×
27.06.2019
219.017.9930

СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И СПОСОБ ОЧИСТКИ ГАЗОВЫХ СМЕСЕЙ ОТ ОКСИДА УГЛЕРОДА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к катализатору и процессу каталитического метода очистки газовых смесей от оксида углерода. Описан способ приготовления оксидного медно-цериевого катализатора процесса очистки газовых смесей от СО, в котором синтез катализатора ведут через получение полимерного предшественника, для получения которого используют соли меди и церия, а также лимонную кислоту и этиленгликоль с последующей температурной обработкой. Также описан способ очистки газовых смесей от оксида углерода путем окисления оксида углерода кислородом в присутствии катализатора при температуре не ниже 20°С и давлении не ниже 0,1 атм, в котором в качестве катализатора используют катализатор, приготовленный описанным выше способом. Технический результат - упрощение метода приготовления активных катализаторов при сохранении их высокой активности. 2 н. и 5 з.п. ф-лы, 4 табл.
Реферат Свернуть Развернуть

Изобретение относится к катализатору и процессу каталитического метода очистки газовых смесей от оксида углерода. Такие газовые смеси, кроме оксида углерода, могут содержать различные количества диокисида углерода, паров воды, водорода и других органических соединений, преимущественно спиртов, эфиров и углеводородов. Например, одной из актуальных задач в настоящее время является очистка водородсодержащих смесей от СО.

Водород - один из самых важных индустриальных газов, широко использующийся в металлургической, химической, нефтехимической и пищевой промышленности. Также он может быть использован в качестве топлива для топливных элементов.

Водород может быть получен в каталитическом химическом процессе, например, из различного углеводородного сырья (бензин, природный газ, спирты, диметиловый эфир и др.). Это углеводородное сырье при помощи паровой и/или кислородной конверсии и последующей паровой конверсии оксида углерода перерабатывают в водородсодержащую газовую смесь. Такая смесь обычно состоит из Н2, CO2, N2, H2O и ~1 об.% СО. Известно, что оксид углерода при концентрации больше 0.001 об.% (10 ppm) является ядом для топливного электрода. Следовательно, такую водородсодержащую газовую смесь необходимо очищать от оксида углерода перед ее подачей в топливный элемент. Одним из возможных методов очистки газовой смеси от оксида углерода является процесс селективного окисления СО.

Известны реакции, протекающие при осуществлении такой очистки:

2СО+O2→2СО2

2+O2→2Н2О (газ)

Показателями эффективности очистки водородсодержащих газовых смесей от СО являются концентрация СО на выходе из реактора и селективность по кислороду, которая определяется как отношение количества кислорода, потраченного на окисление СО, к количеству кислорода, израсходованному по обеим реакциям:

Известны катализатор, способ его приготовления и способ проведения реакции окисления оксида углерода в присутствии водорода [Заявка WO 0160738, B0J 23/00, 23.08.2001], где в качестве катализатора используют оксидную систему CuxCe1-xO2-y (х - изменяется от 0,01 до 0,3, а y эквивалентен или больше, чем х). Катализатор готовят методом соосаждения. Недостаток данного способа приготовления заключается в проведении большого количества последовательных процедур: соосаждение солей меди и церия из водного раствора путем добавления в раствор щелочи, фильтрование получившегося осадка, промывание осадка теплой водой, сушка осадка, прокаливание осадка при температуре выше 500°С.

Известен метод синтеза каталитической оксидной системы CuxCe1-xO2-y горением смеси солей нитратов меди и церия, содержащих мочевину [Avgouropoulos G., Ioannides Т. // Appl. Catal. A: General, 2003, vol.244, рр.155-167]. Недостатком метода является резкое воспламенение получаемого катализатора во время процедуры прокаливания, приводящее к спеканию и существенному уменьшению его удельной поверхности.

Известен также золь-гель метод синтеза медно-цериевого оксидного катализатора [Pintar A., Batista J., Hocevar S., J. Coll Interface Science 2005, vol.285, pp.218-231]. Метод содержит большое количество процедур, включающих выдерживание растворов солей меди и церия в раздельных емкостях, в которые добавляется водный раствор перекиси H2O2, после окончания реакции в обоих сосудах растворы смешиваются и после испарения оставшегося количества перекиси добавляется этиловый спирт. Получившийся раствор в течение долгого времени высушивают на воздухе для испарения спирта. Полученный ксерогель прокаливают при температуре 400°С. Недостатком метода является наличие большого количества последовательных процедур, что существенно усложняет процесс приготовления катализатора.

