×
02.07.2019
219.017.a362

Результат интеллектуальной деятельности: АВТОКОЛЕБАТЕЛЬНЫЙ РУЛЕВОЙ ПРИВОД ВРАЩАЮЩЕЙСЯ ПО КРЕНУ УПРАВЛЯЕМОЙ РАКЕТЫ

Вид РИД

Изобретение

№ охранного документа
0002288441
Дата охранного документа
27.11.2006
Аннотация: Изобретение относится к оборонной технике, а именно к управляемым снарядам и ракетам. Технический результат - увеличение динамической точности автоколебательного рулевого привода вращающейся по крену управляемой ракеты при отработке синусоидального сигнала частоты вращения ракеты с амплитудой, соответствующей ограничению выходной координаты привода. Поставленная задача решается тем, что в автоколебательный рулевой привод вращающейся по крену управляемой ракеты, содержащий сумматор, первый вход которого является входом привода, последовательно соединенные корректирующий фильтр, релейный элемент, усилитель мощности и рулевую машину, выход которой является выходом привода и соединен через элемент обратной связи со вторым входом сумматора, дополнительно введены последовательно соединенные дифференцирующее звено и нелинейное звено, имеющее линейную статическую характеристику с зоной нечувствительности, величина которой, приведенная ко входу привода на частоте вращения ракеты, равна линейной зоне выходной координаты привода. При этом вход дифференцирующего звена соединен с входом привода, а выход нелинейного звена - с дополнительным управляющим входом релейного элемента. 8 ил.

Изобретение относится к силовым системам управления летательных аппаратов и может быть использовано в рулевых приводах и автопилотах малогабаритных вращающихся по крену управляемых ракет и снарядов.

Рулевой привод получил широкое распространение в системах управления летательных аппаратов в качестве исполнительного механизма автопилота, перемещающего органы управления летательного аппарата в соответствии с требуемым законом управления.

Наиболее распространенным типом рулевых приводов в системах управления летательных аппаратов является рулевой привод с жесткой обратной связью по углу поворота органов управления.

Известен автоколебательный рулевой привод вращающегося по крену управляемого снаряда, принятый авторами в качестве прототипа, содержащий суммирующее устройство, первый вход которого является входом привода и подключен к выходу гирокординатора ракеты, корректирующий фильтр, нелинейный элемент, выполненный в виде триггерного устройства, усилитель мощности, рулевую машину с управляющим магнитом, датчик обратной связи, связанный с вторым входом суммирующего устройства [Выстрел ЗУБК10-1 с управляемым снарядом 9М117. Техническое описание и инструкция по эксплуатации ЗУБК10-1.00.00.000 ТО. М.: Военное издательство, 1987, стр.15-19, рис.11].

Отличительной особенностью работы рулевых приводов систем управления вращающихся по крену управляемых ракет и снарядов является отработка гармонического входного сигнала Uвх=Umsinωвхt с переменной амплитудой Um и частотой ωвх, определяемых соответственно ошибкой рассогласования контура управления ракеты и частотой вращения ракеты по крену (ωвхвр=2πfвр, где fвр - частота вращения ракеты по крену). Гармонический входной сигнал Uвх поступает на вход привода с выхода гирокоординатора ракеты.

Недостатком известного рулевого привода является низкая точность отработки входного сигнала при больших Uвх, соответствующих большим отклонениям, например, при входе управляемой ракеты в луч. В этом случае на вход привода подается синусоидальный сигнал частотой ωвх с амплитудой Um, соответствующей ограничению выходной координаты привода, привод работает в нелинейной зоне по выходной координате. Причем это превышение линейной зоны может быть весьма значительным (в 1,5-2 раза). Вследствие частичного размыкания контура привода при работе в нелинейной зоне фазовые сдвиги привода по первой гармонике выходного сигнала в этом случае будут возрастать, что в конечном итоге может привести к снижению точности наведения и промаху.

Задачей предлагаемого изобретения является увеличение динамической точности за счет уменьшения фазовых сдвигов по первой гармонике выходного сигнала автоколебательного рулевого привода вращающейся по крену управляемой ракеты при отработке синусоидального сигнала частоты вращения ракеты с амплитудой, соответствующей ограничению выходной координаты привода.

