×
29.06.2019
219.017.9ccc

Результат интеллектуальной деятельности: ВЫСОКОНАПОРНЫЙ МНОГОСТУПЕНЧАТЫЙ КОМПРЕССОР ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002317447
Дата охранного документа
20.02.2008
Аннотация: Изобретение относится к высоконапорным многоступенчатым компрессорам газотурбинных двигателей авиационного и наземного применения. Техническая задача, на решение которой направлено изобретение, заключается в повышении КПД за счет регулирования радиальных зазоров между статором и ротором без использования дополнительных систем управления и исполнительных механизмов. В высоконапорном многоступенчатом компрессоре, включающем ступени компрессора с поворотными направляющими лопатками и последующие за ними ступени с фиксированными направляющими аппаратами, согласно изобретению, проточная часть n-ой ступени компрессора с фиксированными направляющими аппаратами соединена каналами с полостью обдува внутреннего корпуса последних ступеней компрессора, число которых определяют из соотношения: Z/Z=2,0-4,0, причем n=m+(1...3), где: m - число ступеней компрессора с поворотными направляющими аппаратами; Z - общее число ступеней компрессора; Z - число последних ступеней компрессора с регулируемым радиальным зазором между статором и ротором. 3 ил.

Изобретение относится к высоконапорным многоступенчатым компрессорам газотурбинных двигателей авиационного и наземного применения.

Известен высоконапорный многоступенчатый компрессор газотурбинного двигателя с рабочими и направляющими лопатками [С.А.Вьюнов. Конструкция и проектирование авиационных газотурбинных двигателей, Москва, «Машиностроение», 1981, стр.64, рис.3.8а].

Недостатком известной конструкции является отсутствие в компрессоре поворотных направляющих аппаратов, что снижает запас газодинамической устойчивости компрессора.

Наиболее близким к заявляемому является высоконапорный многоступенчатый компрессор газотурбинного двигателя, семь первых ступеней в котором, начиная от входа, выполнены с поворотными направляющими аппаратами [Патент РФ №2235919, F04D 29/00, 2004 г.].

В известной конструкции, принятой за прототип, обеспечиваются высокие запасы газодинамической устойчивости на всех режимах работы газотурбинного двигателя благодаря наличию большого количества поворотных направляющих аппаратов.

Недостатком такого компрессора является низкий КПД из-за утечек сжимаемого воздуха по зазорам в поворотных направляющих аппаратах.

Техническая задача, на решение которой направлено заявляемое изобретение, заключается в повышении КПД за счет регулирования радиальных зазоров между статором и ротором без использования дополнительных систем управления и исполнительных механизмов.

Сущность технического решения заключается в том, что в высоконапорном многоступенчатом компрессоре, включающем ступени компрессора с поворотными направляющими лопатками и последующие за ними ступени с фиксированными направляющими аппаратами, согласно изобретению, проточная часть n-ой ступени компрессора с фиксированными направляющими аппаратами соединена каналами с полостью обдува внутреннего корпуса последних ступеней компрессора, число которых определяют из соотношения: Z/Z1=2,0-4,0,

причем n=m+(1...3), где:

m - число ступеней компрессора с поворотными направляющими аппаратами;

Z - общее число ступеней компрессора;

Z1 - число последних ступеней компрессора с регулируемым радиальным зазором между статором и ротором.

В современных высокотемпературных многоступенчатых компрессорах рабочие и направляющие лопатки последних ступеней вследствие большой степени сжатия выполняются малой высоты, поэтому увеличение радиальных зазоров между статором и ротором существенно ухудшает КПД компрессора. Для повышения КПД компрессора применяется управление радиальными зазорами путем обдува холодным воздухом на основных режимах работы внутреннего корпуса компрессора, что приводит к уменьшению радиальных зазоров между статором и ротором и, следовательно, к повышению КПД.

На переходных низких режимах работы компрессора для исключения задевания ротора о статор и заклинивания ротора компрессора охлаждающий воздух отключают, для чего в каналах подачи охлаждающего воздуха предусмотрены заслонки, регулирующие расход охлаждающего воздуха. Заслонки приводятся в действие исполнительными механизмами, которые получают сигналы на срабатывание от системы управления газотурбинного двигателя. Такая система является дорогой, сложной и поэтому ненадежной.

