×
29.05.2019
219.017.688b

МАГНИТОЖИДКОСТНОЕ УПЛОТНЕНИЕ ВАЛА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002451225
Дата охранного документа
20.05.2012
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к конструкциям уплотнений между подвижными относительно одна другой поверхностями. Магнитожидкостное уплотнение вала содержит корпус из немагнитного материала с кольцевой магнитной системой внутри него, включающей постоянный магнит с полюсными приставками и жестко закрепленными на них щетками из нескольких рядов упругих магнитопроводимых металлических проволок, охватывающих вал и образующих с ним зазор, заполненный магнитной жидкостью. На полюсных приставках со стороны вала выполнены кольцевые пазы прямоугольного сечения, в каждой щетке упругие магнитопроводимые металлические проволоки выполнены плотно прилегающими друг к другу, закрепление щеток на полюсной приставке выполнено на боковой поверхности паза, а между другой стороной щетки и другой боковой поверхностью паза образован зазор, при этом свободные концы проволок щеток радиально направлены к валу. Изобретение позволяет увеличить срок эксплуатации магнитожидкостного уплотнения, а также снизить требования к скорости вращения вала. 4 з.п. ф-лы, 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к конструкциям уплотнений между подвижными относительно одна другой поверхностями и может быть использовано в машиностроении, авиадвигателестроении и других областях техники.

В современных газотурбинных двигателях для снижения утечек воздуха обычно устанавливают лабиринтные уплотнения, которые бесконтактные и поэтому имеют большой ресурс, но из-за наличия зазора между роторной и статорной частями лабиринтные уплотнения характеризуются повышенными утечками воздуха по сравнению с контактными уплотнениями. Через контактные уплотнения проникает воздуха примерно в 10 раз меньше по сравнению с лабиринтными уплотнениями. Контактные уплотнения, например углеграфитовые, обычно применяют в масляных полостях опор, где сравнительно низкие температуры (до 300-350°C) и небольшие окружные скорости вращения (до 130 м/с). В более тяжелых условиях эксплуатации контактные уплотнения быстро изнашиваются и выходят из строя.

В настоящее время большое распространение получили щеточные уплотнения, расход воздуха через которые в 3-6 раз ниже, чем через лабиринтные. В тоже время щеточные уплотнения в силу упругости проволоки обеспечивают надежный контакт роторной и статорной частей уплотнения. В этом случае износ щеточных уплотнений будет значительно меньше, чем у контактных, а ресурс - более продолжительным.

Известны щеточные уплотнения RU 2232324, RU 2293894, RU 2016304, в корпусе которых под углом к оси вращения вала установлены пакеты щеток из тонких металлических проволок, размещенных между торцевыми кольцевыми пластинами, образующими сплошную кольцевую щетку. Щетки жестко закреплены между пластинами и радиально выступают из пластин в направлении вращения под углом 45°-60°. В изобретении RU 2293894 уплотняющие элементы выполнены изогнутыми с образованием двух ветвей, разделенных расположенной между ними проставкой. В таких уплотнениях в результате постоянного по величине натяга в контакте щеток с вращающимся валом происходит износ контактирующих проволок. При этом в зоне контакта повышается температура, что приводит к срабатыванию материала щеток по контактирующей поверхности. Поэтому в нескольких изобретениях предлагаются различные технические решения, направленные на уменьшение величины натяга и трения между контактирующими поверхностями.

В изобретении RU 2232324 уплотнение содержит кольцевой пакет свободных с одного конца и зафиксированных с другого конца капиллярных трубок, закрепленных между малой и большой боковыми пластинами. В полостях трубок установлены проволочки, свободные концы которых короче трубок. Проволочки выполнены из металла с повышенной упругостью и обеспечивают необходимый натяг, а трубки, контактирующие с поверхностью вала, сделаны из мягкого металла для уменьшения величины трения.

В изобретении SU 1725609 для повышения долговечности и надежности работы зазоры в пакете уплотнительных элементов заполнены фиксирующим и герметизирующим составом, а уплотнительные элементы кольцевого пакета выполнены в виде капиллярных трубок, заполненных смесью фторопласта-4 с графитовым порошком.

