×
10.07.2019
219.017.aa3d

Результат интеллектуальной деятельности: ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ

Вид РИД

Изобретение

Аннотация: Турбореактивный двигатель содержит газогенератор, сопло и форсажное устройство с корпусами, образующими корпус двигателя. Форсажное устройство размещено по периметру сопла и выполнено в виде кольцевой камеры с соединенными с ней газодинамическими резонаторами и установленной относительно них с зазором задней стенкой, соединенной с соплом и выполненной с отверстиями, соосными газодинамическим резонаторам. Каждый газодинамический резонатор выполнен в виде профилированного элемента, преимущественно чашеобразной формы, направленного своей вогнутой поверхностью к отверстиям в задней стенке, и кольцевого сопла, образованного кромками профилированного элемента и соосного ему отверстия в задней стенке. В местах отверстий на задней стенке форсажного устройства закреплены эжекторные насадки. Изобретение позволяет увеличить удельную тягу и экономичность двигателя без увеличения габаритов и веса конструкции, а также при неизменном расходе. 4 з.п. ф-лы, 5 ил.

Изобретение относится к области авиадвигателестроения и может быть использовано при создании реактивных двигателей, предназначенных для полета летательных аппаратов в атмосфере.

Известен турбореактивный двигатель, содержащий газогенератор, сопло и форсажное устройство, расположенное между газогенератором и соплом (Г.С.Скубачевский. Авиационные газотурбинные двигатели. Конструкция и расчет деталей. М.: Машиностроение, 1969 г., стр.5, рис.1.01).

Известен также двухконтурный турбореактивный двигатель, содержащий внутренний контур, образованный последовательно соединенными газогенератором и соплом, и наружный контур, образованный корпусами газогенератора и сопла и наружным корпусом двигателя, с установленным в нем форсажным устройством (Теория двухконтурных турбореактивных двигателей под редакцией С.М.Шляхтенко и В.А.Сосунова, М.: Машиностроение, 1979 г., стр.17, рис.В).

Недостатком известных двигателей является низкая экономичность на форсированных режимах работы каждого из них, ввиду сгорания топлива при низком давлении в форсажной камере сгорания. Известные двигатели не обеспечивают достаточного запаса форсирования тяги без существенного изменения габаритов, веса конструкции и увеличения необходимого расхода воздуха.

Задачей, на решение которой направлено предлагаемое изобретение, является повышение удельной тяги и экономичности двигателя без увеличения габаритов и веса конструкции, а также при неизменном расходе воздуха.

Задача решается тем, что в турбореактивном двигателе, содержащем газогенератор, сопло и форсажное устройство, последнее размещено по периметру сопла и выполнено в виде кольцевой камеры с соединенными с ней газодинамическими резонаторами и установленной относительно них с зазором задней стенкой, соединенной с соплом и выполненной с отверстиями, соосными газодинамическим резонаторам, причем каждый газодинамический резонатор выполнен в виде профилированного элемента, преимущественно чашеобразной формы, направленного своей вогнутой поверхностью к отверстиям в задней стенке и кольцевого сопла, образованного кромками профилированного элемента и соосного ему отверстия в задней стенке.

Кроме того, в изобретении может иметь место следующее:

- в местах отверстий на задней стенке форсажного устройства могут быть закреплены эжекторные насадки;

- двигатель выполнен двухконтурным с наружным контуром, образованным корпусами газогенератора, сопла и наружным корпусом двигателя, при этом форсажное устройство размещено в наружном контуре двигателя с образованием канала подвода вторичного воздуха к газодинамическим резонаторам, расположенным между кольцевой камерой форсажного устройства, корпусом сопла и наружным корпусом двигателя, причем форсажное устройство снабжено, по меньшей мере, одним фронтовым горелочным устройством, установленным в его кольцевой камере, а каждый газодинамический резонатор размещен в полом обтекателе, закрепленном на кольцевой камере посредством пилона с внутренним воздушным каналом, соединенным своим входом с каналом подвода вторичного воздуха к газодинамическим резонаторам, а выходом - с кольцевыми соплами газодинамических резонаторов;

- для двигателей с изменяемым вектором тяги, сопло выполнено поворотным, форсажное устройство жестко закреплено на поворотном сопле, причем наружный корпус двигателя в месте расположения форсажного устройства выполнен из неподвижной и подвижной частей, соединенных между собой через уплотнительный элемент с возможностью перемещения подвижной части вдоль внутренней поверхности неподвижной части.

