×
29.04.2019
219.017.3ee1

СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРОВ И ОЛИГОМЕРОВ, СОДЕРЖАЩИХ ФУНКЦИОНАЛЬНЫЕ ГРУППЫ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002280044
Дата охранного документа
20.07.2006
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу получения полимеров или олигомеров, содержащих в своем составе карбонильные функциональные группы. Описан способ получения полимеров или олигомеров, содержащих функциональные карбонильные группы, путем оксигенирования двойных связей С=С полимеров и олигомеров с помощью закиси азота в присутствии в качестве газа-разбавителя одного из алканов C-C или их смеси с последующим возможным превращением карбонильных групп в функциональные группы другого типа. Процесс может проводиться в присутствии стабилизаторов, повышающих термическую стабильность полимеров или олигомеров. Технический результат - увеличение производительности процесса при обеспечении полной взрывобезопасности. 5 з.п. ф-лы, 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к способу получения полимеров и олигомеров, содержащих в своем составе функциональные карбонильные группы, которые с помощью известных способов могут быть далее превращены в функциональные группы других типов.

Известным способом получения функционализированных полимеров и олигомеров является их химическое модифицирование путем введения различных функциональных групп либо на стадии полимеризации (олигомеризации), либо в уже готовые полимеры и олигомеры.

Одним из перспективных способов введения функциональных групп в полимеры, содержащие двойные углерод-углеродные связи, является их оксигенирование с помощью N2O, приводящее к превращению C=C связей в карбонильные группы С=O [Пат. РФ №2230754, C 08 F 8/06, 20.06.2004; Пат. РФ №2235102, C 08 F 8/06, 27.08.2004]:

где: R1 - углеводородный радикал, R2 - углеводородный радикал или атом водорода. Реакция проводится при температуре 50-350°С и давлении N2O 0,01-100 атм.

Известно, что закись азота способна образовывать воспламеняемые смеси с органическими соединениями [G.Panetier, A.Sicard, V symposium on Combustion, 1955, р.602]. В соответствии с вышеописанным способом для повышения взрывобезопасности процесса в реакционную смесь в качестве газа-разбавителя добавляют инертный газ, не вступающий в реакцию с N2O, например азот, аргон, гелий и т.д., либо их смесь. Однако это решение имеет тот недостаток, что инертный газ является неэффективным разбавителем и для обеспечения полной взрывобезопасности требуется применение сильно разбавленных смесей закиси азота. Так, смесь N2O+N2 становится безопасной для введения в нее любого органического вещества в любой концентрации лишь при минимальной концентрации азота 75 мол. % [Б.Б.Брандт, Л.А.Матов, А.И.Розловский, В.С.Хайлов, Хим. пром., 1960, №5, с.67-73]. Столь сильное разбавление резко снижает скорость реакции оксигенирования полимера при сохранении общего давления.

Данное изобретение решает задачу разработки взрывобезопасного способа получения полимеров или олигомеров, содержащих карбонильные функциональные группы.

Данное изобретение описывает способ получения полимеров или олигомеров, содержащих карбонильные функциональные группы С=O, в котором взрывобезопасность процесса достигается путем оксигенирования исходного полимера или олигомера, содержащего двойные углерод-углеродные связи, закисью азота - N2О при температуре 50-350°С и давлении закиси азота 0,01-100 атм в присутствии газа-разбавителя, в качестве которого используют один из алканов C14 или любую их смесь.

Содержание алканов может составлять от 1 до 90 мол.% от содержания N2O. Оксигенирование полимера или олигомера можно проводить в присутствии растворителя. Полимер или олигомер может находиться в виде эмульсии (латекса). Оксигенирование можно проводить в присутствии стабилизатора, повышающего термическую стабильность полимера или олигомера. В качестве газа-разбавителя можно использовать смесь алканов C1-C4 с инертным газом, например азотом, аргоном, гелием, углекислым газом, содержащую от 1 до 90 мол.% инертного газа.