В изобретении SU 1484033 для улучшения скольжения уплотнения пакет щеток выполнен с зазорами между каждой соседней проволочкой, а межпроволочные объемы в кольцевом пакете заполнены фиксирующим, герметизирующим составом на основе органосиликатного материала с металлическим наполнителем.

В изобретении RU 2016304 щеточное уплотнение содержит электромагниты, установленные с определенным шагом на наружной поверхности корпуса, пакеты щеток, выполненных из тонких металлических проволочек из упругого теплопроводного материала, не обладающего магнитными свойствами, и упругие пластины, установленные между пакетами щеток. Длина пластин меньше длины пакетов щеток для исключения трения пластин о вал. Пластины изготовлены из ферромагнитного материала, обладающего большой упругостью и теплопроводностью. Корпус и вал выполнены из немагнитных материалов. В таком устройстве можно изменять силу прижатия щеток к валу. При подаче электрического тока на обмотки электромагнитов к их сердечникам притягиваются пластины, которые, воздействуя на пакеты щеток, уменьшают их прижатие к контактирующей поверхности вала. Однако в этом случае может увеличиваться зазор между щетками и валом, в результате чего ухудшается качество уплотнения.

Известны магнитожидкостные уплотнения вала RU 2353840, RU 2315218, RU 2296900, RU 2403476, RU 2403477, US 6672592, JP 59047566 (A), которые состоят из корпуса, в котором установлен магнит с примыкающими к нему полюсными приставками. На поверхности полюсных приставок, обращенных к валу, расположены зубцы. Каждый зазор между зубцом и валом заполнен магнитной жидкостью.

Используемые для уплотнений магнитные жидкости обладают уникальным сочетанием текучести и способности взаимодействовать с магнитным полем. Их свойства определяются совокупностью характеристик входящих в них компонентов (твердой магнитной фазы состоящей из наночастиц, дисперсионной среды и стабилизатора), варьируя которыми можно в довольно широких пределах изменять физико-химические параметры магнитной жидкости в зависимости от условий их применения.

Магнитная жидкость, используемая в уплотнении, должна иметь максимально возможную намагниченность насыщения, минимальную вязкость и испаряемость. Выполнение указанных требований обеспечивает сохранение величины рабочего зазора и минимальное трение.

Постоянный магнит в уплотнении служит источником магнитного поля. Создаваемый им магнитный поток полюсными приставками подводится к зазору между полюсными приставками и вращающимся валом. Зубцы полюсов перераспределяют рабочий магнитный поток в зазоре, и поле становится резко неоднородным. Магнитная жидкость втягивается под зубцы, где поле имеет максимальную напряженность, и образует герметичные пробки с повышенным внутренним давлением.

Каждая магнитожидкостная пробка способна воспринимать перепад давлений, который определяется по формуле:

где µo - магнитная постоянная;

M - намагниченность магнитной жидкости;

H - напряженность магнитного поля в зазоре;

Hmax и Hmin - максимальная и минимальная напряженности магнитного поля на границах магнитожидкостной пробки в момент удержания ею максимального перепада давлений.

Перепад давлений, удерживаемый уплотнением, определяется суммой перепадов всех магнитожидкостных пробок под зубцами.

Такие уплотнения могут обеспечить герметизацию зазора при большом перепаде давления. Они имеют минимальное трение между валом и магнитной жидкостью. Однако при наличии температуры вала и его окружающей среды выше точки Кюри магнитной жидкости она не только испаряется, но и теряет свои свойства, в результате происходит разгерметизация уплотнения.

Кроме того, дестабилизация магнитной жидкости возникает тогда, когда центробежная сила больше магнитной силы, т.е. при очень больших скоростях вращения вала. В этом случае магнитные силы не в состоянии удержать магнитную жидкость, и она будет небольшими долями выталкиваться из зазора, сокращая срок службы уплотнения.

В силу малости зазора в уплотнениях даже незначительный эксцентриситет вала относительно полюсных приставок вызывает под зубцами приставок увеличение давления. В результате происходит вытекание жидкости на периферию зубцов и уменьшение толщины магнитожидкостной пробки под зубцами. При недостаточном объеме магнитной жидкости под зубцом возникает разрыв сплошности жидкости и происходит пробой уплотнения. Для обеспечения минимального эксцентриситета необходимо обеспечить жесткое крепление и хорошую центровку корпуса магнитожидкостного уплотнения относительно оси вала.

