, так и течения горячего воздуха от турбины к компрессору. Во втором случае это может привести также к перегреву валов, образующих межвальную зону и дополнительно к нагреву масла в масляной полости, поскольку этот горячий воздух из предмасляных полостей через подвижные уплотнения поступает в полости маслосистемы.

Таким образом, нагрев валов ротора высокого и низкого давления и уменьшение их надежности и ресурса возможны за счет натирания вала о воздушную среду при минимальном течении воздуха в межвальной зоне, а также за счет направления течения воздуха в межвальной зоне от опоры турбины к опоре компрессора.

Задача изобретения - повышение ресурса и надежности элементов конструкции валов, а также маслосистемы.

Ожидаемый технический результат - обеспечение расхода воздуха до уровня необходимого для охлаждения валов и гарантированное однонаправленное течение воздуха в межвальной зоне.

Ожидаемый технический результат достигается тем, что известный двухконтурный газотурбинный двигатель, содержащий систему наддува опор, включающую полости наддува опор и предмасляные полости компрессора низкого давления и компрессора высокого давления, полость наддува опор и предмасляные полости турбины, клапан суфлирования компрессора, клапан суфлирования турбины, питающий воздуховод, выполненный единым для всей системы наддува опор двигателя сообщенный с клапаном переключения и, по меньшей мере, с двумя входами, разнесенными вдоль газовоздушного тракта, один из входов которого сообщен с одной из ступеней компрессора высокого давления, а другой установлен в газовоздушном тракте за компрессором низкого давления, полости наддува опор компрессора низкого давления и компрессора высокого давления и полость наддува опор турбины воздуховодами сообщены друг с другом и через подвижные уплотнения с газовоздушным трактом двигателя, воздуховод, сообщающий полость наддува компрессора высокого давления и полость наддува турбины, расположен в межвальной зоне, образованной валами высокого и низкого давления, предмасляные полости сообщены с одноименными полостями наддува и полостями маслосистемы через подвижные уплотнения, предмасляные полости компрессоров низкого и высокого давления сообщены воздуховодами с клапаном суфлирования компрессора, а предмасляные полости турбины сообщены воздуховодами с клапаном суфлирования турбины, по предложению, в межвальной зоне полость наддува турбины объединена с предмасляной полостью турбины, клапан суфлирования компрессора и клапан суфлирования турбины своими выходами сообщены с областью низкого давления, при этом отношение газодинамической площади проходного сечения клапана суфлирования компрессора μКFК к газодинамической площади проходного сечения клапана суфлирования турбины μTFT равно 0,4…0,7, где μК - коэффициент расхода клапана суфлирования компрессора; FК - геометрическая площадь проходного сечения клапана суфлирования компрессора; μT - коэффициент расхода клапана суфлирования турбины; FT - геометрическая площадь проходного сечения клапана суфлирования турбины. Для двигателей авиационного назначения клапан суфлирования компрессора и клапан суфлирования турбины своими выходами могут быть сообщены в качестве области низкого давления с окружающей средой, а для двигателей наземного назначения клапан суфлирования компрессора и клапан суфлирования турбины своими выходами могут быть сообщены в качестве области низкого давления с пространством шахты наземной установки (градирни) или с пространством устройства очистки отходящих газов или с пространством устройства с регулируемым уровнем давления.

Объединение в межвальной зоне полости наддува турбины с предмасляной полостью турбины обеспечивает увеличение расхода воздуха, проходящего вдоль валов, поскольку отсутствует дросселирующее устройство, что, в свою очередь, обеспечивает оптимальное температурное состояние валов роторов высокого и низкого давления, которые образуют межвальную зону.

Сообщение выходов клапанов суфлирования компрессора и турбины с областью низкого давления, например для двигателей авиационного назначения с окружающей средой, а для двигателей наземного назначения с пространством шахты наземной установки (градирни) или с пространством устройства очистки отходящих газов или с пространством устройства с регулируемым уровнем давления, обеспечивает низкое давление в предмасляных полостях компрессоров и турбин, что определяет оптимальный перепад на подвижных уплотнениях, сообщающих предмасляные полости с полостями маслосистемы, что повышает надежность и ресурс самих подвижных уплотнений.

