×
06.07.2019
219.017.a7a5

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ОКИСЛЕННОГО ГРАФИТА

Вид РИД

Изобретение

Аннотация: Изобретение предназначено для химической промышленности и может быть использовано при получении теплоизоляционного наполнителя огнезащитных композиций, конструкционных материалов, катализаторов и сорбентов. В реактор с мешалкой загружают 2-28% раствор серного ангидрида в серной кислоте, дозируют 30-34% раствор НО, порционно вводят порошковый кристаллический графит. Массовое соотношение графит:раствор серного ангидрида в серной кислоте: пероксид водорода = 1: (5-6): (0,15-0,2). Смесь перемешивают 30 мин при (40±10)С, охлаждают, отжимают. Отработанный раствор серного ангидрида в серной кислоте можно направлять на повторное использование. Окисленный графит промывают водой, отжимают и помещают при перемешивании в водный раствор аммиака при температуре, не превышающей 40С, на 30 мин. Отжимают, промывают водой, сушат. Кислые промывные воды нейтрализуют отработанным аммиаком и аммиачными промывными водами. Образовавшийся водный раствор сульфата аммония используют как минеральное удобрение. После термообработки при 900С насыпная плотность графита менее 6 кг/м. Процесс взрывобезопасен, уменьшено количество промывных вод. 1 табл.

Изобретение относится к химии углеграфитовых материалов, а именно к способу получения окисленного графита, используемого при производстве терморасширяющегося графита, применяемого в качестве теплоизоляционного наполнителя огнезащитных покрытий металлических, древесных и полимерных поверхностей, для создания углерод-углеродных конструкционных материалов, гетерогенных катализаторов, сорбентов и других целей.

Известен способ получения окисленного графита обработкой бихроматом калия в среде серной кислоты с последующей фильтрацией и водной промывкой [К.Е. Махорин, А.П.Кожан, А.С.Сидоренко, В.С.Рябчук, В.Н.Александров, В.В.Веселов, Н. М. Заяц, А. М. Романюха, авт. св. СССР 1664743, кл. С 01 В 31/04, заявл. 11.04.1989. Опубл. 1991, БИ 27].

Недостатком способа является наличие в промывных водах ядовитых соединений хрома и сложность их утилизации.

Известен также способ получения окисленного графита обработкой перекисью водорода в среде серной кислоты [A.Hirschvogen, F.Wanger, US Раt 4091083, кл. С 01 В 31/00; 31/04, 1978].

Согласно этому способу графит с размером частиц 700...75 мкм обрабатывается в среде серной кислоты 80...90% пероксидом водорода в соотношении 2...5 мас. ч. пероксида к 100 мас. ч. серной кислоты до образования разновидности окисленного графита - гидросульфата графита.

Недостатком является неоднородность конечного продукта, что связано с образованием в синтезе зон локального перегрева с температурой выше 60oС при обработке графита смесью серной кислоты и пероксида водорода и приводит в итоге к получению вещества, являющегося смесью частично расширенного и окисленного графита.

К другим недостаткам способа следует отнести высокую пожароопасность 80. ..90% пероксида водорода, выделение при его разложении в среде серной кислоты экологически вредного озона и сернистого газа.

Наиболее близким к изобретению по технической сущности является способ получения однородного окисленного графита введением 35...55% пероксида водорода под слой серной кислоты при непрерывном охлаждении, интенсивном перемешивании, барботаже воздуха, что позволяет свести к минимуму разложение пероксида водорода, с последующей дозировкой графита в охлажденную смесь [А. И.Криворуков, И.А.Башарин, Д.В.Смирнов. Патент РФ 2057065, кл. С 01 В 31/04, заявл. 26.10.93, опубл. 27.03.96. БИ 9 - прототип].

Полученный окисленный графит представляет собой соединение внедрения - графит, интеркалированный серной кислотой.