Таблица
Минимальное содержание алкана в смеси с N2O, при котором обеспечивается ее взрывобезопасность при добавлении других органических соединений
АлканВерхний предел распространения пламени для смеси алкана с N2O (мол. %)
Метан40
Этан˜31a)
Пропан24,8
Бутан21,5
a)значение для этана получено из зависимости верхнего предела распространения пламени от количества атомов углерода в алканах.

В таблице приведены минимальные концентрации алканов C1-C4 в смесях с N2O [Б.Б.Брандт, Л.А.Матов, А.И.Розловский, В.С.Хайлов. Хим. пром., 1960, №5, с.67-73], при которых дополнительное введение в эти смеси любого другого органического вещества в любой его концентрации становится взрывобезопасным. Видно, что это достигается при значительно меньшем разбавлении N2O, чем в случае азота и других инертных газов. Это позволяет при безопасном ведении процесса использовать в 2-3 раза более высокие концентрации N2O при сохранении общего давления, что дает возможность пропорционально увеличить производительность процесса.

Оксигенирование полимеров или олигомеров может осуществляться без растворителей или с применением растворителей. Полимер или олигомер могут находиться также в виде эмульсии (латекса).

Предлагаемый процесс может проводиться в присутствии стабилизаторов различного типа, применяемых для повышения стабильности полимеров и олигомеров в условиях высоких температур, ионизирующего излучения, в присутствии кислорода, озона и т.д. Стабилизаторы могут вводиться с целью влияния на некоторые характеристики оксигенированного продукта, например его молекулярную массу.

Если процесс осуществляют в присутствии растворителя, то в зависимости от химического состава и летучести последнего взрывобезопасная концентрация алкана может быть понижена по сравнению с величиной, указанной в таблице, вплоть до 1 мол.%. С другой стороны, если по какой-то причине будет признано целесообразным, то содержание алкана может быть увеличено по сравнению с величинами, приведенными в таблице, вплоть до 90 мол.% от количества N2O. Важно, что алканы C1-C4, как будет показано в последующих примерах, не подвергаются окислению в условиях реакции и, следовательно, не требуют повышенного расхода N2O и не загрязняют продукты оксигенирования полимера или олигомера.

В соответствии с данным изобретением оксигенирование полимеров или олигомеров с целью введения функциональных групп С=O закисью азота может быть осуществлено в широком интервале условий, как в статическом, так и в проточном реакторе, который может быть изготовлен из стали, титана или другого подходящего материала.

В случае статического варианта процесса в реактор-автоклав при комнатной температуре загружают полимер (олигомер) или его смесь с растворителем, а также, по усмотрению, стабилизатор. Затем в реактор подают алкан-разбавитель и закись азота. При необходимости в качестве разбавителя используют смесь алканов, содержащую два или более алкана C1-C4. В качестве разбавителя также могут быть использованы алканы C1-C4 в смеси с инертными газами (азот, аргон, гелий, углекислый газ и другие) при содержании в смеси инертного газа от 1 до 90 мол.%. Количество закиси азота подбирают таким образом, чтобы ее давление при температуре реакции составляло 0.01-100 атм. Концентрацию алкана подбирают таким образом, чтобы она не превышала 90 мол.% от концентрации N2O. После этого реактор закрывают и нагревают до температуры реакции в области 50-350°С. Время реакции составляет от нескольких минут до нескольких десятков часов в зависимости от условий ее проведения, а также требований, предъявляемых к показателям процесса.

После окончания реакции реактор охлаждают, измеряют давление и анализируют конечный состав газовой фазы методом газовой хроматографии. Исходя из количества азота, образовавшегося по реакции (1), рассчитывают количество кислорода, введенного в полимер (олигомер). Количество введенного кислорода также может быть рассчитано из данных ИК-спектроскопии или ЯМР.

