×
29.05.2019
219.017.6a11

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ СГОРАНИЯ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к области авиационного двигателестроения. Управление газотурбинным двигателем (ГТД) с форсажной камерой сгорания (ФКС) осуществляется по одному из трех контуров управления, на каждом из контуров задается индивидуальная программа управления, которая корректируется по определенной группе датчиков, показания которых наиболее значимы для работы именно в данном режиме. Изобретение позволяет повысить надежность и безопасности работы ГТД с ФКС летательного аппарата за счет уменьшения времени форсажной и полной приемистости ГТД и расширения области надежного запуска ФКС, а также обеспечения работы ГТД в широком диапазоне на оптимальных режимах. 2 н.п. ф-лы, 1 ил.

Группа изобретений относится к области авиационного двигателестроения и может быть использована в электронно-гидромеханических системах автоматического управления многорежимными газотурбинными двигателями (ГТД) с форсажной камерой сгорания (ФКС).

Известен способ управления ГТД с ФКС, заключающийся в том, что по измеренным температуре воздуха на входе в ГТД, давлению воздуха за компрессором, положению рычага управления двигателем (РУД) и расходу топлива в основную камеру сгорания (ОКС) управляют расходом топлива в ФКС, по положению РУД и перепаду давлений на турбине формируют заданное положение створок критического сечения реактивного сопла (PC) ГТД, сравнивают его с измеренным положением створок PC и по величине рассогласования между заданным и измеренным значениями формируют управляющее воздействие на привод створок PC.

(см. Шляхтенко С.М. «Теория воздушно-реактивных двигателей», Москва, Машиностроение, 1975, с.305-308).

В результате анализа данного способа необходимо отметить, что для него характерны недостаточное быстродействие контура регулирования отношения давлений в заданных сечениях ГТД, а следовательно, весьма существенно отклонение параметров ГТД на переходных режимах, особенно при розжиге ФКС. Это, в свою очередь, приводит к снижению надежности работы ГТД и, как следствие, снижению безопасности полета летательного аппарата. Кроме этого, при запуске двигателя позиционирование PC приводит к большим отборам топлива от насоса, что снижает частоту авторотации ротора компрессора и давление за топливным насосом.

Известна система управления ГТД, содержащая два контура регулирования, первый из которых включает датчик частоты вращения, связанный с основным регулятором частоты вращения, выход которого связан с сервоприводом топливорегулирующего клапана. Данный контур также содержит задатчик основного регулятора. Второй контур регулирования осуществляет регулирование температуры газа перед турбиной и содержит датчик температуры, связанный с первым входом регулятора, второй вход которого связан с задатчиком предельной температуры. Система также содержит второй датчик частоты вращения, выход которого связан с первым входом дополнительного регулятора частоты вращения, второй вход которого связан с выходом нелинейного звена, связанным с выходом регулятора технологического параметра. Выходы регуляторов частоты вращения связаны с входами селектора, выход селектора соединен с первым входом сумматора, второй вход которого связан с датчиком обратной связи по положению топливорегулирующего органа (дозатора).

В процессе работы системы выходной сигнал регулятора, представляющий разность между выходным сигналом нелинейного звена и сигналом датчика частоты вращения, проходит через селектор (пока предельное значение температуры не достигнуто), поступает на сумматор, где суммируется с сигналом датчика обратной связи и поступает на вход задатчика, который управляет регулятором частоты вращения сервопривода. При достижении предельной температуры газа перед турбиной на селектор подается и сигнал с регулятора температуры, который подается на селектор, и сигнал частоты вращения, управляющий сигнал с селектора поступает на сумматор и далее на регулятор и управление топливорегулирующего клапана.

(см. а.с. СССР №591024, кл. F02C 9/00, 1979 г.).

В результате анализа известной системы управления ГТД необходимо отметить, что она осуществляет регулирование ГТД по двум параметрам - частоте вращения ротора и температуре газа перед турбиной. Однако данная система весьма сложна, обладает довольно большой инерционностью, что не позволяет эффективно использовать ее при работе ГТД на переходных предельных и форсажных режимах.

Известен способ отладки ГТД с ФКС, реализуемый системой, которая оснащена датчиком температуры (Тт) газов за турбиной, датчиком перепада давления газов на турбине (πт), автоматом управления (Fгф) по сигналу (πт), датчиком положения гидроцилиндров (ГЦ) сопла, автоматом подачи форсажного топлива с настроечным элементом.