В патенте, к сожалению, не приведены характеристики окисленного графита (насыпная плотность после вспучивания, зольность, величина концентрации водородных ионов). Способ является экологически опасным, так как не предусматривает путей регенерации или утилизации серной кислоты, методы обезвреживания кислых промывных вод. Из-за использования в процессе пероксида водорода с концентрацией выше 35% способ взрывоопасен. При реализации способа при получении и промывке 1 т окисленного графита ТУ 84-7509103.353-92 образуется до 350 т кислых промывных вод, подлежащих обезвреживанию. Окисленный графит (изготовленный из графита ГТ-1) после термообработки при 900oС имеет насыпную плотность 6...10 кг/м3.

Задачей изобретения является получение окисленного графита с насыпной плотностью после термообработки при 900oС менее 6 кг/м3, повышение взрывобезопасности процесса, уменьшение количества промывных вод, создание малоотходного технологического процесса.

Решение задачи достигается тем, что в отличие от известного способа окисление графита ведут пероксидом водорода в среде 2...28% раствора серного ангидрида в серной кислоте (олеум). Во избежание разложения пероксида водорода и повышения безопасности процесса концентрации пероксида снижена до 30...34%. По завершении окисления, отжатая кислоты, промывки окисленный графит обрабатывается 5...10% водным аммиаком, а способ реализуется следующим образом.

В реактор помещают олеум и при температуре не выше 45oС дозируют при интенсивном перемешивании пероксид водорода, затем при температуре (40±10)oС вводят природный графит марок ГАК-3, ГТ-1 или ГТ-2. Смесь компонентов выдерживают при температуре (40±10)oС 30 минут, охлаждают до температуры не выше 30oС и направляют на фильтрацию и отжим. Отработанный олеум направляют на повторное использование, а образующаяся после повторного использования серная кислота поступает на регенерацию.

Окисленный графит промывают на фильтре водой, отжимают, помещают при перемешивании и температуре не выше 50oС в реактор, заполненный водным раствором аммиака, выдерживают при перемешивании 30 минут, отжимают на фильтре, промывают водой и сушат в вакуумном термошкафу при температуре не выше 70oС и давлении 20...200 мм рт.ст. 8...12 часов или провяливают на воздухе.

Кислые промывные воды нейтрализуют отработанными аммиачными водами, а образовавшийся водный раствор сульфата аммония используют как минеральное удобрение.

В результате реализации способа из 100 мас. ч. графита перечисленных марок образуется 125...130 мас. ч. окисленного графита с насыпной плотностью после термообработки при 900oС 3...5,5 кг/м3, рН водной вытяжки 3,5...7,0 при отсутствии дополнительно внесенной зольности.

Существенное отличие предлагаемого способа от прототипа заключается в использовании в техпроцессе в качестве среды для окисления графита 2...28% олеума и в качестве окислителя 30...34% пероксида водорода, что в сочетании с выбранными технологическими режимами позволяет:
1. повысить безопасность процесса за счет использования в процессе пероксида водорода с концентрацией не выше 30...34%, ограничения температур дозирования пероксида водорода в олеум (не более 45oС), графита в реакционную смесь и выдержки реакционной смеси (не более 50oС), что практически исключает возможность неконтролируемого распада пероксида водорода;
2. отработанный олеум с концентрацией по серному ангидриду выше 2% повторно использовать в последующих операциях окисления графита, олеум меньшей концентрации и отработанную серную кислоту подавать на укрепление смешением с концентрированным олеумом или регенерацию;
3. получить неожиданный эффект снижения насыпной плотности окисленного графита после терморасширения до 3,0...5,5 кг/м3.

Другое отличие состоит в том, что окисленный графит после выделения из кислой реакционной смеси и первой промывки водой в количестве 5 мас. ч. на 1 мас. ч. графита обрабатывается дополнительно в реакторе 30 минут при перемешивании и температуре не более 50oС водным раствором аммиака в количестве 5 мас. ч. на 1 маc. ч. графита. При этом избыточная неотжатая кислота нейтрализуется полностью с образованием сульфата аммония, а интеркалированная в графите кислота нейтрализуется частично.

Введение дополнительной обработки окисленного графита аммиачной водой позволяет более чем в 20 раз снизить количество промывных вод. Обработанный окисленый графит после отжима направляется на вакуумную сушку или провяливается на воздухе, а отработанные аммиачные воды с концентрацией по аммиаку 5. . . 10% поступают на нейтрализацию кислых вод, образовавшихся после первой водной промывки. Полученный водный раствор сульфата аммония реализуется как минеральное удобрение. Оставшийся в качестве примеси в окисленном графите сульфат аммония возгоняется при температуре 150oС и не влияет на его качество (ТУ 84-07509103.353-92).