Другим известным способом приготовления каталитической оксидной системы CuxCe1-xO2-y является метод пропитки [Avgouroponlos G., Ioarnnides Т., Matralis H., Appl. Cat. В: Environmental, 2005, vol.56 pp.87-93]. Вначале одним из вышеуказанных методов или каким-либо другим способом готовят оксид церия, после чего его пропитывают водным раствором соли меди; полученный катализатор высушивают на воздухе при комнатной или повышенной температуре и затем прокаливают при температуре выше 200°С. Недостатком метода также является наличие большого количества последовательных процедур, что существенно усложняет процесс приготовления катализатора.

Наиболее близким является метод синтеза медно-цериевого оксидного катализатора обработкой раствора смеси солей меди и церия с лимонной кислотой в гидротермальном режиме с последующей сушкой и прокалкой [Avgouropoulos G., Ioannides Т. // Appl. Catal. B: Environmental 2006, vol.67, pp.1-11]. Недостатком метода является наличие стадии гидротермальной обработки при высоком давлении, что существенно усложняет процесс приготовления катализатора.

Изобретение решает задачу упрощения метода приготовления активных катализаторов процесса очистки газовых смесей от СО при сохранении высокой активности.

Предлагаемый способ приготовления оксидного медно-цериевого катализатора через образование полимерного предшественника позволяет максимально упростить процесс его приготовления и достичь высокодисперсного состояния катализатора.

Задача решается способом приготовления оксидного медно-цериевого катализатора процесса очистки газовых смесей от СО, по которому синтез катализатора ведут через получение полимерного предшественника, для получения которого используют соли меди и церия, а также лимонную кислоту и этиленгликоль с последующей температурной обработкой.

Азотнокислые соли меди и церия, а также лимонную кислоту и этиленгликоль берут в соотношениях: лимонная кислота к сумме катионов 0,5-3,0, предпочтительно 1,0; этиленгликоль к лимонной кислоте 0,5-3,0, предпочтительно 2,0.

Температурную обработку полимерного предшественника осуществляют при подъеме температуры со скоростью 0,1-1,0°С в 1 мин до температуры в интервале 280-900°С, предпочтительно до 300-400°С.

Катализатор содержит 1-30 мас.% меди, предпочтительно 5-10 мас.%.

Процесс приготовления позволяет вводить в оксидный медно-цериевый катализатор одновременно с его синтезом различные компоненты в виде соединений переходных, редкоземельных, щелочноземельных металлов и металлов III и IV группы Периодической системы химических элементов.

Отличительной особенностью метода является высокая степень дисперсности получающихся оксидных композиций, а также простота его выполнения, позволяющая проводить синтез от загрузки исходных компонентов до выгрузки продукта без промежуточных стадий.

Задача решается также способом очистки газовых смесей от оксида углерода путем окисления оксида углерода на катализаторе, описанном выше. Процесс осуществляют при температуре не ниже 20°С, давлении не ниже 0.1 атм.

Очищаемая газовая смесь может содержать в своем составе водород, диоксид углерода, пары воды и другие органические соединения, преимущественно спирты, эфиры и углеводороды, а также любые их комбинации.

Предлагаемое изобретение иллюстрируется следующими примерами, описывающими способ приготовления катализаторов, и примерами, описывающими результаты испытаний катализаторов в процессе очистки газовых смесей от СО. Весь процесс приготовления катализаторов проводят в реакционном сосуде из термостойкого материала.

Примеры 1-9 иллюстрируют приготовление катализаторов.

Пример 1 (приготовление оксидного медно-цериевого катализатора, содержащего 1 мас.% Cu).

К 58 мл 1М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 0,405 г Cu(NO3)2·3H2O и 12, 45 г лимонной кислоты (ЛК), добиваясь растворения кристаллов нитрата меди и ЛК. По истечении 1 ч к полученному раствору добавляют 7,45 г этиленгликоля (ЭГ), после чего температуру поднимают до 400°С, со скоростью 0,1-0,5 градуса в минуту. По достижении 400°С катализатор выдерживают при этой температуре в течение 2 ч.

Пример 2 (приготовление оксидного медно-цериевого катализатора, содержащего 5 мас.% Cu).