В современных высокотемпературных многоступенчатых компрессорах, первые ступени со стороны входа в которых выполняются высоконапорными и с поворотными направляющими аппаратами, на пониженных переходных режимах для обеспечения необходимых запасов газодинамической устойчивости поворотные аппараты «прикрываются», что приводит к появлению нерасчетных углов атаки потоков воздуха на рабочие лопатки и работе первых ступеней компрессора в турбинном режиме, т.е. со снижением давления воздуха на выходе из этих ступеней по сравнению с давлением воздуха на входе в компрессор, например, с атмосферным давлением.

На последующих ступенях компрессора с фиксированными направляющими аппаратами давление воздуха повышается, достигая давления на входе в компрессор с дальнейшим постоянным ростом.

С переходом на основные режимы работы компрессора поворотные аппараты «раскрываются», и первые ступени компрессора начинают работать в компрессорном режиме, сжимая воздух.

Такая особенность высоконапорного многоступенчатого компрессора позволяет выполнить обдув внутреннего корпуса компрессора, последних его ступеней, холодным воздухом для регулирования радиальных зазоров между статором и ротором без регулирующих заслонок, исполнительных механизмов и системы управления, соединив каналами проточную часть одной из ступеней компрессора с фиксированным направляющими аппаратами, в которой давление воздуха на переходных режимах равно давлению воздуха на входе в компрессор (например, равно атмосферному), с полостью обдува внутреннего корпуса последних ступеней компрессора.

В этом случае на переходных режимах работы компрессора вследствие работы первых ступеней с поворотными направляющими аппаратами в газотурбинном режиме охлаждающий воздух в полость обдува внутреннего корпуса компрессора не поступает, и зазоры между статором и ротором максимальны. При переходе на основные режимы работы после открытия поворотных направляющих аппаратов давление воздуха за ними возрастает, охлаждающий воздух начинает поступать в систему обдува внутреннего корпуса, что приводит к уменьшению радиальных зазоров между ротором и статором по последним ступеням и повышению КПД компрессора.

Номер n-ной от входа ступени компрессора, откуда осуществляется отбор охлаждающего воздуха, выбран с учетом того, чтобы на низких режимах работы компрессора (на малом газе) не происходило обратного течения охлаждающего воздуха, вызывающего помпаж компрессора.

При n<(m+1) давление воздуха в проточной части в месте его отбора будет ниже давления воздуха в системе обдува, что может привести к течению воздуха из системы обдува в проточную часть компрессора, развитию срывных течений на лопатках и помпажу компрессора. При n>(m+3) возрастает давление и температура отбираемого на охлаждение воздуха на основных режимах работы компрессора, что ухудшает КПД компрессора.

В случае, когда Z/Z1<2,0, излишне снижается разница температур (температурный напор) между охлаждающим воздухом и температурой внутреннего корпуса, что снижает эффективность системы регулирования радиальных зазоров и КПД компрессора, а при Z/Z1>4 снижается количество ступеней компрессора с регулированием радиальных зазоров между ротором и статором, что также снижает КПД компрессора.

На фиг.1 представлен продольный разрез высоконапорного многоступенчатого компрессора газотурбинного двигателя заявляемой конструкции. На фиг.2 показан элемент I на фиг.1 в увеличенном виде, на фиг.3 - элемент II на фиг.1 в увеличенном виде.

Высоконапорный многоступенчатый компрессор 1 газотурбинного двигателя состоит из ротора 2, установленного на переднем 3 радиальном и заднем 4 радиально-упорном подшипниках, а также из статора 5, в переднем корпусе 6 которого со стороны входа 7 в компрессор 1 установлены входной поворотный направляющий аппарат 8 и поворотные направляющие аппараты первой и второй ступеней 9 и 10 соответственно. Направляющий аппарат 11 третьей ступени, а также направляющие аппараты последующих ступеней выполнены фиксированными, причем направляющие аппараты 12 последних ступеней 13 компрессора 1 установлены во внутреннем корпусе 14, отделенном от наружного корпуса 15 перфорированным дефлектором 16 и образующим с наружным корпусом 15 кольцевую замкнутую полость 17 обдува охлаждающим воздухом 18.