Ниже приведенные соотношения между реагентами, а также их количества, концентрации и температурные режимы являются оптимальными.

Использование в процессе олеума с концентрацией серного ангидрида выше 28% не рационально из-за отсутствия промышленного производства последнего. При использовании олеума с концентрацией по серному ангидриду менее 2% не удается получить продукт с насыпной плотностью после термообработки менее 6 кг/м3.

Применение для окисления графита пероксида водорода в условиях изобретения с концентрацией выше 34% не рекомендуется с точки зрения безопасности процесса, использование пероксида водорода с концентрацией менее 30% отрицательно сказывается на насыпной плотности терморасширенного графита (более 6 кг/м3).

Выбранные массовые соотношения графит:пероксид водорода:олеум 1,0:(0,15. . . 0,20):(5,0...6,0) являются оптимальными и связаны с концентрацией компонентов и насыпной плотностью термообработанного окисленного графита. При концентрации олеума по серному ангидриду выше 15% в реакции используют массовое соотношение компонентов 1,0:0,2:5,0.

При концентрации олеума ниже 15% массовое соотношение компонентов составляет 1,0:0,15:6,0.

При применении для окисления графита меньших количеств пероксида водорода и олеума возрастают вязкость реакционной смеси и насыпная плотность терморасширенного графита; использование больших количеств реагентов приводит только к увеличению количества подлежащих переработке вод и не имеет смысла.

Обработка отжатого после первой водной промывки окисленного графита водным аммиаком в массовом соотношении 5:1 позволяет резко сократить количество промывных вод в результате нейтрализации остатков серной кислоты с образованием сульфата аммония и частично аммонийной соли интеркалированной в графит серной кислоты. Дополнительная промывка водой в соотношении (2...5):1 обеспечивает требуемый уровень рН водной вытяжки окисленного графита 3,5... 7,0.

Возможность реализации способа получения окисленного графита подтверждается следующими примерами.

Пример 1.

В реактор, снабженный мешалкой, загружают 400 мас. ч. 28% олеума ГОСТ 2184-77 и дозируют при перемешивании и температуре не выше 45oС. 16 мас. ч. 30% пероксида водорода ГОСТ 10929-76, а затем при температуре (35±15)oС порционно 80 мас. ч. природного графита аккумуляторного марки ГАК-3 ГОСТ 17022-81, смесь компонентов перемешивают 30 минут при этой температуре, охлаждают до температуры (25±5)oС, окисленный графит отжимают на воронке.

Отработанный олеум с концентрацией по серному ангидриду 14...17% направляют на повторное использование (пример 5).

Окисленный графит промывают на фильтр-воронке водой (5х100 мас. ч.), отжимают и помещают при перемешивании и охлаждении в 500 маc. ч. водного аммиака ГОСТ 9-92, выдерживают при перемешивании и температуре не выше 40oС 30 минут, отжимают на фильтр-воронке, промывают водой (5х100 мас. ч.), сушат в вакуумном термошкафу при температуре (60±10)oС и остаточном давлении 20... 200 мм рт.ст. 8...12 часов. Получают 102 маc. ч. окисленного графита с характеристиками, представленными в таблице.

Кислые промывные воды после первой промывки нейтрализуют отработанным аммиаком и аммиачными промывными водами, а образовавшийся водный раствор сульфата аммония используют как минеральное удобрение.

Пример 2. Аналогично примеру 1. Окисленный графит после промывки от аммиака сушится провялкой на воздухе при 20...25oС 36 часов.

Пример 3-4. Аналогично примеру 1 с использованием в качестве исходного материала графита тигельного марок ГТ-1 и ГТ-2 ГОСТ 4596-75.

Пример 5. Аналогично примеру 1 с использованием отработанного в опыте примера 1 олеума.

Примеры 6-8. Аналогично примеру 1 с использованием различных количеств и концентраций олеума и пероксида водорода.