К 110 мл 0,5М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 1,91 г Cu(NO3)2·3Н2О, и 13,24 г ЛК, добиваясь растворения кристаллов нитрата меди и ЛК. По истечении 1 ч к полученному раствору добавляют 7,32 г ЭГ. Последующую обработку проводят аналогично примеру 1.

Пример 3 (приготовление оксидного медно-цериевого катализатора, содержащего 10 мас.% Cu).

К 86 мл 0,5М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 3,02 г Cu(NO3)2·3H2O и 11,58 г ЛК, добиваясь растворения кристаллов нитрата меди и ЛК. По истечении 1 ч к полученному раствору добавляют 6,85 г ЭГ. Последующую обработку проводят аналогично примеру 1.

Пример 4 (приготовление оксидного медно-цериевого катализатора, содержащего 12 мас.% Cu).

К 100 мл 0,5М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 4,42 г Cu(NO3)2·3H2O, и 13,41 г ЛК, добиваясь растворения кристаллов нитрата меди и ЛК. По истечении 1 ч к полученному раствору добавляют 7,96 г ЭГ. Последующую обработку проводят аналогично примеру 1.

Пример 5 (приготовление оксидного медно-цериевого катализатора, содержащего 15 мас.% Cu).

К 100 мл 0,5М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 5,69 г Cu(NO3)2·3H2O, и 15,33 г ЛК, добиваясь растворения кристаллов нитрата меди и ЛК. По истечении 1 ч к полученному раствору добавляют 9,08 г ЭГ. Последующую обработку проводят аналогично примеру 1.

Пример 6 (приготовление оксидного медно-цирконий-цериевого катализатора, содержащего 5 мас.% Cu и 0,1 мас.% ZrO2).

К 110 мл 0,5М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 1,91 г Cu(NO3)·3H2O, 0,02 г ZrO(NO3)2·2H2O и 13,5 г ЛК, добиваясь растворения кристаллов нитратов меди и цирконила и ЛК. По истечении 1 ч к полученному раствору добавляют 7,47 г ЭГ. Последующую обработку проводят аналогично примеру 1.

Пример 7 (приготовление оксидного медно-алюминий-цериевого катализатора, содержащего 5 мас.% Cu и 3 мас.% Al2O3).

К 110 мл 0,5М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 1,91 г Cu(NO3)2·3H2O, 1.09 г Al(NO3)3·9H2O и 13,85 г ЛК, добиваясь растворения кристаллов нитратов меди алюминия и ЛК. По истечении 1 ч к полученному раствору добавляют 7,67 г ЭГ. Последующую обработку проводят аналогично примеру 1.

Пример 8 (приготовление оксидного медно-лантано-цериевого катализатора, содержащего 5 мас.% Cu и 0.5 мас.% La2O3).

К 110 мл 0,5М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 1,91 г Cu(NO3)2·3H2O, 0,07 г La(NO3)3·6H2O и 13,5 г ЛК, добиваясь растворения кристаллов нитратов меди и лантана и ЛК. По истечении 1 ч к полученному раствору добавляют 7,45 г ЭГ. Последующую обработку проводят аналогично примеру 1.

Пример 9 (приготовление оксидного медно-самарий-цериевого катализатора, содержащего 5 мас.% Cu и 0,5 мас.% Sm2O3).

К 110 мл 0,5 М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 1,91 г Cu(NO3)2·3H2O, 0,064 г Sm(NO3)3·6H2O и 13,5 г ЛК, добиваясь растворения кристаллов нитратов меди и самария и ЛК. По истечении 1 ч к полученному раствору добавляют 7,45 г ЭГ. Последующую обработку проводят аналогично примеру 1.

Пример 10 (приготовление оксидного медно-барий-цериевого катализатора, содержащего 5 мас.% Cu и 0,1 мас.% ВаО).

К 110 мл 0,5 М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 1,91 г Cu(NO3)2·3H2O, 0,017 г Ва(NO3)2 и 13,5 г ЛК, добиваясь растворения кристаллов нитратов меди и бария и ЛК. По истечении 1 ч к полученному раствору добавляют 7,45 г ЭГ. Последующую обработку проводят аналогично примеру 1.