Для исключения термических напряжений внутренний 14 и наружный 15 корпусы соединены между собой передним и задним упругими элементами 19 и 20. Для сброса отработанного охлаждающего воздуха 18 в атмосферу 21 в наружном корпусе 15 выполнены отверстия 22.

Охлаждающий воздух 18 поступает в полость 17 по каналам 23 из полости отбора воздуха 24, соединенную отверстиями 25 в фиксированном спрямляющем аппарате 26 четвертой ступени с проточной частью 27 аппарата 26.

Так как при сжатии воздуха его температура повышается, для обеспечения необходимых запасов прочности диски 28 последних ступеней компрессора 1 выполняются с увеличенной толщиной.

Работает данное устройство следующим образом.

При работе высоконапорного многоступенчатого компрессора 1 на основных режимах охлаждающий воздух 18 из проточной части 27 направляющего аппарата 26 с фиксированными лопатками через отверстия 25 и полость отбора 24 по каналам 23 поступает в полость обдува 17, откуда через перфорированный дефлектор 16 струями натекает на внутренний корпус 14, соединенный с наружным корпусом 15 упругими элементами 19 и 20. За счет снижения температуры и температурной деформации корпуса 14 радиальные зазоры между статором 5 и ротором 2 по последним ступеням 13 компрессора 1 уменьшаются. Отработанный охлаждающий воздух 18 через отверстия 22 в наружном корпусе 15 сбрасывается в атмосферу 21.

При снижении режимов работы двигателя тонкостенный внутренний корпус 14 охлаждается быстрее массивных утолщенных дисков 28 последних ступеней, что могло бы привести к уменьшению радиальных зазоров между ротором 2 и статором 5 до нуля и заклиниванию ротора. Однако этого не происходит, так как для обеспечения необходимых запасов газодинамической устойчивости поворотные направляющие аппараты 8, 9 и 10 на входе 7 в компрессор 1 прикрываются, что приводит к падению давления воздуха 18 в полости отбора 24, снижению интенсивности охлаждения внутреннего корпуса 14 и увеличению радиальных зазоров между статором 5 и ротором 2 по последним ступеням 13 компрессора 1.

Таким образом осуществляется авторегулирование радиальных зазоров между статором 5 и ротором 2 последних ступеней компрессора без применения исполнительных механизмов и системы управления.

Номер n-ой от входа ступени компрессора, откуда осуществляется отбор охлаждающего воздуха, выбран с учетом того, чтобы на низких режимах работы компрессора 1, например на малом газе, не происходило обратного течения охлаждающего воздуха 18, т.е. через отверстия 22 и каналы 23, в проточную часть 27 спрямляющего аппарата 26, что может вызвать помпаж компрессора 1.

Одновременно, для осуществления эффективного регулирования, должен сохраняться достаточный температурный напор между отбираемым охлаждающим воздухом и температурой внутреннего корпуса 14.

Высоконапорныймногоступенчатыйкомпрессоргазотурбинногодвигателя,включающийступеникомпрессорасповоротныминаправляющимилопаткамиипоследующиезанимиступенисфиксированныминаправляющимиаппаратами,отличающийсятем,чтопроточнаячастьn-йступеникомпрессорасфиксированныминаправляющимиаппаратамисоединенаканаламисполостьюобдувавнутреннегокорпусапоследнихступенейкомпрессора,числокоторыхопределяютизсоотношенияZ/Z=2,0-4,0,причемn=m+(1...3),гдеm-числоступенейкомпрессорасповоротныминаправляющимиаппаратами;Z-общеечислоступенейкомпрессора;Z-числопоследнихступенейкомпрессорасрегулируемымрадиальнымзазороммеждустаторомиротором.
Источник поступления информации: Роспатент

Показаны записи 51-60 из 100.
25.08.2017
№217.015.b7c4

Раствор для смачивания поверхности восковых моделей для высокоточного литья

Изобретение относится к металлургии, в частности к технологии литья, и может использоваться в технологии высокоточного литья по выплавляемым моделям. Описан раствор для смачивания поверхности восковых моделей для высокоточного литья, включающий этиловый спирт и воду, дополнительно содержащий...
Тип: Изобретение
Номер охранного документа: 0002614944
Дата охранного документа: 31.03.2017
20.02.2019
№219.016.bd49