Полученный таким образом полимер или олигомер, содержащий карбонильные группы, с помощью известных способов, направленных на модифицирование карбонильной группы (гидрирование, хлорирование, сульфатирование и т.д.), может быть превращен в полимер или олигомер, содержащий функциональные группы других типов, таких как ОН, Cl, HSO3, С=N и т.д.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

В примере используют полиэтилен с молекулярной массой 960, который в среднем содержит 12 терминальных двойных связей RCH=CH2 на 1000 атомов углерода. В реактор из нержавеющей стали объемом 100 см3 с мешалкой (фирма Parr) загружают 5 г указанного полиэтилена и 60 см3 толуола в качестве растворителя. В реактор подают смесь закиси азота и метана состава 60 мол. % N2O+40 мол. % СН4, что соответствует максимальной концентрации N2O при условии полной взрывобезопасности реакционной системы (таблица). Давление в реакторе доводят до 25 атм. Реактор герметично закрывают, нагревают до 250°С и выдерживают при этой температуре в течение 12 ч. Давление закиси азота при температуре реакции составляет 42 атм.

Количество терминальных С=С связей в полиэтилене определяют из интенсивности полос поглощения 909 и 990.6 см-1. Уменьшение интенсивности полосы 909 см-1 в оксигенированном полиэтилене соответствует превращению 80% С=С связей. Одновременно в спектре появляется новая интенсивная полоса 1723 см-1, которая соответствует колебаниям С=O групп, введенных в полимер. Согласно хроматографическому анализу газовой фазы окисления метана не происходит. Количество кислорода, введенного в полимер, составляет 0,9 мас.%.

Пример 2 (сравнительный). Аналогичен примеру 1, с тем отличием, что для разбавления закиси азота вместо метана используют азот и в реактор подают смесь состава: 25 мол.% N2O+75 мол.% N2, что соответствует максимальной концентрации N2O при условии полной взрывобезопасности реакционной системы. Давление закиси азота при температуре реакции составляет 14 атм.

Согласно ИК-спектрам обработка полиэтилена данной смесью N2O и N2 приводит к уменьшению количества С=С связей на 27%. Количество кислорода, введенного в полимер, составляет 0,3 мас.%. То есть глубина оксигенирования полиэтилена во взрывобезопасных условиях с применением азота в 3 раза ниже, чем в предыдущем примере с метаном.

Пример 3. В примере используют полибутадиеновый каучук. В реактор из нержавеющей стали объемом. 100 см3 с мешалкой (фирма Parr) загружают 5 г указанного полимера и 60 см3 бензола в качестве растворителя. В реактор подают смесь закиси азота с этаном состава: 68 мол.% N2O+32 мол.% С2Н6, что соответствует максимальному содержанию N2O в этой смеси при обеспечении полной взрывобезопасности реакционной системы (таблица). Давление доводят до 30 атм. Процесс осуществляют при 250°С в течение 12 ч. Давление закиси азота при температуре реакции составляет 55 атм.

Согласно ИК-спектрам обработка данной смесью закиси азота приводит к уменьшению интенсивности полос 1655, 994 и 912 см-1, относящихся к связям С=С полимера, и одновременному появлению новой интенсивной полосы при 1710 см-1, которая указывает на образование карбонильных групп С=O. Количество введенного в каучук кислорода составляет 9,5 мас.%. Никаких продуктов окисления этана не обнаруживается.

Пример 4 (сравнительный). Аналогичен примеру 3 с тем отличием, что для разбавления закиси азота вместо этана используют азот и в реактор подают смесь состава: 25 мол.% N2O+75 мол.% N2. Давление закиси азота при температуре реакции составляет 40 атм.

Согласно хроматографическому анализу при обработке данной смесью происходит введение кислорода в каучук в количестве 3,2 мас. %, то есть почти в 3 раза меньше, чем в примере 3 в присутствии этана.

Пример 5. Аналогичен примеру 4 с тем отличием, что вместо азота используют пропан и в реактор подают смесь состава: 75 мол.% N2O+25 мол.% С3Н8, что соответствует максимальному содержанию N2O в этой смеси при обеспечении полной взрывобезопасности реакционной системы (таблица). В качестве растворителя используют циклогексан. Давление закиси азота при температуре реакции составляет 70 атм.

В результате опыта количество кислорода, введенное в каучук, составляет 11,9 мас.%, то есть в 3,7 раза больше, чем в сравнительном примере 4. Никаких продуктов окисления пропана не обнаруживается.