Поставленная задача решается тем, что в автоколебательный рулевой привод вращающейся по крену управляемой ракеты, содержащий сумматор, первый вход которого является входом привода, последовательно соединенные корректирующий фильтр, релейный элемент, усилитель мощности и рулевую машину, выход которой является выходом привода и соединен через элемент обратной связи с вторым входом сумматора, дополнительно введены последовательно соединенные дифференцирующее звено и нелинейное звено, имеющее линейную статическую характеристику с зоной нечувствительности, величина которой, приведенная ко входу привода на частоте вращения ракеты, равна линейной зоне выходной координаты привода, при этом вход дифференцирующего звена соединен с входом привода, а выход нелинейного звена - с дополнительным управляющим входом релейного элемента.

На фиг.1 представлен автоколебательный рулевой привод вращающейся по крену управляемой ракеты, состоящий из сумматора 1, корректирующего фильтра 2, релейного элемента 3, усилителя мощности 4, рулевой машины 5, элемента обратной связи 6, дифференцирующего звена 7, нелинейного звена 8, на фиг.2, 3 - статические характеристики нелинейного звена и релейного усилителя соответственно, на фиг.4, 5 - электрическая схема и логарифмические амплитудно-фазовые частотные характеристики дифференцирующего звена, на фиг.6 - амплитудно-фазовые характеристики автоколебательного рулевого привода на фиксированной частоте вращения снаряда, на фиг.7, 8 - кривые колебаний на входе и выходе при отработке автоколебательным рулевым приводом входного синусоидального сигнала Uвх в линейной (фиг.7) и нелинейной (фиг.8) зоне выходной координаты δ рулевого привода соответственно.

На фиг.1-8 обозначено: Uвх=Umsinωвхt - входной сигнал, где ωвхвр=2πfвр - угловая частота вращения ракеты по крену; δ - угол отклонения рулей; δI - первая гармоника выходной координаты (угла отклонения рулей) рулевого привода; , ϕI - амплитудное значение и фазовый сдвиг по первой гармонике выходной координаты рулевого привода на частоте ωвх.

На фиг.6 приведены амплитудная зависимость (кривая 9) и фазовая зависимость ϕI=f(Um) (кривая 11), то есть характеристики предлагаемого автоколебательного рулевого привода по первой гармонике выходного сигнала при отработке входного синусоидального сигнала на фиксированной частоте вращения ракеты по крену в зависимости от амплитуды входного сигнала Um. Для сравнения на фиг.6 приведена также фазовая частотная характеристика рулевого привода (кривая 10) при отсутствии дифференцирующего и нелинейного звеньев в схеме управления привода (фиг.1), то есть характеристика известного прототипа.

Привод работает следующим образом. При отсутствии входного сигнала Uвх=0 релейный элемент (РЭ) 3 (фиг.1) находится в одном устойчивом положении (фиг.3). В результате рулевая машина (РМ) 5 получает питание от выходных каскадов усилителя мощности (УМ) 4 одной полярности.

При этом поршень рулевой машины, кинематически связанный с рулями (на схеме фиг.1 указанная связь не показана), начинает перемещаться. Напряжение с элемента обратной связи (ЭОС) 6 через сумматор (С) 1 поступает через корректирующий фильтр (КФ) 2 на вход релейного элемента, перевода его в другое устойчивое положение. При этом на рулевую машину подается напряжение другой полярности, и поршень начинает перемещаться в другую сторону.

Таким образом, в замкнутом контуре при наличии релейного элемента и отрицательной обратной связи по выходной координате привода возникают автоколебания, параметры которых частота и амплитуда (или размах) зависят от выбранных значений параметров линейной части привода и релейного элемента.

Частоту автоколебаний выбирают достаточно высокой по сравнению с частотой входного сигнала ωвх=2πfвх (примерно на порядок выше). Среднее значение выходной координаты привода за период автоколебаний при нулевом входном сигнале равно нулю.

Если входной сигнал Uвх≠0, то поршень перемещается до тех пор, пока среднее значение за период автоколебаний выходной координаты с наложенными автоколебаниями будет пропорционально входному сигналу. Автоколебательный режим работы обеспечивает плавную зависимость среднего за период автоколебаний значения выходной координаты привода от значения медленно меняющегося входного сигнала.

Применяемый в цепи сигнала ошибки контура автоколебательного рулевого привода (фиг.1) корректирующий фильтр 2 с ослаблением на частотах автоколебаний за счет выбора соответствующей структуры фильтра позволяет уменьшить амплитуду автоколебаний на входе релейного элемента и тем самым увеличить коэффициент усиления по управляющему сигналу релейного элемента и всего рулевого привода в целом, а следовательно, увеличить его точность.