Выполнение форсажного устройства в виде кольцевой камеры с соединенными с ней газодинамическими резонаторами обеспечивает повышение удельной тяги двигателя за счет реализации в форсажном устройстве изохорического, вплоть до детонационного, термодинамического цикла с высокой частотой повторений импульсов. Такое выполнение форсажного устройства позволяет повысить удельную тягу двигателя и, благодаря его небольшим габаритам, «вписать» его в заданные значения диаметра наружного корпуса газотурбинного двигателя, а также в ряде случаев, за счет уменьшения длины форсажного устройства, сократить в целом длину двигателя.

Размещение форсажного устройства по периметру сопла позволяет разместить все необходимые конструктивные элементы форсажного устройства в заданном объеме двигателя, не увеличивая в целом его габариты.

Наличие задней стенки, соединенной с соплом и выполненной с отверстиями, соосными газодинамическим резонаторам обеспечивает выполнение выходных отверстий резонаторов, технологически упрощая изготовление устройства и позволяя не выходить за рамки заданных значений массово-габаритных параметров.

Выполнение каждого газодинамического резонатора в виде профилированного элемента, преимущественно чашеобразной формы, направленного своей вогнутой поверхностью к отверстиям в задней стенке, и кольцевого сопла, образованного кромками профилированного элемента и соосного ему отверстия в задней стенке форсажного устройства обеспечивает образование автоколебательных процессов с высокой частотой импульсов.

Крепление эжекторных насадков в местах отверстий на задней стенке форсажного устройства организует дополнительный подвод воздуха из окружающей среды для еще большего увеличения тяги двигателя.

Для двухконтурных турбореактивных двигателей размещение горелочных устройств в кольцевой камере форсажного устройства организует дополнительную подачу топлива для регулирования детонационного процесса, протекающего в форсажном устройстве.

Размещение форсажного устройства в наружном контуре двухконтурного турбореактивного двигателя с образованием канала подвода вторичного воздуха к газодинамическим резонаторам и размещение газодинамических резонаторов в полых обтекателях, закрепленных на кольцевой камере посредством пилонов с внутренним воздушным каналом, соединенным своим входом с каналом подвода вторичного воздуха к газодинамическим резонаторам, а выходом - с кольцевым соплом, обеспечивает организацию подачи вторичного воздуха к резонаторам, и, кроме того, способствует охлаждению их профилированных стенок в процессе работы двигателя.

Возможность использования форсажного устройства заявленного типа на двигателях с управляемым вектором тяги обеспечивается жестким креплением форсажного устройства на поворотном сопле, а также выполнением наружного корпуса двигателя в месте расположения форсажного устройства из неподвижной и подвижной частей, соединенных между собой через уплотнительный элемент с возможностью перемещения подвижной части вдоль внутренней поверхности неподвижной части.

Изобретение поясняется чертежами, где на фиг.1 представлен одноконтурный заявленный ТРД (фрагмент), на фиг 2 представлен заявленный ТРД с двумя контурами, на фиг 3 - (укрупненно) форсажное устройство заявленного ГТД, на фиг.4 - вариант выполнения ГТД с изменяемым вектором тяги, на фиг.5 - схема поворота форсажного устройства с поворотным соплом на угол ±£ с указанием направления вектора тяги.

Турбореактивный двигатель содержит газогенератор 1, сопло 2 и форсажное устройство 3, размещенное по периметру сопла 2. Корпус газогенератора 1 сопряжен с корпусом форсажного устройства 3, образуя единый наружный корпус двигателя с размещенным в нем соплом, при этом газогенератор 1 своим выходом подключен как к соплу 2, так и к форсажному устройству 3. В зависимости от типа двигателя, а именно параметров газа за турбиной величина критического сечения традиционного сопла может варьироваться в широких пределах.

Для двухконтурных турбореактивных двигателей, кроме газогенератора 1 и сопла 2, образующих внутренний контур двигателя, двигатель содержит наружный контур 4 двигателя, образованный корпусами газогенератора 1 и сопла 2 и наружным корпусом 5 двигателя, при этом форсажное устройство 3 расположено в наружном контуре 4. Форсажное устройство 3 выполнено в виде кольцевой камеры 6, соединенных с ней газодинамических резонаторов 7 и задней стенки 8, выполненной с отверстиями по числу газодинамических детонационных резонаторов 7. Задняя стенка 8 соединена с корпусом сопла 2 и с наружным корпусом 4 двигателя (для двухконтурного двигателя) элементами соединения 9, которые при выполнении их гибкими могут выполнять роль компенсаторов теплового расширения.