Настройка клапанов суфлирования, а именно выбор отношения газодинамической площади проходного сечения клапана суфлирования компрессора μКFК к газодинамической площади проходного сечения клапана суфлирования турбины μTFT в диапазоне от 0,4 до 0,7 обеспечивает перепад давления на клапане суфлирования компрессора больше, чем перепад давления на клапане суфлирования турбины, тем самым давление в предмасляных полостях турбины однозначно становится меньше, чем в предмасляных полостях компрессоров. И, поскольку предмасляные полости компрессоров через подвижные соединения сообщены с полостями наддува, то во всей гидравлической сети подвода воздуха в систему наддува опор происходит уменьшение потерь давления, таким образом, обеспечивается однозначное течение холодного воздуха от опоры компрессора к опоре турбины вдоль межвальной зоны, что обеспечивает охлаждение валов роторов высокого и низкого давления.

Кроме того поступление холодного воздуха в опору турбины, при котором все особо нагретые элементы конструкции турбины оказываются в области подвода холодного воздуха, благоприятно сказывается на условиях работы турбины, а также дополнительно снижается температура масла в опоре турбины за счет попадания холодного воздуха через подвижные уплотнения в масляную полость турбины.

Настройка величины отношения газодинамической площади проходного сечения клапана суфлирования компрессора μКFК к газодинамической площади проходного сечения клапана суфлирования турбины μTFT в интервале равном 0,4... 0,7, является оптимальным. При установке отношения выше максимального допустимого значения отношения равного (0,7), дальнейшее увеличение эффекта охлаждения валов не достигается, а при значениях отношения минимального, равного (0,4) - устанавливать настройку нецелесообразно, поскольку в этом случае будет повышаться давление в предмасляных полостях компрессоров, и уменьшаться ресурс подвижных уплотнений, сообщающих предмасляные полости компрессоров с полостями маслосистемы.

На рис приведена схема двухконтурного газотурбинного двигателя.

Двухконтурный газотурбинный двигатель содержит компрессор низкого давления 1 с опорами 2 и 3, компрессор высокого давления 4 с опорой 5, турбину высокого давления 6 и турбину низкого давления 7 с опорами 8, 9.

Двигатель также содержит единую централизованную систему наддува опор, каждая из которых включает полости наддува 10 и 11 и предмасляные полости 12 и 13 опор 2 и 3 компрессора низкого давления 1, полость наддува 14 и предмасляную полость 15 опоры 5 компрессора высокого давления 4, полость наддува 16 и предмасляную полость 17 опор 8 и 9 турбин высокого 6 и низкого 7 давления. При этом предмасляные полости 12, 13, 15 сообщены с одноименными полостями наддува 10, 11, 14 через подвижные уплотнения 18, 19, 20. Также система наддува опор содержит питающий воздуховод 21, выполненный единым для всей системы наддува опор двигателя и сообщенный с клапаном переключения 22, по меньшей мере, с двумя входами 23 и 24, разнесенными вдоль газовоздушного тракта 25, вход 23 сообщен с одной из ступенью компрессора высокого давления 4, вход 24 установлен в газовоздушном тракте 25 за компрессором низкого давления 1.

Полости наддува 10, 11, 14 и 16 воздуховодами 26, 27 и 28 сообщены друг с другом. Полости наддува 10, 11 и 14 через подвижные уплотнения 29, 30 и 31 сообщены с газовоздушным трактом двигателя 25. Воздуховод 28, сообщающий полость наддува 14 компрессора высокого давления 4 и полость наддува 16 турбин 6 и 7, расположен в межвальной зоне 32, образованной валом высокого давления 33 и валом низкого давления 34. Причем в межвальной зоне 32 полость наддува 16 турбин 6 и 7 объединена с предмасляной полостью 17 турбин 6 и 7.

Предмасляные полости 12, 13, 15 и 17 сообщены через подвижные уплотнения 35, 36, 37, 38, 39, 40 с маслосистемой 41, а через воздуховоды 42 и 43 с клапаном суфлирования компрессора 44 и с клапаном суфлирования турбины 45 соответственно, выходы которых сообщены с областью низкого давления. При этом отношение газодинамической площади проходного сечения клапана суфлирования компрессора μКFК к газодинамической площади проходного сечения клапана суфлирования турбины μTFT составляет 0,4…0,7.