В качестве прототипа выбрано магнитожидкостное уплотнение JP 59047566(A), содержащее корпус, две полюсные приставки с установленным между ними кольцевым постоянным магнитом. На поверхности полюсных приставок, обращенных к валу, расположены зубцы или пакеты щеток. Щетки выполнены из множества тонких стальных пластин, один конец которых прикреплен к полюсной приставке, а другой направлен в сторону вала. Зазор между щетками и валом заполнен магнитной жидкостью. Недостатком данной конструкции является жесткое ограничение по скорости вращения вала, что делает затруднительным его применение в современных газотурбинных двигателях.

Техническим эффектом от предлагаемого изобретения является повышение удерживаемого перепада давлений магнитожидкостным уплотнением, снижение ограничения на скорость вращения вала, а также увеличение срока эксплуатации.

Технический эффект от предлагаемого изобретения достигается тем, что в магнитожидкостном уплотнении вала, содержащем корпус из немагнитного материала с кольцевой магнитной системой внутри него, включающей постоянный магнит с полюсными приставками и жестко закрепленными на них щетками из нескольких рядов упругих магнитопроводимых металлических проволок, охватывающих вал и образующих с ним зазор, заполненный магнитной жидкостью, согласно изобретению на полюсных приставках со стороны вала выполнены кольцевые пазы прямоугольного сечения, в каждой щетке упругие магнитопроводимые металлические проволоки выполнены плотно прилегающими друг к другу, закрепление щеток на полюсной приставке выполнено на боковой поверхности паза, а между другой стороной щетки и другой боковой поверхностью паза образован зазор, при этом свободные концы проволок щеток радиально направлены к валу.

Кроме того:

- на выступах между пазами закреплены кольца из немагнитного материала, нижняя часть которых выполнена с зазором относительно вала;

- полюсные приставки разделены центральным немагнитным кольцом, верхняя часть которого имеет прямоугольную форму и прикреплена к постоянному магниту, а нижняя имеет прямоугольное утолщение, конец которого выполнен с зазором относительно вала;

- зазоры между валом и немагнитными кольцами и центральным немагнитным кольцом выполнены равными;

- свободное пространство по всей длине между проволоками щеток, а также пространство между щетками и немагнитными кольцами, центральным немагнитным кольцом, корпусом заполнено магнитной жидкостью.

Закрепление на полюсных приставках щеток с зазором относительно вала позволит избежать его заклинивания в случае возникновения больших биений, так как пружинистые проволоки щеток будут демпфировать ударные воздействия. Отсутствие прямого контакта щеток с валом уменьшит трение и позволит использовать проволоку как минимум в 2 раза большего диаметра по сравнению с обычно используемой, диаметра 0,08-0,1 мм.

Выполнение на полюсных приставках кольцевых пазов прямоугольного сечения позволит создать в глубине пазов напряженность магнитного поля, практически равную нулю.

Закрепление щеток на одной боковой поверхности паза позволит сохранить паз, внутри которого напряженность магнитного поля также останется практически равной нулю.

Немагнитные кольца образуют со щетками свободное пространство, в котором можно разместить значительное количество магнитной жидкости, что позволит использовать эффект термомагнитной конвекции магнитной жидкости и, как следствие, увеличить ресурс магнитожидкостного уплотнения.

Центральное немагнитное кольцо разделяет полюсные приставки, позволяя организовать замкнутый контур, по которому протекает магнитный поток.

На фиг.1 показан продольный разрез уплотнения.

На фиг.2 показаны разрезы по А-А, Б-Б.

На фиг.3 показана развертка по В-В с увеличением.