Для двухконтурного двигателя форсажное устройство расположено в наружном контуре 4 так, что кольцевая камера 6 образует с наружным корпусом 5 двигателя и корпусом сопла 2 канал 10 подвода вторичного воздуха к газодинамическим детонационным резонаторам 7.

Каждый газодинамический резонатор 7 выполнен в виде профилированного элемента 11, преимущественно чашеобразной формы, образующего открытую полость 12, и кольцевого сопла 13, образованного кромками профилированного элемента и соосного ему отверстия в задней стенке 8. Для двухконтурного двигателя газодинамические резонаторы 7 размещены в обтекателях 14, закрепленных на кольцевой камере 6 посредством пилонов 15, во внутренней полости которых выполнены воздушные каналы, сообщающие канал 10 с кольцевыми соплами 13 резонаторов 7.

На задней стенке 8 форсажного устройства 3 в местах отверстий по числу газодинамических детонационных резонаторов 7 закреплены эжекторные насадки 16.

В кольцевой камере 6 установлено, по меньшей мере, одно горелочное устройство 17 (в представленных примерах конструктивного выполнения заявленного устройства (фиг.2-5) в кольцевой камере установлено два фронтовых горелочных устройства 17).

Устройство может быть снабжено механизмом поворота сопла 2 с форсажным устройством 3, выполненное в виде гидроцилиндров 18. Для обеспечения возможности поворота сопла 2 с форсажным устройством 5 наружный корпус 4 двигателя состоит из подвижной и неподвижной частей 19 и 20, соединенных между собой через уплотнительный элемент 21. Подвижная часть 19 корпуса 4 установлена с возможностью перемещения вдоль внутренней поверхности 22 неподвижной части 20 корпуса 4. Корпус сопла 2 выполнен с неподвижным кольцевым опорным элементом со сферической наружной поверхностью 23. Подвижная часть 24 корпуса сопла 2 соединена со сферической поверхностью 23 через уплотнительный элемент 25 с возможностью перемещения вдоль нее.

Работа двигателя осуществляется следующим образом.

Одна часть воздуха поступает в камеру сгорания газогенератора 1, где осуществляется сжигание топлива при постоянном давлении Р=const. Последующее расширение продуктов сгорания осуществляется в реактивном сопле 2. Другая часть воздуха поступает на вход форсажного устройства 3, выполняющего роль реактивного сопла. Применение газодинамических резонаторов с профилированными элементами чашеобразной формы, в которых реализуется автоколебательный процесс, аналогичный широкоизвестному эффекту Гартмана-Шпренгера, приводит к аномально высокому росту давления и температуры соответственно. Таким образом, эффективность предлагаемого форсажного устройства не уступает эффективности идеального сопла Лаваля.

В двухконтурном турбореактивном двигателе на форсированных режимах работы в кольцевую камеру 6 вместе с воздухом наружного контура 3 через горелочные устройства 17 поступает топливо. В этой камере, являющейся по сути камерой конверсии, осуществляется предварительная подготовка топлива к детонационному сгоранию, а именно разложение компонентов топливовоздушной смеси на химически активные составляющие.

Подготовленная смесь через кольцевые сопла 13 поступает в газодинамические резонаторы 7, которые служат для возбуждения детонации и осуществления подвода тепла в детонационных волнах. В резонаторах 7 возникает автоколебательный процесс, в котором с высокой частотой сгорают химически активные составляющие топливовоздушной смеси, причем это сгорание практически мгновенное (взрывное), сопровождающееся значительным повышением температуры и давления продуктов сгорания, значительно превышающим уровни, достигаемые в классическом резонаторе Гартмана-Шпренгера. Этот процесс обеспечивает подвод тепла с эффективностью цикла V=const при более высоких степенях повышения давления, чем в цикле Р=const.

Взаимодействуя с внутренней поверхностью профилированного элемента 11 как с препятствием, детонационная волна в процессе соударения и отражения передает элементу 11 резонатора 7 импульс от сил избыточного давления. Осуществляется взрывное воздействие детонационной волны на внутреннюю поверхность профилированного элемента 11, создающего тягу и именуемого «тяговой стенкой».

После отражения от тяговой стенки детонационная волна превращается в отраженную ударную волну, которая уже по сгоревшей смеси движется в сторону выхода, увлекая за собой продукты сгорания. Сгоревшая смесь выбрасывается в окружающую атмосферу, и после опорожнения рабочей полости (открытой полости 12) возникает волна разрежения, которая обеспечивает всасывание новой порции свежей топливоздушной смеси. Далее цикл повторяется.