При больших входных управляющих сигналах, соответствующих работе привода в нелинейной зоне по выходной координате привода, дополнительно к сигналу, пропорциональному ошибке рассогласования привода, вводится дополнительная связь по управляющему сигналу Uвх, действующая в нелинейной зоне выходной координаты привода. Это обеспечивается за счет введения дополнительной цепи (фиг.1) из последовательно включенных дифференцирующего звена 7 и нелинейного звена 8 с линейной статической характеристикой с зоной нечувствительности (фиг.2), величина которой, приведенная ко входу привода на частоте отрабатываемого входного синусоидального сигнала Uвх, равна линейной зоне выходной координаты привода, верхнее значение которой определяется упорами, ограничивающими максимальное угловое перемещение рулей 5. Вход цепи подключен ко входу привода, а выход - к дополнительному управляющему входу релейного элемента. Дифференцирующее звено 7 предназначено для введения фазового опережения по входному сигналу, а нелинейное звено с зоной нечувствительности, равной линейной зоне выходной координаты привода на частоте вращения ракеты по крену, вводится в этом случае специально для обеспечения коррекции по фазе только в нелинейной зоне выходной координаты привода.

Дифференцирующее звено 7 может быть реализовано как на пассивных RC-элементах, как это изображено в рассматриваемом случае на схеме фиг.4, так и на активных элементах, например, на одном операционном усилителе (на схеме не показано) с соответствующим выбором и установкой пассивных RC-элементов в цепи отрицательной обратной связи и на входе операционного усилителя, в качестве которого может быть использована типовая микросхема (в корпусном или бескорпусном исполнении). Причем второй вариант реализации дифференцирующего звена в некоторых случаях является даже более предпочтительным, так как в этом случае при необходимости легко решить вопрос с масштабированием сигнала за счет выбора соответствующего статического коэффициента передачи операционного усилителя, определяемого отношением сопротивлений в цепи отрицательной обратной связи (Roc) и на входе (Rвх) усилителя. Если такой необходимости с масштабированием сигнала нет, то можно обойтись более простой схемой реализации, как это представлено на фиг.4.

Привод с данной цепью коррекции работает как следящая система с комбинированным управлением только в нелинейной зоне выходной координаты привода, обеспечивая при этом при отработке входного синусоидального сигнала частоты вращения ракеты по крену фазовые сдвиги по первой гармонике значительно меньше, чем в случае отсутствия цепи коррекции (см. кривые 11 и 10 на фиг.6 при амплитудах Um, превышающих уровень Uom.

В линейной зоне по выходной координате (при амплитудах Um<Uom) привод работает как обычная следящая система с управлением по отклонению, в которой для управления используется сигнал, пропорциональный отклонению (ошибке рассогласования) выходной координаты от входной, то есть пропорциональный ошибке системы, с обеспечением малых фазовых сдвигов при отработке входного синусоидального сигнала.

На фиг.7 приведены кривые входных и выходных колебаний автоколебательного рулевого привода вращающейся по крену управляемой ракеты при отработке входного синусоидального сигнала частоты вращения ракеты ωвр (кривая Uвх) в линейной зоне, на фиг.8 - в нелинейной зоне выходной координаты привода.

Кроме выходного сигнала (кривая δ) на фиг.7, 8 приведены также кривые колебаний, соответствующие первой гармонике выходной координаты (кривые δI). Фазовый сдвиг по первой гармонике будет равен ϕI.

Анализ кривых колебаний δ, приведенных на фиг.8, показывает, что при входном синусоидальном сигнале, соответствующем нелинейной зоне выходной координаты (кривая δ), автоколебания не наблюдаются.

На фиг.6 приведены амплитудная (кривая 9) и фазовая (кривая 11) частотные характеристики привода по первой гармонике выходного сигнала при отработке входного синусоидального сигнала на частоте вращения ракеты по крену ωвр в зависимости от амплитуды входного сигнала Um. Для сравнения на фиг.6 приведена также фазовая (кривая 10) частотная характеристика привода при отсутствии цепи коррекции. Амплитудные характеристики привода при отсутствии и наличии цепи коррекции совпадают (кривая 9 на фиг.6). При входных сигналах Um≥Uom амплитудное значение первой гармоники выходного сигнала равно δI и является величиной постоянной.