Пример 6. Аналогичен примеру 3 с тем отличием, что вместо полибутадиенового каучука в реактор загружают 5 г олигобутадиена (жидкий каучук). В результате опыта количество кислорода, введенного в олигомер, составляет 10,5 мас.%. Никаких продуктов окисления этана не обнаружено.

Пример 7. Аналогичен примеру 6 с тем отличием, что вместо олигобутадиена в реактор загружают олигомер (жидкий каучук) бутадиен-стирольного состава. В результате опыта количество кислорода, введенного в олигомер, составляет 9,7 мас.%. Никаких продуктов окисления этана не обнаружено.

Пример 8. Аналогичен примеру 6 с тем отличием, что в реактор дополнительно загружают 0,15 г стабилизатора N-фенил-2-нафтиламина (неозон-Д). В результате опыта количество кислорода, введенного в олигомер, составляет 9 мас.%. Никаких продуктов окисления пропана или стабилизатора не обнаружено.

Пример 9. Аналогичен примеру 5 с тем отличием, что в реактор дополнительно загружают 0,1 г стабилизатора N-фенил-2-нафтиламина (неозон-Д). В результате опыта количество кислорода, введенного в каучук, составляет 10,5 мас.%. Никаких продуктов окисления пропана или стабилизатора не обнаружено.

Пример 10. Аналогичен примеру 9 с тем отличием, что в качестве стабилизатора вводят 0,25 г 2,6-ди-трет-бутилфенола. В результате опыта количество кислорода, введенного в каучук, составляет 10 мас.%. Никаких продуктов окисления пропана или стабилизатора не обнаружено.

Пример 11. Аналогичен примеру 4 с тем отличием, что вместо азота используют смесь этана и пропана и в реактор подают смесь состава: 71 мол.% N2O+10 мол.% С2Н6+19 мол.% С3Н8, что соответствует максимальному содержанию N2O в этой смеси при обеспечении полной взрывобезопасности реакционной системы. В качестве растворителя используют мезитилен. Давление закиси азота при температуре реакции составляет 65 атм.

В результате опыта количество кислорода, введенное в каучук, составляет 10,5 мас.%, что в 3,3 раза больше, чем в сравнительном примере 4. Никаких продуктов окисления этана и пропана не обнаруживается.

Пример 12. Аналогичен примеру 3 с тем отличием, что опыт проводят без растворителя, для чего в реактор загружают 5 г указанного полимера. В реактор подают смесь закиси азота с бутаном состава: 70 мол.% N2О+30 мол.% С4Н10, что соответствует полной взрывобезопасности реакционной смеси (таблица). Давление доводят до 40 атм. Процесс осуществляют при 160°С в течение 12 ч. Давление закиси азота при температуре реакции составляет 43 атм.

В результате опыта количество кислорода, введенное в каучук, составляет 2,5 мас.%. Никаких продуктов окисления бутана не обнаруживается.

Пример 13. Аналогичен примеру 12 с тем отличием, что вместо полибутадиенового каучука в реактор загружают 10 г бутадиен-стирольного каучука в виде латекса. В результате опыта количество кислорода, введенного в полимер, составляет 2,1 мас.%. Никаких продуктов окисления бутана не обнаружено.

Пример 14. Аналогичен примеру 12 с тем отличием, что для разбавления закиси азота вместо бутана используют смесь бутана и аргона, содержащую 50 мол.% аргона. Для этого в реактор подают смесь состава: 66 мол.% N2O+17 мол.% С4Н10+17 мол.% Ar, что соответствует полной взрывобезопасности реакционной смеси. Давление закиси азота при температуре реакции составляет 41 атм.

В результате опыта количество кислорода, введенное в каучук, составляет 2,3 мас.%. Никаких продуктов окисления бутана не обнаруживается.

Пример 15 (сравнительный). Аналогичен примеру 12 с тем отличием, что для разбавления закиси азота вместо бутана используют аргон и в реактор подают смесь состава: 25 мол.% N2O+75 мол.% Ar. Давление закиси азота при температуре реакции составляет 15 атм.