Полученные катализаторы имеют высокую удельную поверхность, преимущественно более 80 м2/г. Размер частиц оксида церия, определенный при помощи метода рентгенофазового анализа составляет не более 8 нм, преимущественно 2-5 нм; соединения меди, а также добавки различных соединений металлов методом рентгенофазового анализа не детектируются, что свидетельствует о высокой дисперсности этих компонентов в катализаторе.

Примеры 11-14 иллюстрируют испытание катализаторов.

Процесс очистки газовых смесей от оксида углерода проводят в проточном реакторе с одним слоем катализатора. Реактор представляет собой кварцевую трубку с внутренним диаметром 3 мм. Слой состоит из 0,125 г катализатора. В качестве катализаторов берут оксидные медно-цериевые образцы. Объемную скорость варьируют в интервале 1000-250000 ч-1, температуру слоя катализатора - в интервале 20-400°С. Реакция протекает в интервале давлений 1-10 атм. Реакционная газовая смесь имеет состав, об.%: СО 0,01-66,6, O2 0,005-33,3, Н2 0-99,985, CO2 0-99,985, H2O 0-99,985, N2 0-99,985, СН3ОН 0-5, СН3ОСН3 0-5, СН4 0-5.

Пример 11. Процесс очистки газовых смесей от оксида углерода осуществляют в проточном реакторе на медно-цериевом оксидном образце с содержанием 5 мас.% Cu, приготовленном по примеру 2, при объемной скорости 15000 ч-1 и атмосферном давлении. Реакционная газовая смесь содержит, об.%: 1 СО, 1,5 O2, 69 Н2, 18 CO2, 10 H2O, 0,5 СН4. Полученные результаты приведены в таблице 1.

Таблица 1.
Температура, °С Концентрация СО на выходе из реактора, об.%
160 0,001
170 0,001

Пример 12. Процесс, аналогичный примеру 11, проводят на медно-цериевом оксидном образце с содержанием 10 мас.% Cu, приготовленном по примеру 3, при объемной скорости 45000 ч-1 и атмосферном давлении. Реакционная газовая смесь содержит, об.%: 1 СО, 1,5 О2, 69 Н2, 0,5 СН3ОН. Полученные результаты приведены в таблице 2.

Таблица 2.
Температура, °С Концентрация СО на выходе из реактора, об.%
150 0,001
130 0,0007

Пример 13. Процесс, аналогичный примеру 11, проводят на медно-алюминий-цериевом оксидном образце с содержанием 5 мас.% Cu и 3 мас.%

Al2O3, приготовленном по примеру 7, при объемной скорости 5000 ч-1 и давлении 3 атм. Реакционная газовая смесь содержит, об.%: 0,5 СО, 0,25 O2, 99 N2, 0,25 СН3ОСН3. Полученные результаты приведены в таблице 3.

Таблица 3.
Температура, °С Концентрация СО на выходе из реактора, об.%
80 0,001
90 0,0006
100 0,0006

Пример 14. Процесс, аналогичный примеру 11, проводят на медно-лантано-цериевом оксидном образце с содержанием 5 мас.% Cu и 0.5 мас.%

La2O3, приготовленном по примеру 8, при объемной скорости 1000 ч-1 и атмосферном давлении. Реакционная газовая смесь содержит, об.%: 1 СО, 0,5 О2, 98,5 N2. Полученные результаты приведены в таблице 4.

Таблица 4.
Температура, °С Концентрация СО на выходе из реактора, об.%
90 0,0003
100 0,0004
110 0,0006

Таким образом, как видно из примеров и таблиц, предлагаемое изобретение позволяет эффективно осуществлять процесс очистки газовых смесей до уровня содержания СО меньше 0,001 об.% (т.е. 10 ppm), при этом предлагаемый способ приготовления оксидных медно-цериевых катализаторов максимально упрощается, достигаются высокодисперсное состояние катализатора и его высокая активность. Предлагаемый способ также предоставляет широкую возможность варьирования состава катализатора без усложнения процесса его приготовления путем добавления к исходной смеси солей меди и церия других солей переходных, редкоземельных, щелочноземельных металлов и металлов III и IV группы периодической системы химических элементов.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 23.
20.02.2019
№219.016.bda2

Катализатор и способ конверсии аммиака

Изобретение относится к катализаторам и процессам окисления аммиака в производстве слабой азотной кислоты. Описаны катализатор конверсии аммиака на основе смешанных оксидов блочной структуры и способ окисления аммиака в производстве слабой азотной кислоты. Катализатор представляет собой...
Тип: Изобретение
Номер охранного документа: 0002251452
Дата охранного документа: 10.05.2005
20.02.2019
№219.016.beeb