Двигатель работает следующим образом:

На режимах запуска и «малого газа», когда частота вращения ротора низкого давления составляет 15…40% от его максимального значения, а частота вращения ротора высокого давления составляет 60…80% от своего максимального значения, на входе в компрессор низкого давления 1 и на входе в компрессор высокого давления 4 создается разрежение относительно атмосферы, при этом давление в маслосистеме 41 соответствует атмосферному. Чтобы не допустить попадание масла в газовоздушный тракт двигателя 25 клапан переключения 22 находится в положении, когда единая централизованная система наддува опор через единый питающий воздуховод 21 сообщена с одной из ступенью компрессора высокого давления 23. В результате чего в питающий воздуховод 21 поступает воздух высокого давления и наддувает полость наддува 11 опоры 3 компрессора низкого давления 1. Далее воздух через воздуховоды 26 и 27 направляется в полость наддува 29 опоры 2 компрессора низкого давления 1 и полость наддува 14 опоры 5 компрессора высокого давления 4 и через подвижные уплотнения 18, 19, 20 поступает в предмасляные полости 12, 13, 15, а через подвижные уплотнения 29, 30, 31 в газовоздушный тракт двигателя 25 соответственно. Из предмасляных полостей 12, 13, 15 воздух по воздуховоду 42 поступает в клапан суфлирования компрессора 44 и выбрасывается в окружающую среду, а через подвижные уплотнения 35, 36, 37 поступает в полости маслосистемы 41. При этом по воздуховоду 28 воздух от опоры 5 компрессора высокого давления 4 вдоль межвальной зоны 32, образованной валом ротора высокого давления 33 и валом ротора низкого давления 34, направляется в полость наддува 16 опор 8 и 9 турбин 6 и 7, объединенную с предмасляной полостью 17 турбин 6 и 7, где через подвижные уплотнения 38, 39, 40 поступает в полости маслосистемы 41, а по воздуховоду 43 направляется в клапан суфлирования турбины 45 и выбрасывается в окружающую среду.

Настройка клапанов суфлирования 44 и 45 осуществляется таким образом, чтобы перепад давления на клапане суфлирования компрессора 44 был больше, чем перепад давления на клапане суфлирования турбины 45. Эта настройка обеспечивается подбором проходной площади клапанов суфлирования.

В этом случае в предмасляных полостях 12 и 13 компрессора низкого давления 1 и предмасляной полости 15 компрессора высокого давления 4 устанавливается давление выше, чем давление в предмасляной полости 17 турбин 6 и 7, а поскольку предмасляные полости 12, 13 и 15 сообщены через подвижные уплотнения 18, 19 и 20 с полостями наддува 10, 11 и 14, то во всей гидравлической сети снижаются протечки воздуха в газовоздушный тракт 25, а также уменьшаются потери давления наддува опор, что при меньшем давлении в предмасляной полости 17 турбин 6 и 7, объединенной с полостью наддува 16, обеспечивает увеличение расхода воздуха, проходящего по межвальной зоне 32.

Аналогично осуществляется наддув опор на рабочих режимах. При этом клапан переключения 22 находится в положении, когда питающий воздуховод 21 единой централизованной системы наддува опор сообщен с входом 24, установленным в газовоздушном тракте 25 за компрессором низкого давления 1, уровень давления которого достаточен, чтобы обеспечить наддув опор и исключить выброс масла в газовоздушный тракт двигателя 25, поскольку частота вращения ротора низкого давления и частота вращения ротора высокого давления выравниваются и составляют 90…100% от максимальных значений и нет разрежения на входе в компрессор низкого давления 1 и компрессор высокого давления 4. При этом воздух, который поступает в питающий воздуховод 21 и далее в полости наддува 10, 11, 14и 16 достаточно холодный, что обеспечивает прохождение холодного воздуха вдоль межвальной зоны 32 и охлаждение валов 33 и 34 роторов высокого и низкого давления, а также обеспечивает поступление этого воздуха в предмасляную полость 17 турбин 6 и 7, а через подвижные уплотнения 38, 39 и 40 в полости маслосистемы 41, где дополнительно снижается температура масла в опоре турбины за счет вдува более холодного воздуха.