Анализ кривых фазовой частотной характеристики, приведенных на фиг.6 (кривые 10, 11), показывает, что при входных сигналах Um≥Uom фазовые сдвиги по фазовой характеристике (кривая 11) при наличии цепи коррекции в предлагаемом приводе имеют значительно меньшие значения по сравнению с аналогичным случаем при отсутствии цепи коррекции в известном приводе (кривая 10). Так, например, при полуторократном превышении зоны линейности (Um=1.5Uom) значения фазового сдвига равны соответственно 31° и 45°, разница ˜ в 1,5 раза, при двукратном превышении зоны линейности (Um=2,0Uom) получены фазовые сдвиги 26° и 50°, то есть разница ˜ в 2 раза.

Таким образом, введение цепи коррекции в предлагаемом автоколебательном рулевом приводе вращающейся по крену управляемой ракеты по сравнению с известным приводом позволяет уменьшить наклон фазовой частотной характеристики привода при изменении амплитуды и частоты входного управляющего сигнала и тем самым повысит динамическую точность привода при работе в нелинейной зоне выходной координаты привода при больших входных сигналах, соответствующих большим отклонениям вращающейся по крену управляемой ракеты, например, при входе управляемой ракеты в луч.

Аналогичные результаты могут быть получены также и при рассмотрении других приводов, кроме автоколебательных, например линейных.

Предлагаемое техническое решение позволяет обеспечить стабильные амплитудно-фазовые характеристики по первой гармонике выходного сигнала привода. Особенно важно иметь стабильные фазовые характеристики, наклон которых необходимо уменьшать и стремиться к тому, чтобы наклон был стабильным в области частот вращения и амплитуд входного управляющего сигнала, соответствующих реальной работе привода в составе объекта управления - вращающегося по крену управляемого снаряда, что обеспечено в предлагаемом техническом решении. При этом амплитудная частотная характеристика привода должна иметь и имеет полосу пропускания, превышающую угловую скорость вращения ракеты.

Следует также отметить, что область применения предлагаемого технического решения может быть расширена за счет использования его в области автоматического регулирования и управления, в следящих системах одноканальной части контура двумерных систем автоматического управления с однократной синусоидальной модуляцией и демодуляцией. Входным сигналом указанных следящих систем является сигнал управления с амплитудно-фазовой модуляцией сигнала несущей синусоидальной формы.

Двумерные системы образуют важный и широкий класс систем автоматического регулирования, в котором управление ведется по двум координатам. Особенно широкое распространение в современной технике получили двумерные системы с амплитудно-фазовой модуляцией сигнала в устройствах пространственного слежения, стабилизации и наведения. Примерами двумерных систем автоматического управления с двумя выходами и двумя входами могут служить летательные аппараты - снаряды, ракеты, самолеты, а также радиолокационные станции слежения.

Структурная схема простейшей двумерной следящей системы с однократной синусоидальной модуляцией сигнала представлена в книге Казамарова А.А., Палатника А.М., Роднянского Л.О. "Динамика двумерных систем автоматического регулирования". М.: "Наука", 1967, стр.95. На вход системы поступают по двум каналам управляющие воздействия, из которых вычитаются выходные величины, образуя рассогласования. Составляющие рассогласования поступают на модулятор, где преобразуются в модулированный сигнал с несущей частотой Ω. Сигнал с выхода модулятора, проходя через линейное усилительное звено с передаточной функцией Ку(р), поступает в фазовый демодулятор, где преобразуется в сигналы управления, передающиеся затем на исполнительный орган, выходом которого является выходные величины.

В общем случае это может быть двумерный контур с одноканальной системой управления, например, вращающейся ракеты с одноканальной системой управления. Вращающаяся управляемая ракета имеет в полете постоянное вращение вокруг продольной оси инерции, используемое для управления полетом. Управление по углам тангажа и рыскания в одноканальной системе управления осуществляется при наличии одного канала передачи и преобразования информации. В одноканальных системах управления вращающихся ракет информация вырабатывается и передается в виде сигналов переменного тока на частоте вращения ракеты с фазовой или амплитудно-фазовой модуляцией. Следящая система, используемая в одноканальной системе управления, должна иметь стабильные амплитудно-фазовые характеристики по первой гармонике выходного сигнала и при больших сигналах управления, соответствующих большим отклонениям.