Система также содержит пульт управления, связанный входами с поименованными выше датчиками. Пульт включает преобразователь сигналов, вычислитель, соединенный с преобразователем, элемент сравнения, связанный с выходами преобразователя и вычислителя.

При функционировании системы на вход преобразователя сигналов поступают сигналы с датчика температура (Тт) газов за турбиной и с датчика положения гидроцилиндров сопла. На выходе преобразователя сигналов формируется единый цифровой код сигналов датчиков, который поступает на вход вычислителя. Сигналы с выхода преобразователя сигналов поступают в вычислительное устройство для расчета потребного значения площади PC по формуле

,

где Fгф и Fгм - площади PC на форсажном и бесфорсажном режимах соответственно, Тт и Тфзад - замеренное и заданное значения температуры газа за турбиной. При отладке двухконтурных газотурбинных двигателей потребное значение площади PC определяют по формуле

,

где Т - температура газов за турбиной после смешения обоих потоков.

Сигнал с выхода вычислительного устройства, характеризующий заданную площадь PC, поступает на вход элемента сравнения, где формируется управляющий сигнал.

При работе ГТД в форсажном режиме на вход преобразователя сигналов поступают сигналы с датчика температуры газов сопла и датчика положения гидроцилиндров сопла. Преобразованный сигнал с выхода преобразователя сигналов поступает на вход элемента сравнения, где он сравнивается с расчетным значением (Fгф). На выходе элемента сравнения формируется сигнал ΔF, по которому меняется настройка блока подачи топлива за счет изменения положения настроечного элемента.

Команда для изменения настройки блока подается (в ручном или автоматическом режиме) до тех пор, пока проходная площадь PC не станет равной потребному значению Fгф(ΔF=0).

(см. патент РФ №2383001, МПК F01M 15/00. 2010 г.).

В результате анализа известной системы необходимо отметить, что она, как и приведенные выше, довольно инерционна, что не обеспечивает заданного качества регулирования на переходных и форсажных режимах работы ГТД.

Наиболее близким к данному изобретению по технической сущности и достигаемому техническому результату является способ управления ГТД с ФКС, согласно которому по измеренным температуре воздуха на входе в ГТД, давлению воздуха за компрессором, положению РУД и расходу топлива в ОКС управляют расходом топлива в ФКС, по положению РУД и перепаду давлений на турбине формируют заданное положение створок критического сечения PC ГТД, сравнивают его с измеренным положением створок PC и по величине рассогласования между заданным и измеренным значениями формируют управляющее воздействие на привод створок PC, причем дополнительно контролируют величину рассогласования между заданным и измеренным значениями положения створок PC, и, если рассогласование превышает наперед заданную величину, определяемую по результатам сдаточных испытаний ГТД, ограничивают темп изменения расхода топлива в ФКС.

Система для реализации способа содержит последовательно соединенные блок датчиков, задатчик форсажных режимов работы ГТД, первый сумматор, первый электрогидропреобразователь, дозатор форсажного топлива, второй вход сумматора подключен к блоку датчиков. Система также содержит последовательно соединенные второй задатчик положения PC, второй сумматор, второй электрогидропреобразователь, золотник управления гидроцилиндрами привода PC, при этом второй задатчик и второй вход сумматора подключены к блоку датчиков, выход второго сумматора подключен к первому задатчику.

В процессе работы системы по измеренным с помощью блока датчиков температуре воздуха на входе в ГТД, давлению воздуха за компрессором, положению РУД и расходу топлива в ОКС первый задатчик формирует заданное положение дозатора, которое в сумматоре сравнивается с фактическим положением, измеренным с помощью блока датчиков. По величине рассогласования, поступающей в первый электрогидропреобразователь, формируется управляющее воздействие на дозатор, в соответствии с которым регулируется расход топлива в ФКС.

Параллельно, по измеренным с помощью блока датчиков положению РУД и перепаду давлений на турбине, второй задатчик формирует заданное положение створок PC.

Сигнал заданного положения створок PC поступает во второй сумматор, где сравнивается с измеренным блоком датчиков положением и по величине рассогласования между заданным и измеренным значениями второй электрогидропреобразователь осуществляет управление гидроцилиндрами привода створок PC посредством перемещения золотника в соответствующее положение.