Реализация данного изобретения позволяет повысить ресурс и надежность элементов конструкции двигателя за счет исключения попадания масла в газовоздушный тракт двигателя, исключения образования кокса на горячих элементах конструкции ротора, а также за счет стабильного охлаждения валов роторов холодным воздухом. Также данное изобретение обеспечивает отсутствие паров масла в системе кондиционирования самолета и в системе жизнеобеспечения летчика.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 110.
29.12.2017
№217.015.f19b

Рабочее колесо второй ступени ротора компрессора высокого давления (квд) турбореактивного двигателя (варианты), диск рабочего колеса ротора квд, лопатка рабочего колеса ротора квд, лопаточный венец рабочего колеса ротора квд

Группа изобретений, связанных единым творческим замыслом, относится к области авиадвигателестроения. Рабочее колесо второй ступени вала ротора КВД ТРД содержит диск и образующие лопаточный венец рабочие лопатки. Диск включает ступицу с центральным отверстием, полотно и обод. Лопатка содержит...
Тип: Изобретение
Номер охранного документа: 0002636998
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f704

Лопатка турбомашины

Изобретение относится к области турбомашиностроения, а именно к конструкции лопатки турбомашины, в частности осевого компрессора газотурбинного двигателя. Лопатка турбомашины выполнена в виде пера с прикрепленными к нему входной и выходной кромками, выполненными из материала с пористой...
Тип: Изобретение
Номер охранного документа: 0002639264
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.f741

Устройство для смазки подшипниковой опоры ротора турбомашины

Изобретение относится к области авиадвигателестроения и касается устройства для смазки опорного подшипника ротора турбомашины, в частности авиационного двухроторного газотурбинного двигателя самолета (ГТД). Патрубок подвода масла выполнен из двух сообщающихся между собой трубопроводов,...
Тип: Изобретение
Номер охранного документа: 0002639262
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.f7a0

Узел уплотнения газовой турбины

Изобретение относится к авиадвигателестроению и может быть использовано в конструкциях узла уплотнения турбин авиационных газотурбинных двигателей и газотурбинных установках наземного применения. Узел уплотнения газовой турбины содержит закрепленный на статоре турбины кольцевой корпус (1) со...
Тип: Изобретение
Номер охранного документа: 0002639444
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.f7bd

Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин

Изобретение относится к области стендовых испытаний деталей и корпусов турбомашин, в частности авиационного двигателестроения, а именно к конструкции стендовых силовых рам для статических и циклических испытаний. Универсальная модульная портальная силовая рама содержит силовые стойки,...
Тип: Изобретение
Номер охранного документа: 0002639451
Дата охранного документа: 21.12.2017
20.01.2018
№218.016.15df

Коробка двигательных агрегатов (кда) турбореактивного двигателя, узел кда турбореактивного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения. Коробка двигательных агрегатов КДА ТРД содержит корпус и крышку. Корпус КДА размещен на промежуточном корпусе двигателя. На корпусе КДА смонтированы центробежный топливоподкачивающий насос, суфлер центробежный и насос плунжерный. Со...
Тип: Изобретение
Номер охранного документа: 0002635227
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.15ec

Коробка двигательных агрегатов (кда) турбореактивного двигателя (трд), корпус кда, главная коническая передача (гкп) кда, ведущее колесо гкп кда, ведомое колесо гкп кда, входной вал кда

Группа изобретений относится к области авиадвигателестроения. Коробка двигательных агрегатов КДА ТРД содержит корпус и крышку, выполненных с уступообразным плоским дном и цилиндрическими стенками переменной кривизны. Корпус КДА седлообразно размещен на промежуточном корпусе двигателя. Корпус...
Тип: Изобретение
Номер охранного документа: 0002635125
Дата охранного документа: 09.11.2017
13.02.2018
№218.016.1fa9

Поворотное осесимметричное сопло турбореактивного двигателя

Изобретение относится к области авиационного двигателестроения, в частности к конструкции поворотного осесимметричного сопла турбореактивного двигателя. Сопло содержит неподвижный корпус со сферической полой законцовкой и поворотное устройство, установленное с возможностью поворота относительно...
Тип: Изобретение
Номер охранного документа: 0002641425
Дата охранного документа: 17.01.2018
17.02.2018
№218.016.2a8e

Рабочее колесо ротора компрессора высокого давления газотурбинного двигателя

Изобретение относится к области турбомашиностроения, в частности, может быть использовано в конструкции рабочих колес осевых компрессоров газотурбинных двигателей. Рабочее колесо ротора компрессора высокого давления газотурбинного двигателя содержит диск с кольцевым пазом и лопатки. Между...
Тип: Изобретение
Номер охранного документа: 0002642976
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2abe

Клапанный узел канала перепуска компрессора

Изобретение относится к газотурбинным двигателям, в частности к клапанным устройствам для газотурбинных двигателей, и может найти применение в авиадвигателестроении. Клапанный узел канала перепуска компрессора, содержащий корпус компрессора, внешний и внутренний корпуса канала перепуска с...
Тип: Изобретение
Номер охранного документа: 0002642991
Дата охранного документа: 29.01.2018
Показаны записи 1-10 из 344.
10.01.2013
№216.012.196f