Таким образом, предлагаемое техническое решение позволяет существенно повысить динамическую точность отработки рулевым приводом больших по уровню входных гармонических сигналов за счет уменьшения величины и разброса фазовых сдвигов отработки автоколебательным рулевым приводом гармонических входных сигналов на частотах вращения ракеты в широком диапазоне амплитуд входного сигнала существующих и вновь разрабатываемых комплексов управляемого ракетного вооружения вращающихся по крену управляемых ракет с использованием доступной элементной базы практически без увеличения массы и габаритов аппаратуры в управляемой ракете.

Автоколебательныйрулевойприводвращающейсяпокренууправляемойракеты,содержащийсумматор,первыйвходкоторогоявляетсявходомпривода,последовательносоединенныекорректирующийфильтр,релейныйэлемент,усилительмощностиирулевуюмашину,выходкоторойявляетсявыходомприводаисоединенчерезэлементобратнойсвязисвторымвходомсумматора,отличающийсятем,чтовнегодополнительновведеныпоследовательносоединенныедифференцирующеезвеноинелинейноезвено,имеющеелинейнуюстатическуюхарактеристикусзонойнечувствительности,величинакоторой,приведеннаяквходуприводаначастотевращенияракеты,равналинейнойзоневыходнойкоординатыпривода,приэтомвходдифференцирующегозвенасоединенсвходомпривода,авыходнелинейногозвена-сдополнительнымуправляющимвходомрелейногоэлемента.
Источник поступления информации: Роспатент

Показаны записи 111-120 из 438.
29.04.2019
№219.017.46f5

Воздушно-динамический рулевой привод

Изобретение относится к реактивным управляемым снарядам. Воздушно-динамический рулевой привод содержит корпус исполнительного двигателя с рабочими камерами, разделенными поворотной лопастью, связанной с осью рулей, и поворотный электромагнит с дисковым распределительным устройством, снабженным...
Тип: Изобретение
Номер охранного документа: 02167386
Дата охранного документа: 20.05.2001
29.04.2019
№219.017.46f6

Зенитная управляемая ракета

Изобретение относится к ракетной технике. Зенитная управляемая ракета состоит из отделяемой стартовой ступени и маршевой ступени с аппаратурой радиокомандного управления и блоком светового излучателя в задней части ступени. В блоке светового излучателя в качестве светового элемента установлен...
Тип: Изобретение
Номер охранного документа: 02167390
Дата охранного документа: 20.05.2001
29.04.2019
№219.017.46f8

Управляемый снаряд

Изобретение относится к области реактивных боеприпасов. Управляемый снаряд содержит корпус, обтекатель, головку самонаведения и аппаратуру управления, которые электрически соединены между собой с помощью контактов, расположенных в гнездах аппаратуры управления и штырей головки самонаведения,...
Тип: Изобретение
Номер охранного документа: 02167387
Дата охранного документа: 20.05.2001
29.04.2019
№219.017.4704

Управляемый снаряд

Изобретение относится к области реактивных боеприпасов. Управляемый снаряд содержит корпус, блок питания с обоймой и размещенные в ее гнездах термоэлектрические батареи и гироскоп, электрические штыри которых соединены с коммуникационной платой, установленной на стыке блока питания с корпусом....
Тип: Изобретение
Номер охранного документа: 02165588
Дата охранного документа: 20.04.2001
29.04.2019
№219.017.470e

Формирователь импульсной последовательности

Изобретение относится к импульсной технике и может быть использовано в системах автоматического управления и контрольно-измерительных устройствах. Предложено устройство, содержащее генератор опорной частоты (ГОП) (3), первый счетчик импульсов (СИ) (6), разрядные выходы которого соединены с...
Тип: Изобретение
Номер охранного документа: 02169988
Дата охранного документа: 27.06.2001
29.04.2019
№219.017.470f

Управляемый снаряд

Изобретение относится к реактивным артиллерийским боеприпасам. Управляемый снаряд выполнен по схеме "утка" с аэродинамическими рулями. Сопла маршевого двигателя расположены на боковой поверхности корпуса снаряда перед стабилизатором на расстоянии, равном двум-трем размахам одной его консоли от...
Тип: Изобретение
Номер охранного документа: 02166724
Дата охранного документа: 10.05.2001
29.04.2019
№219.017.4714