При установке эжекторных насадков на задней стенке форсажного устройства, вследствие того, что за отраженной волной всегда имеется веер волн разрежения, в выходную газовую струю через каналы 26 обеспечивается подсос воздуха из окружающей среды, что приводит к еще большему увеличению тяги. При этом сам двигатель работает точно также как описано выше.

Для отклонения направления вектора тяги, жестко закрепленное на сопле 2 форсажное устройство 3 с помощью гидроцилиндров 18 совместно с соплом 2 поворачивается на угол £ (фиг.4). При этом уплотнительный элемент 21, соединяющий подвижную и неподвижную части 19 и 20 наружного корпуса 4 двигателя, перемещается вдоль внутренней поверхности 22 неподвижной части 20 корпуса 4, а уплотнительный элемент 25, соединяющий подвижную часть 24 корпуса сопла 2 со сферической наружной поверхностью 23 неподвижного опорного элемента поворотного сопла 2, перемещается вдоль сферической поверхности 23.

Изобретение позволяет, не увеличивая габариты и вес конструкции турбореактивного двигателя, а в ряде случаев и сокращая длину двигателя, а также при неизменном расходе воздуха, осуществлять изменения в цикле работы двигателя на форсажных режимах, расширяя диапазон форсирования его тяги и повышая его экономичность.

Изобретение открывает возможность модификации двигателей предыдущих поколений.

1.Турбореактивныйдвигатель,содержащийгазогенератор,соплоифорсажноеустройствоскорпусами,образующимикорпусдвигателя,отличающийсятем,чтофорсажноеустройстворазмещенопопериметрусоплаивыполненоввидекольцевойкамерыссоединеннымиснейгазодинамическимирезонаторамииустановленнойотносительнонихсзазоромзаднейстенкой,соединеннойссопломивыполненнойсотверстиями,сооснымигазодинамическимрезонаторам,причемкаждыйгазодинамическийрезонаторвыполненввидепрофилированногоэлемента,преимущественночашеобразнойформы,направленногосвоейвогнутойповерхностьюкотверстиямвзаднейстенкеикольцевогосопла,образованногокромкамипрофилированногоэлементаисоосногоемуотверстиявзаднейстенке.12.Двигательпоп.1,отличающийсятем,чтовместахотверстийназаднейстенкефорсажногоустройствазакрепленыэжекторныенасадки.23.Двигательпоп.1или2,отличающийсятем,чтоонвыполнендвухконтурнымснаружнымконтуром,образованнымкорпусамигазогенератора,соплаинаружнымкорпусомдвигателя,причемфорсажноеустройстворазмещеновнаружномконтуредвигателя.34.Двигательпоп.3,отличающийсятем,чтофорсажноеустройствоснабжено,поменьшеймере,однимфронтовымгорелочнымустройством,установленнымвегокольцевойкамере,причемфорсажноеустройстворазмещеновнаружномконтуредвигателясобразованиемканалаподводавторичноговоздухакгазодинамическимрезонаторам,расположенныммеждукольцевойкамеройфорсажногоустройства,корпусомсоплаинаружнымкорпусомдвигателя,приэтомкаждыйгазодинамическийрезонаторразмещенвполомобтекателе,закрепленномнакольцевойкамерепосредствомпилонасвнутреннимвоздушнымканалом,соединеннымсвоимвходомсканаломподводавторичноговоздухакгазодинамическимрезонаторам,авыходом-скольцевымисопламигазодинамическихрезонаторов.45.Двигательпоп.4,отличающийсятем,чтодлядвигателейсизменяемымвекторомтягисопловыполненоповоротным,форсажноеустройствожесткозакрепленонаповоротномсопле,причемнаружныйкорпусдвигателявместерасположенияфорсажногоустройствавыполненизнеподвижнойиподвижнойчастей,соединенныхмеждусобойчерезуплотнительныйэлементсвозможностьюперемещенияподвижнойчастивдольвнутреннейповерхностинеподвижнойчасти.5
Источник поступления информации: Роспатент

Показаны записи 251-260 из 295.
29.04.2019
№219.017.413c

Сигнализатор наличия металлических частиц в системе смазки

Сигнализатор предназначен для сигнализации о наличии металлических частиц в системе смазки газотурбинных двигателей и позволяет диагностировать начало разрушения двигателя при появлении стружки в масле. Сигнализатор содержит пакет кольцевых электропроводящих пластин, разделенных...
Тип: Изобретение
Номер охранного документа: 0002315900
Дата охранного документа: 27.01.2008
18.05.2019
№219.017.588a