Камера сгорания газотурбинного двигателя

Камера сгорания газотурбинного двигателя включает наружный и внутренний корпуса, жаровую трубу в воздушной полости между ними и диффузор на входе с регламентированным срывом потока воздуха и перфорированной отверстиями радиально-конусной стенкой. Стенка выполнена за одно целое с внешним кольцом...
Тип: Изобретение
Номер охранного документа: 0002290566
Дата охранного документа: 27.12.2006
20.02.2019
№219.016.bd4a

Топливная форсунка камеры сгорания газотурбинного двигателя

Топливная форсунка камеры сгорания газотурбинного двигателя содержит корпус с каналами и со штуцерами основного и дополнительного контуров подвода топлива на основное и дополнительное сопла, расположенные в головке форсунки, а также установочный фланец крепления форсунки к наружному корпусу...
Тип: Изобретение
Номер охранного документа: 0002290565
Дата охранного документа: 27.12.2006
20.02.2019
№219.016.be89

Приемник давления

Изобретение относится к испытаниям воздушно-реактивных двигателей, в частности к измерению полного давления набегающего потока воздуха или газа. Техническим результатом изобретения является обеспечение замера полного давления без специальной ориентации приемника относительно потока. Приемник...
Тип: Изобретение
Номер охранного документа: 0002392598
Дата охранного документа: 20.06.2010
20.02.2019
№219.016.bea5

Система управления тягой газотурбинного двигателя самолета

Изобретение относится к системам управления силовыми газотурбинными установками. Система управления тягой газотурбинного двигателя самолета включает в себя вычислительный модуль (1) управления тягой, электронный регулятор (2), топливный насос-регулятор (4), тросовый механизм (7), а также...
Тип: Изобретение
Номер охранного документа: 0002393977
Дата охранного документа: 10.07.2010
20.02.2019
№219.016.bf00

Способ защиты газотурбинного двигателя от перегрева

Изобретение относится к области управления газотурбинными двигателями, в частности к способам защиты турбин авиационных газотурбинных двигателей (ГТД) от перегрева. Техническая задача заключается в повышении надежности за счет достоверной оценки теплового состояния выходящих газов за турбиной и...
Тип: Изобретение
Номер охранного документа: 0002315885
Дата охранного документа: 27.01.2008
20.02.2019
№219.016.bf4e

Газотурбинный насосный агрегат

Изобретение относится к наземным газотурбинным агрегатам для механического привода, а именно к установкам с насосным агрегатом. Газотурбинный насосный агрегат состоит из установленных в контейнере газотурбинного двигателя и соединенного с ним переходным валом редуктора, на выходе из которого...
Тип: Изобретение
Номер охранного документа: 0002386834
Дата охранного документа: 20.04.2010
20.02.2019
№219.016.c0df

Охлаждаемая лопатка турбины газотурбинного двигателя

Охлаждаемая лопатка турбины газотурбинного двигателя содержит полое перо и бандажную полку с уплотнительными гребешками. Уплотнительные гребешки установлены на периферийной стенке бандажной полки, образующей ее внутреннюю полость. На радиальное ребро внутренней полости пера установлена...
Тип: Изобретение
Номер охранного документа: 0002369748
Дата охранного документа: 10.10.2009
20.02.2019
№219.016.c30d

Способ автоматического управления тягой газотурбинных двигателей

Способ автоматического управления тягой газотурбинных двигателей (ГТД) заключается в изменении частот вращения n двигателей по программе n =f(L, Т, Р), где: L - угол поворота рычага управления двигателем, Твх - температура воздуха на входе в ГТД, Р - давление воздуха на входе в ГТД....
Тип: Изобретение
Номер охранного документа: 0002406849
Дата охранного документа: 20.12.2010
20.02.2019
№219.016.c30f

Способ эксплуатации газотурбинной установки

Изобретение относится к области эксплуатации газотурбинных установок, в частности оценке технического состояния газотурбинного двигателя и осуществлению контроля степени загрязнения газовоздушного тракта двигателя. Технический результат - повышение достоверности определения необходимости...
Тип: Изобретение
Номер охранного документа: 0002406990
Дата охранного документа: 20.12.2010
Показаны записи 51-60 из 91.
20.01.2016
№216.013.a08e