В результате опыта количество кислорода, введенное в каучук, составляет 0,9 мас.%, что в 2,8 раз меньше, чем в примере 12 в присутствии бутана.

Пример 16. Аналогичен примеру 1, с тем отличием, что в реактор дополнительно загружают 0,15 г стабилизатора N-фенил-2-нафтиламина (неозон-Д).

Количество терминальных С=С связей в полиэтилене определяют из интенсивности полос поглощения 909 и 990.6 см-1. Уменьшение интенсивности полосы 909 см-1 в оксигенированном полиэтилене соответствует превращению 80% С=С связей. Одновременно в спектре появляется новая интенсивная полоса 1723 см-1, которая соответствует колебаниям С=O групп, введенных в полимер. Согласно хроматографическому анализу газовой фазы окисления метана не происходит. Количество кислорода, введенного в полимер, составляет 0,9 мас.%.

Таким образом, из примеров видно, что при обеспечении полной взрывобезопасности путем использования в качестве газа-разбавителя алканов достигается более глубокая степень оксигенирования, чем в случае использования инертных газов при прочих равных условиях. Примеры показывают также, что в условиях реакции алканы C1-C4 не подвергаются окислению и не дают каких-либо продуктов, загрязняющих полимер или олигомер. Проведение процесса возможно в присутствии добавок-стабилизаторов, повышающих стабильность полимера или олигомера.

1.Способполученияполимеровилиолигомеров,содержащихфункциональныекарбонильныегруппыС=O,осуществляемыйпутемоксигенированияисходногополимераилиолигомера,содержащегодвойныеуглерод-углеродныесвязи,закисьюазота-NOпритемпературе50-350°Сидавлениизакисиазота0,01-100атмвприсутствиигаза-разбавителя,заключающийсявтом,чтовкачествегаза-разбавителяиспользуютодинизалкановС-Силилюбуюихсмесь.12.Способпоп.1,отличающийсятем,чтосодержаниеалкановC-Cсоставляетот1до90мол.%отсодержаниязакисиазотаNO.23.Способполюбомуизпп.1и2,отличающийсятем,чтооксигенированиеполимераилиолигомерапроводятвприсутствиирастворителя.34.Способполюбомуизпп.1и2,отличающийсятем,чтополимерилиолигомернаходитсяввидеэмульсии(латекса).45.Способполюбомуизпп.1-3,отличающийсятем,чтооксигенированиепроводятвприсутствиистабилизатора,повышающеготермическуюстабильностьполимераилиолигомера.56.Способполюбомуизпп.1и2,отличающийсятем,чтовкачествегаза-разбавителяиспользуютсмесьодногоизалкановC-Cсинертнымгазом,напримеразотом,аргоном,гелием,углекислымгазом,содержащуюот1до90мол.%инертногогаза.6
Источник поступления информации: Роспатент

Показаны записи 1-10 из 22.
20.02.2019
№219.016.bda2

Катализатор и способ конверсии аммиака

Изобретение относится к катализаторам и процессам окисления аммиака в производстве слабой азотной кислоты. Описаны катализатор конверсии аммиака на основе смешанных оксидов блочной структуры и способ окисления аммиака в производстве слабой азотной кислоты. Катализатор представляет собой...
Тип: Изобретение
Номер охранного документа: 0002251452
Дата охранного документа: 10.05.2005
20.02.2019
№219.016.beeb

Катализатор, способ получения носителя, способ получения катализатора и процесс гидрообессеривания дизельных фракций

Изобретение относится к катализаторам, предназначенным для глубокой гидроочистки углеводородного сырья, в частности дизельных фракций, от сернистых соединений, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Описан катализатор для процессов гидрообессеривания...
Тип: Изобретение
Номер охранного документа: 0002311959
Дата охранного документа: 10.12.2007
11.03.2019
№219.016.da3a

Способ получения полиэтилена

Изобретение относится к способу получения полиэтилена с узким молекулярно-массовым распределением (ММР) и с возможностью получения ПЭ с различной молекулярной массой. Описан способ получения полиэтилена с повышенным индексом расплава и узким молекулярно-массовым распределением в режиме...
Тип: Изобретение
Номер охранного документа: 0002303605
Дата охранного документа: 27.07.2007
20.03.2019
№219.016.e6aa