Катализатор, способ получения носителя, способ получения катализатора и процесс гидрообессеривания дизельных фракций

Изобретение относится к катализаторам, предназначенным для глубокой гидроочистки углеводородного сырья, в частности дизельных фракций, от сернистых соединений, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Описан катализатор для процессов гидрообессеривания...
Тип: Изобретение
Номер охранного документа: 0002311959
Дата охранного документа: 10.12.2007
11.03.2019
№219.016.da3a

Способ получения полиэтилена

Изобретение относится к способу получения полиэтилена с узким молекулярно-массовым распределением (ММР) и с возможностью получения ПЭ с различной молекулярной массой. Описан способ получения полиэтилена с повышенным индексом расплава и узким молекулярно-массовым распределением в режиме...
Тип: Изобретение
Номер охранного документа: 0002303605
Дата охранного документа: 27.07.2007
20.03.2019
№219.016.e6aa

Способ получения сверхвысокомолекулярного полиэтилена

Изобретение относится к способу получения сверхвысокомолекулярного полиэтилена. Описан способ получения сверхвысокомолекулярного полиэтилена в режиме суспензии при температуре 40 - меньше 70°С в среде углеводородного растворителя с использованием нанесенного катализатора, содержащего соединение...
Тип: Изобретение
Номер охранного документа: 0002303608
Дата охранного документа: 27.07.2007
20.03.2019
№219.016.e701

Способ и устройство для импульсной тепловой обработки сыпучих материалов

Изобретение относится к способу и устройству термохимической активации (термоактивации) продуктов в производстве катализаторов, их носителей, адсорбентов, осушителей, наполнителей, керамики, магнитных материалов, неорганических пигментов, твердых электролитов, лекарственных и косметических...
Тип: Изобретение
Номер охранного документа: 0002361160
Дата охранного документа: 10.07.2009
20.03.2019
№219.016.e721

Катализатор, способ его приготовления и активации и способ фторирования галогенированных углеводородов

Изобретение относится к области химической промышленности, к катализаторам, которые могут использоваться в реакциях газофазного фторирования галогенированных углеводородов. Описан катализатор фторирования галогенированных углеводородов газообразным фтористым водородом, включающий оксид хрома...
Тип: Изобретение
Номер охранного документа: 0002322291
Дата охранного документа: 20.04.2008
10.04.2019
№219.016.ff9c

Способ и устройство для импульсной тепловой обработки сыпучих материалов

Изобретение относится к способу и аппаратурному оформлению процессов кратковременной тепловой обработки сыпучих материалов и может быть использовано в химической, пищевой, деревообрабатывающей промышленности и др. Способ импульсной тепловой обработки сыпучих материалов включает стадии испарения...
Тип: Изобретение
Номер охранного документа: 0002264589
Дата охранного документа: 20.11.2005
10.04.2019
№219.017.005e

Носитель катализатора (варианты)

Изобретение относится к конструкции и составу носителя на основе сетчатой ткани из стеклянного, кремнеземного или другого неорганического волокна, обработанного составами, придающими сеткам жесткость и предотвращающими разрушение волокон вследствие деформации, применяемого преимущественно для...
Тип: Изобретение
Номер охранного документа: 0002298435
Дата охранного документа: 10.05.2007
10.04.2019
№219.017.05db

Катализатор, способ его приготовления и способ получения синтез-газа

Изобретение относится к катализаторам автотермической конверсии углеводородного топлива для получения синтез-газа. Синтез-газ может быть использован в химических производствах, для сжигания в каталитических тепловых установках, в водородной энергетике. Описан катализатор получения синтез-газа,...
Тип: Изобретение
Номер охранного документа: 0002320408
Дата охранного документа: 27.03.2008
29.04.2019
№219.017.3ee1

Способ получения полимеров и олигомеров, содержащих функциональные группы

Изобретение относится к способу получения полимеров или олигомеров, содержащих в своем составе карбонильные функциональные группы. Описан способ получения полимеров или олигомеров, содержащих функциональные карбонильные группы, путем оксигенирования двойных связей С=С полимеров и олигомеров с...
Тип: Изобретение
Номер охранного документа: 0002280044
Дата охранного документа: 20.07.2006
Показаны записи 1-10 из 23.
10.04.2014
№216.012.af69