Двухконтурный газотурбинный двигатель

Изобретение относится к двухконтурным газотурбинным двигателям авиационного и наземного применения. Двухконтурный газотурбинный двигатель включает в себя валы (5) и (12) вентилятора (2) и турбины низкого давления (11), соединенные с помощью эвольвентных шлиц (13). Внутри вала (5) вентилятора...
Тип: Изобретение
Номер охранного документа: 0002572744
Дата охранного документа: 20.01.2016
10.06.2016
№216.015.45b5

Охлаждаемая лопатка высокотемпературной турбины

Охлаждаемая лопатка высокотемпературной турбины газотурбинного двигателя содержит во внутренней полости пера цилиндрические перемычки-турбулизаторы и радиальные ребра. На поверхностях внутренней полости пера лопатки, включая входную кромку и радиальные ребра, на выходе из...
Тип: Изобретение
Номер охранного документа: 0002586231
Дата охранного документа: 10.06.2016
12.01.2017
№217.015.5b61

Охлаждаемая рабочая лопатка турбомашины

Изобретение относится к охлаждаемым рабочим лопаткам турбомашин газотурбинных двигателей авиационного и наземного применения. В охлаждаемой рабочей лопатке турбомашины между замковым соединением хвостовика и пером лопатки выполнена удлиненная ножка, внутренняя щелевая полость которой выполнена...
Тип: Изобретение
Номер охранного документа: 0002589895
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6a0b

Турбореактивный двигатель

Изобретение относится к авиационным турбореактивным двигателям, включая двигатели для сверхзвуковых многорежимных самолетов. В турбореактивном двигателе с внешней стороны от канала наружного контура выполнен канал третьего контура, образованный на входе в двигатель промежуточными полками...
Тип: Изобретение
Номер охранного документа: 0002592937
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.7c00

Высоконапорный компрессор газотурбинного двигателя

Изобретение относится к высоконапорным компрессорам газотурбинных двигателей авиационного и наземного применения. Высоконапорный компрессор включает в себя консольные лопатки поворотного направляющего аппарата, установленные внешними цапфами в Г-образном кольцевом ребре наружного корпуса....
Тип: Изобретение
Номер охранного документа: 0002600479
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8fa8

Устройство для присоединения реверсивного устройства к переднему корпусу двигателя

Изобретение относится к двигателестроению, а именно к реверсивным устройствам газотурбинных двигателей. Устройство для присоединения реверсивного устройства к переднему корпусу двигателя включает «пушечный» замок с подвижным кольцом. Подвижное кольцо выполнено цельным по окружности, имеет...
Тип: Изобретение
Номер охранного документа: 0002605160
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.9097

Турбореактивный двигатель с прямоугольным соплом

Изобретение относится к турбореактивным двигателям авиационного применения, предназначенным для длительной работы на сверхзвуковом самолете. Турбореактивный двигатель включает прямоугольное сопло, выполненное с удлиненной нижней стенкой сопла с выпукло-вогнутой трактовой поверхностью на выходе,...
Тип: Изобретение
Номер охранного документа: 0002603945
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.b103

Газотурбинный двигатель

Изобретение относится к двигателестроению, а именно к газотурбинным двигателям авиационного и наземного применения. Газотурбинный двигатель включает компрессор высокого давления, спрямляющий аппарат которого размещен на двух упругих обечайках диффузора камеры сгорания. Спрямляющий аппарат...
Тип: Изобретение
Номер охранного документа: 0002613101
Дата охранного документа: 15.03.2017
13.02.2018
№218.016.268f

Упругодемпферная опора турбины

Изобретение относится к упругодемпферным опорам турбин газотурбинных двигателей авиационного и наземного применения. Упругодемпферная опора турбины, содержащая корпус опоры с установленными внутри корпуса внешним и внутренним упругими элементами с щелевой масляной полостью между ними, а также...
Тип: Изобретение
Номер охранного документа: 0002644003
Дата охранного документа: 06.02.2018
04.04.2018
№218.016.2fcc

Газотурбинный двигатель

Изобретение относится к газотурбинным двигателям авиационного и наземного применения. Газотурбинный двигатель содержит газогенератор, выход которого соединен с силовой свободной турбиной. Выход из газогенератора дополнительно соединен с реактивным соплом, выполненным в виде секторов и...
Тип: Изобретение
Номер охранного документа: 0002644660
Дата охранного документа: 13.02.2018
+ добавить свой РИД