Способ получения сверхвысокомолекулярного полиэтилена

Изобретение относится к способу получения сверхвысокомолекулярного полиэтилена. Описан способ получения сверхвысокомолекулярного полиэтилена в режиме суспензии при температуре 40 - меньше 70°С в среде углеводородного растворителя с использованием нанесенного катализатора, содержащего соединение...
Тип: Изобретение
Номер охранного документа: 0002303608
Дата охранного документа: 27.07.2007
20.03.2019
№219.016.e701

Способ и устройство для импульсной тепловой обработки сыпучих материалов

Изобретение относится к способу и устройству термохимической активации (термоактивации) продуктов в производстве катализаторов, их носителей, адсорбентов, осушителей, наполнителей, керамики, магнитных материалов, неорганических пигментов, твердых электролитов, лекарственных и косметических...
Тип: Изобретение
Номер охранного документа: 0002361160
Дата охранного документа: 10.07.2009
20.03.2019
№219.016.e721

Катализатор, способ его приготовления и активации и способ фторирования галогенированных углеводородов

Изобретение относится к области химической промышленности, к катализаторам, которые могут использоваться в реакциях газофазного фторирования галогенированных углеводородов. Описан катализатор фторирования галогенированных углеводородов газообразным фтористым водородом, включающий оксид хрома...
Тип: Изобретение
Номер охранного документа: 0002322291
Дата охранного документа: 20.04.2008
10.04.2019
№219.016.ff9c

Способ и устройство для импульсной тепловой обработки сыпучих материалов

Изобретение относится к способу и аппаратурному оформлению процессов кратковременной тепловой обработки сыпучих материалов и может быть использовано в химической, пищевой, деревообрабатывающей промышленности и др. Способ импульсной тепловой обработки сыпучих материалов включает стадии испарения...
Тип: Изобретение
Номер охранного документа: 0002264589
Дата охранного документа: 20.11.2005
10.04.2019
№219.017.005e

Носитель катализатора (варианты)

Изобретение относится к конструкции и составу носителя на основе сетчатой ткани из стеклянного, кремнеземного или другого неорганического волокна, обработанного составами, придающими сеткам жесткость и предотвращающими разрушение волокон вследствие деформации, применяемого преимущественно для...
Тип: Изобретение
Номер охранного документа: 0002298435
Дата охранного документа: 10.05.2007
10.04.2019
№219.017.05db

Катализатор, способ его приготовления и способ получения синтез-газа

Изобретение относится к катализаторам автотермической конверсии углеводородного топлива для получения синтез-газа. Синтез-газ может быть использован в химических производствах, для сжигания в каталитических тепловых установках, в водородной энергетике. Описан катализатор получения синтез-газа,...
Тип: Изобретение
Номер охранного документа: 0002320408
Дата охранного документа: 27.03.2008
18.05.2019
№219.017.5414

Способ получения цеолита

Предложен способ получения цеолита типа ZSM-5, включающий смешение в воде источников кремния, дополнительных элементов, щелочи и затравки, проведение кристаллизации, ионного обмена, разделения полученных пульп, модифицирования, грануляции, сушки, прокалки и извлечения основных компонентов из...
Тип: Изобретение
Номер охранного документа: 0002276656
Дата охранного документа: 20.05.2006
Показаны записи 1-10 из 11.
10.03.2013
№216.012.2d7e

Способ приготовления катализатора для разложения закиси азота и процесс обезвреживания газовых выбросов, содержащих закись азота

Изобретение относится к способу обезвреживания закиси азота, в том числе и низкоконцентрированных выбросов закиси азота, например, в отходящих газах производства азотной кислоты с использованием катализатора на основе железосодержащего цеолита. Описан способ приготовления катализатора для...
Тип: Изобретение
Номер охранного документа: 0002477177
Дата охранного документа: 10.03.2013
10.10.2014
№216.012.fad7