Примеры 9-10. Аналогично примеру 1 с использованием различных количеств водного аммиака и промывных вод.

Пример 11 (прототип). 5 мас. ч. 45% пероксида водорода вводят при перемешивании и давлении 0,8 МПа в 30,0 маc. ч. 95% серной кислоты при температуре 20...35oС. Затем в смесь вводят 10 мас. ч. природного графита ГТ-1. Выдерживают реакционную смесь при температуре 35...50oС (саморазогрев реакционной смеси) 15 минут. После выдержки реакционную смесь сливают в 50 мас. ч. воды при охлаждении. Окисленный графит отжимают и промывают 1700 мас. ч. воды для обеспечения рН водной вытяжки не менее 3,5.

Условия осуществления способа по изобретению и прототипу, а также характеристики полученного в примерах 1-11 окисленного графита представлены в таблице.

Данные примеров 1-10 подтверждают существенность выбранных пределов и показывают, что изменение соотношения между реагентами и концентрациями в сторону уменьшения приводят к ухудшению качества окисленного графита (повышению насыпной плотности).

Таким образом, предлагаемый способ позволяет:
- получать окисленный графит с насыпной плотностью после вспучивания при 900oС 3...5,5 кг/м3 (для прототипа в примере 11 - 8,2 кг/м3);
- повысить безопасность процесса за счет использования в качестве окисляющего агента водной перекиси водорода с концентрацией 30...34%;
- повторно использовать отработанный олеум и направлять на регенерацию отработанную кислоту;
- за счет использования аммиачной обработки более чем в 20 раз снизить количество отработанных вод;
- исключить сброс отработанных вод путем использования в качестве минерального азотного удобрения;
- создать экологически чистое производство окисленного графита.

Способполученияокисленногографитаобработкойпорошковогокристаллическогографитасмесьюсернойкислотыипероксидаводородавкачествеокислителя,отличающийсятем,чтополучениеокисленногографитаведутпритемпературе(40±10)Свсмеси2-28%растворасерногоангидридавсернойкислотеи30-34%водногорастворапероксидаводородапримассовомсоотношенииграфит:растворсерногоангидридавсернойкислоте:пероксидводорода1:(5-6):(0,15-0,2).
Источник поступления информации: Роспатент

Показаны записи 91-100 из 169.
10.04.2019
№219.017.01b7

Заряд ракетного твердого топлива

Заряд ракетного твердого топлива содержит корпус, торцевые манжеты, защитно-крепящий слой, головной полузаряд со звездообразным каналом и хвостовой полузаряд с цилиндрическим каналом. Площадь проходного сечения входного участка цилиндрического канала хвостового полузаряда составляет 1,00…1,25...
Тип: Изобретение
Номер охранного документа: 02220312
Дата охранного документа: 27.12.2003
10.04.2019
№219.017.0214

Устройство для снижения давления и охлаждения продуктов сгорания в газоходе при ликвидации заряда ракетного двигателя на твердом топливе

Изобретение относится к области ракетной техники. Устройство для снижения давления и охлаждения продуктов сгорания в газоходе при ликвидации заряда ракетного двигателя на твердом топливе содержит камеру локализации и охлаждения продуктов сгорания. При этом концевая секция камеры локализации и...
Тип: Изобретение
Номер охранного документа: 0002341730
Дата охранного документа: 20.12.2008
10.04.2019
№219.017.0501

Способ измельчения твердых частиц

Изобретение предназначено для измельчения твердых частиц, в том числе окислителя в производстве смесевого твердого ракетного топлива с получением его ультрадисперсной фракции. Измельчение суспензии осуществляют непрерывно в двухроторном измельчителе, при этом подачу в него суспензии...
Тип: Изобретение
Номер охранного документа: 0002301707
Дата охранного документа: 27.06.2007
10.04.2019
№219.017.0535

Заряд твердого ракетного топлива

Изобретение относится к зарядам твердого ракетного топлива. Заряд твердого ракетного топлива содержит корпус и скрепленный с ним топливный заряд посредством защитно-крепящего слоя. Защитно-крепящий слой представляет собой листовой каландрованный материал на основе этиленпропилендиенового...
Тип: Изобретение
Номер охранного документа: 0002367812
Дата охранного документа: 20.09.2009
10.04.2019
№219.017.057a