Выходное устройство турбины авиационного газотурбинного двигателя

Изобретение относится к элементам конструктивной связи между корпусом турбины авиационного газотурбинного двигателя и ее внутренними элементами, а именно к конструкции выходного устройства турбины. Выходное устройство турбины содержит полые профилированные стойки корпуса, размещенные в...
Тип: Изобретение
Номер охранного документа: 0002472003
Дата охранного документа: 10.01.2013
27.01.2013
№216.012.2078

Сопловой аппарат турбомашины с конвективно-пленочным охлаждением

Изобретение относится к турбостроению и может быть использовано в высокотемпературных газовых турбинах. Сопловой аппарат турбомашины с конвективно-пленочным охлаждением содержит профили лопаток, соединенные полками, участок рассеивания, в виде углубления с внутренней стороны полок,...
Тип: Изобретение
Номер охранного документа: 0002473813
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.23ed

Выходное устройство турбины

Выходное устройство турбины содержит профилированные стойки корпуса, размещенные в проточной части за рабочим колесом последней ступени турбины. У стоек средние линии выходных участков профилей направлены вдоль продольной оси турбины. Средние линии входных участков профилей стоек повернуты к...
Тип: Изобретение
Номер охранного документа: 0002474699
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.23f9

Способ регулирования подачи топлива в камеру сгорания газотурбинного двигателя и система для его осуществления

Изобретение относится к области управления работой газотурбинных двигателей. Способ регулирования, реализуемый системой регулирования, заключается в формировании расхода топлива через, по крайней мере, два дозатора в группы форсунок в зависимости от режима работы двигателя при использовании...
Тип: Изобретение
Номер охранного документа: 0002474711
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2b93

Лопатка турбомашины

Изобретение относится к охлаждению осевой турбомашины и, в частности, к усовершенствованию охлаждения профильной части лопатки турбины высокого давления. Лопатка турбомашины содержит газодинамический профиль, ограниченный внешними выпуклой и вогнутой поверхностями, канал вдоль входной кромки...
Тип: Изобретение
Номер охранного документа: 0002476682
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2bc9

Подшипник скольжения с наноструктурным антифрикционным керамическим покрытием

Изобретение относится к подшипникам скольжения и может быть использовано в авиационной, газонефтедобывающей, автомобильной и других областях промышленности. Подшипник скольжения включает корпус и установленный на корпусе, по меньшей мере, один элемент скольжения, по меньшей мере, поверхности...
Тип: Изобретение
Номер охранного документа: 0002476736
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c3a

Способ контроля технического состояния и обслуживания двухроторного газотурбинного двигателя при его эксплуатации

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности двухконтурных, к контролю технического состояния во время их эксплуатации для принятия решений по их обслуживанию и дальнейшей эксплуатации. В известном способе контроля технического состояния в качестве...
Тип: Изобретение
Номер охранного документа: 0002476849
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2e58

Энергосберегающий подшипник скольжения

Изобретение относится к подшипникам скольжения и может быть использовано в авиакосмической, нефтедобывающей, нефтеперекачивающей, нефтеобрабатывающей и иных областях промышленности. Подшипник скольжения включает корпус и смонтированные на корпусе элементы скольжения, поверхности скольжения...
Тип: Изобретение
Номер охранного документа: 0002477395
Дата охранного документа: 10.03.2013
20.04.2013
№216.012.375d

Элемент охлаждаемой лопатки турбомашины

Изобретение относится к охлаждению газотурбинного двигателя и, в частности, к усовершенствованию охлаждения профильной части и полок лопатки турбины высокого давления. Элемент охлаждаемой лопатки турбомашины содержит канал для охлаждающего воздуха, выполненный внутри лопатки в направлении вдоль...
Тип: Изобретение
Номер охранного документа: 0002479726
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.37ba

Защитная маскирующая система для летательного аппарата, подвергающегося радиолокационному облучению

Изобретение относится к средствам защиты и маскирования объектов от систем радиолокационного облучения и опознавания, захвата, автоматического сопровождения и целеуказания, работающих в радиолокационном диапазоне электромагнитного спектра. Защитная маскирующая система для летательного аппарата,...
Тип: Изобретение
Номер охранного документа: 0002479819
Дата охранного документа: 20.04.2013
+ добавить свой РИД