Адгезионный состав и способ обработки металлоармирующих материалов

Изобретение относится к адгезионному составу для обработки поверхности металлоармирующих материалов, используемых для армирования эластомерных резиновых композиций, а также к способу обработки поверхности таких материалов. Указанный способ включает обработку поверхности металлоармирующего...
Тип: Изобретение
Номер охранного документа: 0002530061
Дата охранного документа: 10.10.2014
10.12.2015
№216.013.991e

Способ получения карбонильных соединений с-с

Изобретение относится к способу получения карбонильных соединений, а именно кетонов и альдегидов С-С, которыенаходят разнообразное применение как ценные полупродукты тонкого и основного органического синтеза, а также широко используются в качестве растворителей. Способ проводят в газовой фазе...
Тип: Изобретение
Номер охранного документа: 0002570818
Дата охранного документа: 10.12.2015
20.08.2016
№216.015.4ab2

Способ повышения октанового числа

Изобретение описывает способ повышения октанового числа бензина, характеризующийся тем, что бензиновую фракцию, содержащую олефины, приводят в контакт с закисью азота при температуре 150-500 ºС и давлении 1-150 атм. Также раскрывается способ повышения октанового числа бензина, характеризующийся...
Тип: Изобретение
Номер охранного документа: 0002594484
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.6872

Способ получения о-алкенилфенолов и катализатор для его осуществления

Изобретение относится к способу получения о-алкенилфенолов, являющихся перспективными исходными соединениями для синтеза лекарственных препаратов и душистых веществ в косметической и пищевой промышленности. Способ заключается во взаимодействии фенола или замещенного фенола с алифатическим...
Тип: Изобретение
Номер охранного документа: 0002591954
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.72d8

Способ получения производных 1-пиразолина

Изобретение относится к области органического синтеза, более конкретно к получению трициклических производных 1-пиразолина, содержащих от 9 до 13 атомов углерода, альдегидную группу и 5-членный цикл с диаза-группой. Способ основан на реакции C-C омега-алкенилпроизводных норборнена, например...
Тип: Изобретение
Номер охранного документа: 0002598077
Дата охранного документа: 20.09.2016
25.08.2017
№217.015.9898

Способ получения высокооктановых компонентов из олефинов каталитического крекинга

Настоящее изобретение относится к вариантам способа получения высокооктанового компонента моторных топлив из олефинсодержащих смесей. Один из вариантов способа заключается в том, что олефинсодержащую смесь подвергают окислению закисью азота с последующим выделением смеси продуктов в качестве...
Тип: Изобретение
Номер охранного документа: 0002609264
Дата охранного документа: 31.01.2017
19.01.2018
№218.016.044d

Способ приготовления и регенерации катализатора гидроксилирования ароматических соединений закисью азота и способ гидроксилирования ароматических соединений

Изобретение касается способа приготовления и регенерации цеолитных катализаторов после их дезактивации в результате закоксовывания в реакциях гидроксилирования ароматических соединений закисью азота в газовой фазе, в частности в реакциях гидроксилирования бензола и фенола. Описан способ...
Тип: Изобретение
Номер охранного документа: 0002630473
Дата охранного документа: 11.09.2017
06.07.2019
№219.017.a7eb

Способ модификации резиновых смесей и резин

Изобретение относится к способу модификации резиновых смесей и резин общего и специального назначения на основе высокомолекулярных карбоцепных полимеров. Модификацию резиновых смесей и резин проводят с помощью низкомолекулярных ненасыщенных поликетонов, имеющих в своем составе статистически...
Тип: Изобретение
Номер охранного документа: 0002345101
Дата охранного документа: 27.01.2009
02.03.2020
№220.018.07b9

Способ получения трет-бутилового спирта

Изобретение относится к способу получения трет-бутилового спирта, осуществляемому в непрерывном проточном режиме при давлении от 40 до 100 атм и включающему последовательное жидкофазное окисление изобутана или изобутановой фракции кислородом при температуре 130-150°С с образованием реакционной...
Тип: Изобретение
Номер охранного документа: 0002715430
Дата охранного документа: 28.02.2020
+ добавить свой РИД