Магнитожидкостное уплотнение вала содержит корпус 1 из немагнитного материала с кольцевой магнитной системой внутри него, включающей постоянный магнит 2 с полюсными приставками 3 и жестко закрепленными на них щетками 4 из нескольких рядов упругих магнитопроводимых металлических проволок 5, охватывающих вал 6 и образующих с ним зазор, заполненный магнитной жидкостью 7. На полюсных приставках 3 со стороны вала 6 выполнены кольцевые пазы 8 прямоугольного сечения, в каждой щетке 4 упругие магнитопроводимые металлические проволоки 5 выполнены плотно прилегающими друг к другу. Закрепление щеток 4 на полюсной приставке 3 выполнено на боковой поверхности паза 8, а между другой стороной щетки 4 и другой боковой поверхностью паза 8 образован зазор, при этом свободные концы проволок 5 щеток 4 радиально направлены к валу 6.

На выступах между пазами 8 закреплены кольца 9 из немагнитного материала, нижняя часть которых выполнена с зазором относительно вала 6.

Полюсные приставки 3 разделены центральным немагнитным кольцом 10, верхняя часть которого имеет прямоугольную форму и прикреплена к постоянному магниту 2, а нижняя имеет прямоугольное утолщение, конец которого выполнен с зазором относительно вала 6.

Зазоры между валом 6 и немагнитными кольцами 9 и центральным немагнитным кольцом 10 выполнены равными.

Свободное пространство по всей длине между проволоками 5 щеток 4, а также пространство между щетками 4 и немагнитными кольцами 9, центральным немагнитным кольцом 10, корпусом 1 заполнено магнитной жидкостью 7.

Устройство работает следующим образом.

Постоянный магнит 2 в уплотнении служит источником магнитного поля. Создаваемый им магнитный поток 11 через две полюсные приставки с установленными на них щетками 4 и магнитная жидкость 7 образуют замкнутое магнитное кольцо. Максимальная напряженность магнитного поля будет на кончиках проволок 5 щеток 4. Магнитная жидкость 7, находящаяся в зазоре между кончиками щеток 4 и валом 6, за счет воздействия магнитного поля приобретает высокую вязкость, образуя герметичные магнитожидкостные пробки 12 с повышенным внутренним давлением. Пробок столько, сколько проволочек, а каждая магнитожидкостная пробка способна воспринимать перепад давлений, определяемый намагниченностью магнитной жидкости и перепадом напряженности магнитного поля в зазоре под каждой проволочкой. При отсутствии насыщения стали полюсных приставок 3 в глубине кольцевых пазов 8 напряженность магнитного поля равна нулю. Одна из поверхностей каждой магнитожидкостной пробки 12 в зоне зазора между валом 6 и концами проволок 5 щеток 4 имеет максимальную напряженность магнитного поля, а вторая, находящаяся в глубине паза 8, минимальную, практически равную нулю. Магнитожидкостные пробки в такой системе удерживают максимально возможный перепад давлений, определяемый только Hmax, так как Hmin=0, а перепад давлений, удерживаемый одной пробкой, определяется соотношением

где i=1…к - количество проволок в кольцевом пакете щеток, расположенных по длине вала.

Перепад давлений, удерживаемый уплотнением, определяется суммой перепадов всех магнитожидкостных пробок под кончиками проволок, расположенных по длине вала

В результате такое уплотнение может выдерживать большие перепады давления уплотняемой среды.

При очень больших скоростях вращения вала 6 магнитная жидкость 7 нагревается и может испаряться, а за счет центробежных сил ее небольшие капельки могут выталкиваться из зазора между валом 6 и концами проволок 5 щеток 4, но на их место автоматически поступают новые порции магнитной жидкости, находящейся в пространстве между щетками 4 и немагнитными кольцами 9, центральным немагнитным кольцом 10, корпусом 1. Автоматизацию обеспечивает такое свойство магнитной жидкости, как ее конвективное движение под действием эффекта термомагнитной конвекции, в соответствии с которым за счет магнитных сил более холодные порции магнитной жидкости перемещаются в сторону нагретых.