Способ приготовления биметаллического катализатора окисления

Изобретение относится к области катализа. Описан способ приготовления биметаллического золотомедного катализатора окисления, включающий последовательные стадии нанесения предшественников металлов на носитель, и термообработки, в качестве предшественников золота и меди используют анионные и...
Тип: Изобретение
Номер охранного документа: 0002510620
Дата охранного документа: 10.04.2014
20.08.2014
№216.012.ecec

Способ приготовления катализатора и способ получения пероксида водорода

Изобретение относится к способу получения катализатора окисления водорода молекулярным кислородом до пероксида водорода, включающему стадии нанесения предшественников металлов, а именно золота и палладия, на носитель и термообработки. При этом в качестве предшественников золота и палладия...
Тип: Изобретение
Номер охранного документа: 0002526460
Дата охранного документа: 20.08.2014
20.11.2014
№216.013.089f

Катализатор и способ получения обогащенной по водороду газовой смеси из диметоксиметана

Изобретение относится к катализаторам, используемым в реакции паровой конверсии диметоксиметана, а именно к катализатору для получения обогащенной по водороду газовой смеси взаимодействием диметоксиметана и паров воды. Предлагаемый катализатор является бифункциональным и содержит на поверхности...
Тип: Изобретение
Номер охранного документа: 0002533608
Дата охранного документа: 20.11.2014
20.11.2015
№216.013.914a

Катализатор, способ его приготовления и процесс обогащения смесей углеводородных газов метаном

Изобретение относится к нефтяной и газовой промышленности, в частности к переработке попутных нефтяных газов (ПНГ). Описан катализатор для обогащения метаном смесей углеводородных газов, который содержит в основном никель в количестве 25-60 мас. %, хром в пересчете на CrO в количестве 5-35%,...
Тип: Изобретение
Номер охранного документа: 0002568810
Дата охранного документа: 20.11.2015
19.01.2018
№218.016.0016

Катализатор, способ его приготовления и способ очистки водородсодержащих газовых смесей от оксида углерода

Изобретение относится к катализатору очистки обогащенных водородом газовых смесей от оксида углерода путем селективного метанирования оксида углерода, при этом катализатор содержит кобальтцериевую оксидную систему, содержащую в своем составе хлор. Катализатор готовят взаимодействием соединений...
Тип: Изобретение
Номер охранного документа: 0002629363
Дата охранного документа: 29.08.2017
04.04.2018
№218.016.30ee

Способ подготовки попутных нефтяных газов селективной паровой конверсией

Изобретение относится к способам подготовки углеводородных газов паровой конверсией и может быть применено, например, для подготовки попутного нефтяного газа к использованию или трубопроводному транспорту в нефтяной и газовой промышленности. Способ подготовки попутных нефтяных газов селективной...
Тип: Изобретение
Номер охранного документа: 0002644890
Дата охранного документа: 14.02.2018
18.05.2018
№218.016.51a1

Способ приготовления катализатора

Изобретение относится к области приготовления катализаторов, которые могут быть использованы в процессах окислительной конверсии углеводородов и селективного окисления кислородсодержащих органических соединений, гидрирования оксидов углерода и ненасыщенных углерод-углеродных и...
Тип: Изобретение
Номер охранного документа: 0002653360
Дата охранного документа: 08.05.2018
05.09.2018
№218.016.8305

Способ приготовления катализатора для конверсии углеводородных топлив в синтез-газ и процесс конверсии с применением этого катализатора

Изобретение относится к катализаторам, способам их приготовления и применения в процессах конверсии различных видов углеводородных топлив, таких как природный газ, дизельное топливо, сжиженный углеводородный газ (СУГ), в синтез-газ. Описан способ приготовления катализатора конверсии...
Тип: Изобретение
Номер охранного документа: 0002665711
Дата охранного документа: 04.09.2018
24.01.2019
№219.016.b377

Катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира и воздуха

Изобретение относится к каталитическому способу осуществления реакции парциального окисления диметилового эфира (ДМЭ). Описано применение медьсодержащей системы, нанесенной на оксид алюминия, в качестве катализатора для получения обогащенной по водороду газовой смеси парциальным окислением...
Тип: Изобретение
Номер охранного документа: 0002677875
Дата охранного документа: 22.01.2019
+ добавить свой РИД