Управляемый снаряд

Изобретение относится к реактивным артиллерийским боеприпасам. Управляемый снаряд содержит корпус, блок электропитания в виде обоймы с гнездами, в которых размещены гироскоп и вокруг него термоэлектробатареи. На торце обоймы блока электропитания, со стороны головной части снаряда, жестко...
Тип: Изобретение
Номер охранного документа: 02166725
Дата охранного документа: 10.05.2001
29.04.2019
№219.017.4715

Управляемый снаряд

Изобретение относится к реактивным артиллерийским боеприпасам. Управляемый снаряд содержит корпус, аппаратуру управления, таймер, блок установок, магнитоэлектрический генератор и термоэлектробатарею запуска гироскопа. Таймер выполнен электронным в составе аппаратуры управления и электрически...
Тип: Изобретение
Номер охранного документа: 02166726
Дата охранного документа: 10.05.2001
29.04.2019
№219.017.4722

Устройство для досылания выстрела артиллерийского орудия

Изобретение относится к военной технике, в частности к устройствам для досылания выстрелов в канал ствола артиллерийского орудия. Техническим результатом изобретения является уменьшение линейных габаритов досылающего устройства и обеспечение плавного движения досылаемого выстрела. Сущность...
Тип: Изобретение
Номер охранного документа: 02148230
Дата охранного документа: 27.04.2000
29.04.2019
№219.017.4728

Способ проверки качества функционирования рулевых приводов и автопилотов управляемых снарядов и устройство для его осуществления

Изобретение относится к испытаниям силовых систем летательных аппаратов, преимущественно малогабаритных управляемых снарядов. Предлагаемый способ основан на замере времени запаздывания рулевого привода или автопилота при подаче на входы их каналов управления сигналов прямоугольной формы. При...
Тип: Изобретение
Номер охранного документа: 02181681
Дата охранного документа: 27.04.2002
Показаны записи 91-95 из 95.
25.04.2020
№220.018.1989

Управляемая пуля

Изобретение относится к области ракетной техники и может быть использовано в малогабаритных ракетных комплексах. Технический результат - уменьшение габаритов и массы управляемой пули при увеличении ее надежности. Управляемая пуля выполнена по двухступенчатой бикалиберной схеме и содержит...
Тип: Изобретение
Номер охранного документа: 0002719801
Дата охранного документа: 23.04.2020
25.04.2020
№220.018.199f

Способ управления пулей и управляемая пуля

Изобретение относится к области ракетной техники и может быть использовано в малогабаритных ракетных комплексах и, в том числе, пулях. Технический результат - увеличение точности стрельбы. По способу осуществляют разгон управляемой пули стартовым двигателем. Затем отделяют стартовый двигатель и...
Тип: Изобретение
Номер охранного документа: 0002719802
Дата охранного документа: 23.04.2020
05.06.2020
№220.018.2438

Способ поражения военной техники управляемыми боеприпасами

Изобретение относится к области вооружений и может быть использовано в противотанковых, зенитных ракетных комплексах, комплексах управляемого вооружения танков, а также в ракетных комплексах межвидового применения. Для поражения военной техники управляемыми боеприпасами осуществляют наведение...
Тип: Изобретение
Номер охранного документа: 0002722709
Дата охранного документа: 03.06.2020
23.05.2023
№223.018.6f48

Способ и устройство инициирования воздушно-динамического рулевого привода управляемой авиабомбы, способ проверки готовности воздушно-динамического рулевого привода перед сбросом управляемой авиабомбы, воздушно-динамический рулевой привод и аппаратура управления воздушно-динамическим рулевым приводом авиабомбы

Предлагаемая группа изобретений относится к области высокоточного оружия для авиационной техники. Изобретения могут быть использованы в качестве: способа инициирования воздушно-динамических рулевых приводов (далее по тексту - ВДРП) преимущественно управляемой авиабомбы (УАБ), а также...
Тип: Изобретение
Номер охранного документа: 0002748828
Дата охранного документа: 31.05.2021
27.05.2023
№223.018.721a

Отсек рулевого привода управляемой ракеты

Изобретение относится к области вооружения и, конкретно, к силовым элементам систем управления и может быть использовано в управляемых ракетах с аэродинамическими рулями. Технический результат - повышение мощности рулевого привода электромагнитного типа за счет параметров обмотки,...
Тип: Изобретение
Номер охранного документа: 0002743420
Дата охранного документа: 18.02.2021
+ добавить свой РИД