Охлаждаемая лопатка турбомашины

Охлаждаемая лопатка турбомашины содержит перо с полостью и каналом охлаждения входной кромки пера, сообщенным чередующимися по его длине входными и выходными каналами соответственно с полостью пера и с окружающим пространством со стороны спинки профиля пера. Выходные каналы выполнены...
Тип: Изобретение
Номер охранного документа: 0002362020
Дата охранного документа: 20.07.2009
20.05.2019
№219.017.5cdb

Способ охлаждения соплового аппарата турбины высокого давления (твд) газотурбинного двигателя (гтд) и сопловый аппарат твд гтд (варианты)

Способ охлаждения соплового аппарата турбины высокого давления осуществляют путем охлаждения наиболее теплонапряженные элементы в лопатках и полках сопловых блоков соплового аппарата двумя потоками воздуха - вторичного потока воздуха камеры сгорания и воздухом от воздуховоздушного...
Тип: Изобретение
Номер охранного документа: 0002688052
Дата охранного документа: 17.05.2019
24.05.2019
№219.017.5e7b

Способ эксплуатации осесимметричного поворотного сопла турбореактивного двигателя

Изобретение относится к авиационным турбореактивным двигателям, а именно к эксплуатации осесимметричного поворотного сопла, обеспечивающего у двигателя изменения тяги по направлению. Способ эксплуатации осесимметричного поворотного сопла турбореактивного двигателя, у которого ось поворота...
Тип: Изобретение
Номер охранного документа: 0002688609
Дата охранного документа: 21.05.2019
24.05.2019
№219.017.5eb2

Реверсивное устройство турбореактивного двигателя

Реверсивное устройство турбореактивного двигателя, содержащее устройство для перекрытия газового потока в корпусе двигателя, размещенного в мотогондоле самолета, содержит выхлопные каналы, установленные по направлению движения газового потока, по окружности в кольцевой полости, клапаны...
Тип: Изобретение
Номер охранного документа: 0002688642
Дата охранного документа: 21.05.2019
24.05.2019
№219.017.5ee0

Многорежимный газотурбинный двигатель твердого топлива

Многорежимный газотурбинный двигатель твердого топлива содержит твердотопливный заряд и корпус, образующий газовоздушный тракт двигателя. В газовоздушном тракте двигателя последовательно размещены компрессор, камера сгорания, турбина, выходное устройство. Твердотопливный заряд размещен вне...
Тип: Изобретение
Номер охранного документа: 0002688612
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.66a8

Плоское сопло турбореактивного двигателя

Изобретение относится к области авиационного двигателестроения, а именно к конструкции сопел турбореактивных двигателей. Плоское сопло турбореактивного двигателя содержит две неподвижные боковые стенки и установленные между ними верхнюю и нижнюю подвижные створки. В каждую подвижную створку...
Тип: Изобретение
Номер охранного документа: 0002374477
Дата охранного документа: 27.11.2009
29.05.2019
№219.017.688b

Магнитожидкостное уплотнение вала

Изобретение относится к конструкциям уплотнений между подвижными относительно одна другой поверхностями. Магнитожидкостное уплотнение вала содержит корпус из немагнитного материала с кольцевой магнитной системой внутри него, включающей постоянный магнит с полюсными приставками и жестко...
Тип: Изобретение
Номер охранного документа: 0002451225
Дата охранного документа: 20.05.2012
29.05.2019
№219.017.6a11

Способ управления газотурбинным двигателем с форсажной камерой сгорания и система для его осуществления

Группа изобретений относится к области авиационного двигателестроения. Управление газотурбинным двигателем (ГТД) с форсажной камерой сгорания (ФКС) осуществляется по одному из трех контуров управления, на каждом из контуров задается индивидуальная программа управления, которая корректируется по...
Тип: Изобретение
Номер охранного документа: 0002466287
Дата охранного документа: 10.11.2012
09.06.2019
№219.017.769d

Масляная система авиационного газотурбинного двигателя

Масляная система авиационного газотурбинного двигателя относится к области авиадвигателестроения, преимущественно к маслосистеме авиационного газотурбинного двигателя для маневренных самолетов, и позволяет замедлить снижение уровня масла в маслобаке авиационного газотурбинного двигателя...
Тип: Изобретение
Номер охранного документа: 0002273746
Дата охранного документа: 10.04.2006
+ добавить свой РИД