Заряд твердого ракетного топлива

Изобретение относится к области ракетной техники и может быть использовано при проектировании, отработке и изготовлении зарядов ТРТ для газогенераторов и ракетных двигателей. Заряд твердого ракетного топлива выполнен в виде конически-цилиндрической шашки твердого ракетного топлива со сквозным...
Тип: Изобретение
Номер охранного документа: 0002362035
Дата охранного документа: 20.07.2009
10.04.2019
№219.017.0594

Карусельно-центробежный способ бронирования заряда из баллиститного топлива со скреплением его по одному из торцов с корпусом ракетного двигателя

Изобретение относится к области ракетной техники. Предложен карусельно-центробежный способ бронирования заряда из баллиститного топлива со скреплением его по одному из торцов с корпусом ракетного двигателя. Корпус ракетного двигателя с размещенным в нем с зазором зарядом устанавливают радиально...
Тип: Изобретение
Номер охранного документа: 0002360895
Дата охранного документа: 10.07.2009
10.04.2019
№219.017.0633

Способ получения γ-полиоксиметилена

Настоящее изобретение относится к способу получения компонента низкотемпературных баллиститных порохов γ-полиоксиметилена. Способ получения γ-полиоксиметилена заключается в полимеризации триоксана в среде тетрахлорметана в присутствии метанола и олеума, а также от 1,5 до 1,8% от массы триоксана...
Тип: Изобретение
Номер охранного документа: 0002412953
Дата охранного документа: 27.02.2011
10.04.2019
№219.017.06b8

Комбинированный заряд ракетного двигателя твердого топлива с пламегасящим эффектом истекающей струи продуктов сгорания (варианты)

Изобретение относится к конструкции заряда твердого ракетного топлива, предназначенного для использования в ракетных двигателях твердого топлива для авиационных ракет или тормозных систем грузовых платформ, десантируемых с транспортных самолетов. Комбинированный заряд ракетного двигателя...
Тип: Изобретение
Номер охранного документа: 0002425246
Дата охранного документа: 27.07.2011
10.04.2019
№219.017.070a

Вкладной твердотопливный заряд торцевого горения ракетного двигателя

Изобретение относится к вкладному заряду торцевого горения ракетного двигателя и может быть использовано при проектировании, отработке и изготовлении зарядов из твердого топлива к ракетным двигателям. Вкладной твердотопливный заряд торцевого горения ракетного двигателя, бронированный по боковой...
Тип: Изобретение
Номер охранного документа: 0002453721
Дата охранного документа: 20.06.2012
10.04.2019
№219.017.07b1

Способ смешения компонентов взрывчатого состава и формования из него изделия

Изобретение относится к области изготовления изделия из взрывчатого состава и формования из него изделия. Способ включает синхронное порционное дозирование порошкообразных и жидковязких компонентов, набор и перемешивание состава в предварительном смесителе до полной его загрузки. В начале...
Тип: Изобретение
Номер охранного документа: 0002451649
Дата охранного документа: 27.05.2012
Показаны записи 81-82 из 82.
10.07.2019
№219.017.abe5

Ракетный двигатель смесевого твёрдого топлива

Ракетный двигатель смесевого твердого топлива содержит корпус с размещенными в нем зарядом твердого топлива и воспламенительным устройством, закрепленным на переднем днище корпуса, и сверхзвуковое сопло. Заряд топлива имеет нависающий передний торец. Воспламенительное устройство расположено в...
Тип: Изобретение
Номер охранного документа: 02211351
Дата охранного документа: 27.08.2003
10.07.2019
№219.017.abeb

Способ испытаний скреплённых зарядов ракетных двигателей твёрдого топлива

Изобретение относится к ракетной технике, в частности к ракетным двигателям твердого топлива, и может найти применение при испытаниях скрепленных зарядов ракетных в системах различных классов. Сущность способа испытаний скрепленных зарядов ракетных двигателей твердого топлива заключается в том,...
Тип: Изобретение
Номер охранного документа: 02217746
Дата охранного документа: 27.11.2003
+ добавить свой РИД