Реализация изобретения позволит увеличить срок эксплуатации магнитожидкостного уплотнения, а также снизить требования к скорости вращения вала, что позволит применять магнитожидкостное уплотнение в современных газотурбинных двигателях.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 102.
10.01.2013
№216.012.196f

Выходное устройство турбины авиационного газотурбинного двигателя

Изобретение относится к элементам конструктивной связи между корпусом турбины авиационного газотурбинного двигателя и ее внутренними элементами, а именно к конструкции выходного устройства турбины. Выходное устройство турбины содержит полые профилированные стойки корпуса, размещенные в...
Тип: Изобретение
Номер охранного документа: 0002472003
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1994

Комбинированный центробежно-шестеренный насос

Изобретение относится к области машиностроения и касается насосов, применяемых в маслосистемах авиационных газотурбинных двигателей для подачи и откачки масла. Насос содержит расположенные в расточках корпуса шестерни, у которых у ножек зубьев выполнены кольцевые проточки с установленными в них...
Тип: Изобретение
Номер охранного документа: 0002472040
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1995

Комбинированный центробежно-шестеренный насос

Изобретение относится к области машиностроения и касается насосов, применяемых в маслосистемах теплонапряженных авиационных газотурбинных двигателей для подачи и откачки масла. Насос содержит установленные в колодцах корпуса и находящиеся в зацеплении шестерни. У ножек зубьев шестерен выполнены...
Тип: Изобретение
Номер охранного документа: 0002472041
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1d28

Способ запуска авиационного газотурбинного двигателя

Изобретение относится к авиации. Способ запуска авиационного газотурбинного двигателя включает раскрутку ротора двигателя до частоты вращения ротора, необходимой для розжига камеры сгорания, розжиг камеры сгорания и выход на режим малого газа с поддержанием при этом предельного значения...
Тип: Изобретение
Номер охранного документа: 0002472958
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d34

Героторный насос с торцовым входом

Изобретение относится к области авиадвигателестроения и, в частности, к маслонасосам системы смазки авиационного газотурбинного двигателя. Героторный насос с торцовым входом содержит установленную на полом валу 4 по меньшей мере одну пару эксцентрично расположенных шестерен, ограниченных с...
Тип: Изобретение
Номер охранного документа: 0002472970
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.2078

Сопловой аппарат турбомашины с конвективно-пленочным охлаждением

Изобретение относится к турбостроению и может быть использовано в высокотемпературных газовых турбинах. Сопловой аппарат турбомашины с конвективно-пленочным охлаждением содержит профили лопаток, соединенные полками, участок рассеивания, в виде углубления с внутренней стороны полок,...
Тип: Изобретение
Номер охранного документа: 0002473813
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.23ed

Выходное устройство турбины

Выходное устройство турбины содержит профилированные стойки корпуса, размещенные в проточной части за рабочим колесом последней ступени турбины. У стоек средние линии выходных участков профилей направлены вдоль продольной оси турбины. Средние линии входных участков профилей стоек повернуты к...
Тип: Изобретение
Номер охранного документа: 0002474699
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.23f9

Способ регулирования подачи топлива в камеру сгорания газотурбинного двигателя и система для его осуществления

Изобретение относится к области управления работой газотурбинных двигателей. Способ регулирования, реализуемый системой регулирования, заключается в формировании расхода топлива через, по крайней мере, два дозатора в группы форсунок в зависимости от режима работы двигателя при использовании...
Тип: Изобретение
Номер охранного документа: 0002474711
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2b93

Лопатка турбомашины

Изобретение относится к охлаждению осевой турбомашины и, в частности, к усовершенствованию охлаждения профильной части лопатки турбины высокого давления. Лопатка турбомашины содержит газодинамический профиль, ограниченный внешними выпуклой и вогнутой поверхностями, канал вдоль входной кромки...
Тип: Изобретение
Номер охранного документа: 0002476682
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2bc2

Рабочее колесо осевого компрессора газотурбинного двигателя

Рабочее колесо осевого компрессора газотурбинного двигателя содержит диск с упорным выступом и соединительными элементами диска, лопатки с хвостовиком, средство для перекрытия зазоров и средство осевой фиксации лопаток в замковом соединении типа «ласточкин хвост». Соединительные элементы...
Тип: Изобретение
Номер охранного документа: 0002476729
Дата охранного документа: 27.02.2013
Показаны записи 1-10 из 296.
10.01.2013
№216.012.196f

Выходное устройство турбины авиационного газотурбинного двигателя

Изобретение относится к элементам конструктивной связи между корпусом турбины авиационного газотурбинного двигателя и ее внутренними элементами, а именно к конструкции выходного устройства турбины. Выходное устройство турбины содержит полые профилированные стойки корпуса, размещенные в...
Тип: Изобретение
Номер охранного документа: 0002472003
Дата охранного документа: 10.01.2013
27.01.2013
№216.012.2078

Сопловой аппарат турбомашины с конвективно-пленочным охлаждением

Изобретение относится к турбостроению и может быть использовано в высокотемпературных газовых турбинах. Сопловой аппарат турбомашины с конвективно-пленочным охлаждением содержит профили лопаток, соединенные полками, участок рассеивания, в виде углубления с внутренней стороны полок,...
Тип: Изобретение
Номер охранного документа: 0002473813
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.23ed

Выходное устройство турбины

Выходное устройство турбины содержит профилированные стойки корпуса, размещенные в проточной части за рабочим колесом последней ступени турбины. У стоек средние линии выходных участков профилей направлены вдоль продольной оси турбины. Средние линии входных участков профилей стоек повернуты к...
Тип: Изобретение
Номер охранного документа: 0002474699
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.23f9

Способ регулирования подачи топлива в камеру сгорания газотурбинного двигателя и система для его осуществления

Изобретение относится к области управления работой газотурбинных двигателей. Способ регулирования, реализуемый системой регулирования, заключается в формировании расхода топлива через, по крайней мере, два дозатора в группы форсунок в зависимости от режима работы двигателя при использовании...
Тип: Изобретение
Номер охранного документа: 0002474711
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2b93

Лопатка турбомашины

Изобретение относится к охлаждению осевой турбомашины и, в частности, к усовершенствованию охлаждения профильной части лопатки турбины высокого давления. Лопатка турбомашины содержит газодинамический профиль, ограниченный внешними выпуклой и вогнутой поверхностями, канал вдоль входной кромки...
Тип: Изобретение
Номер охранного документа: 0002476682
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2bc9

Подшипник скольжения с наноструктурным антифрикционным керамическим покрытием

Изобретение относится к подшипникам скольжения и может быть использовано в авиационной, газонефтедобывающей, автомобильной и других областях промышленности. Подшипник скольжения включает корпус и установленный на корпусе, по меньшей мере, один элемент скольжения, по меньшей мере, поверхности...
Тип: Изобретение
Номер охранного документа: 0002476736
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c3a

Способ контроля технического состояния и обслуживания двухроторного газотурбинного двигателя при его эксплуатации

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности двухконтурных, к контролю технического состояния во время их эксплуатации для принятия решений по их обслуживанию и дальнейшей эксплуатации. В известном способе контроля технического состояния в качестве...
Тип: Изобретение
Номер охранного документа: 0002476849
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2e58

Энергосберегающий подшипник скольжения

Изобретение относится к подшипникам скольжения и может быть использовано в авиакосмической, нефтедобывающей, нефтеперекачивающей, нефтеобрабатывающей и иных областях промышленности. Подшипник скольжения включает корпус и смонтированные на корпусе элементы скольжения, поверхности скольжения...
Тип: Изобретение
Номер охранного документа: 0002477395
Дата охранного документа: 10.03.2013
20.04.2013
№216.012.375d

Элемент охлаждаемой лопатки турбомашины

Изобретение относится к охлаждению газотурбинного двигателя и, в частности, к усовершенствованию охлаждения профильной части и полок лопатки турбины высокого давления. Элемент охлаждаемой лопатки турбомашины содержит канал для охлаждающего воздуха, выполненный внутри лопатки в направлении вдоль...
Тип: Изобретение
Номер охранного документа: 0002479726
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.37ba

Защитная маскирующая система для летательного аппарата, подвергающегося радиолокационному облучению

Изобретение относится к средствам защиты и маскирования объектов от систем радиолокационного облучения и опознавания, захвата, автоматического сопровождения и целеуказания, работающих в радиолокационном диапазоне электромагнитного спектра. Защитная маскирующая система для летательного аппарата,...
Тип: Изобретение
Номер охранного документа: 0002479819
Дата охранного документа: 20.04.2013
+ добавить свой РИД