При исправных элементах контура управления PC (второго электрогидропреобразователя, золотника) фактическое положение створок PC отличается от заданного практически только на динамических режимах, а учитывая, что заданное положение створок PC изменяется достаточно плавно, величина рассогласования между заданным и фактическим положениями в динамически отлаженной системе не превышает конкретной величины допуска, заложенного в систему управления ГТД. Однако в эксплуатации возникают ситуации, когда величина рассогласования в отдельные моменты может превышать эту величину (например, при «затираниях» гидроцилиндров привода PC, в момент резкого увеличения потребного расхода топлива, когда инерционность топливного насоса не позволяет мгновенно увеличить располагаемый расход и т.д.). При этом возникает дисбаланс между расходом воздуха через газовоздушный тракт (ГВТ) ГТД и расходом топлива в ФКС. Чтобы избежать этого, величина рассогласования между заданным и фактическим положениями створок PC с выхода второго сумматора подается в первый задатчик, который при превышении наперед заданной величины, определяемой при сдаточных испытаниях ГТД, ограничивает темп изменения расхода форсажного топлива.

(см. патент РФ №2387857, кл. F02C 9/28, 2010 г.) - наиболее близкий аналог для способа и системы.

В результате анализа данных способа и системы необходимо отметить, что они обеспечивают баланс между расходом воздуха через ГВТ ГТД и расходом топлива в ФКС. Однако известные способ и система не учитывают различные требования, предъявляемые к степени расширения газов на турбине при разных режимах работы ГТД, им присущи недостаточное быстродействие, а парирование отклонений параметров газогенератора (ГГ) от установившихся при розжиге ФКС происходит за счет ограничения темпа изменения расхода топлива в ФКС, а следовательно, за счет увеличения времени форсажной приемистости.

Техническим результатом заявленной группы изобретений является повышение надежности и безопасности работы ГТД с ФКС летательного аппарата (ЛА) за счет уменьшения времени форсажной и полной приемистости ГТД и расширения области надежного запуска ФКС, а также обеспечения работы ГТД в широком диапазоне на оптимальных режимах.

Сущность заявленной группы изобретений поясняется чертежами, на которых представлена схема системы управления ГТД с ФКС.

Система содержит первый задатчик 1 формирования заданного значения положения распределительного золотника, второй задатчик 2 формирования заданного значения положения ГЦ PC, выход задатчика 2 связан с первым входом первого элемента сравнения 3, выход которого связан с регулятором 4 положения ГЦ PC.

Конструктивно регулятор 4 может представлять собой усилитель.

Система оснащена третьим задатчиком 5 формирования заданного значения степени расширения газов на турбине, выход которого связан с первым входом второго элемента сравнения 6, выход второго элемента сравнения 6 связан с первым входом регулятора 7 степени расширения газов на турбине.

Конструктивно регулятор 7 может представлять собой усилитель.

Выходы первого задатчика 1, регулятора 4 и регулятора 7 связаны с входами переключателя 8 режимов управления PC, с входом которого также связан первый выход логического блока 9 формирования команды на выбор режима управления PC. В качестве переключателя 8 может быть использован стандартный мультиплексор. Логический блок выполнен известным образом, в частности, может быть реализован на компараторах, логических элементах И, ИЛИ.

Система также содержит третий элемент сравнения 10, первый вход которого связан с выходом переключателя 8, а выход - через последовательно соединенные усилитель 11 и электрогидроусилитель (ЭГУ) 12 - с распределительным золотником 13, управляющим положением ГЦ PC. Для комплектации системы в качестве ЭГУ используется серийно выпускаемый агрегат.

Положение золотника 13 отслеживается датчиком 14, связанным со вторым входом третьего элемента сравнения 10. Золотник 13 гидравлически связан с гидроцилиндрами 15, управляющими критическим сечением PC, положение рабочего элемента (штока) которых отслеживается датчиками 16 положения ГЦ PC, связанными со вторым входом первого элемента сравнения 3.

ГТД обозначен позицией 18, а значения его параметров в процессе работы отслеживаются датчиками, условно представленными на чертеже в виде блока 18. Для управления площадью PC используются показания следующих датчиков: давления за компрессором - (Рк); давления за турбиной - (Рт); частоты вращения ротора турбокомпрессора - (nТК); температуры воздуха на входе в ГТД - (Твх), положения ручки управления двигателем (РУД) (αруд). РУД обозначен позицией 21.

Выходы датчиков (Рк) и (Рт) соединены с входами делителя 19, выход которого связан со вторым входом второго элемента сравнения 6. В качестве делителя 19 в системе может быть использовано стандартное арифметическое устройство.

Выходы датчиков nТК и Твх связаны с входами блока 20 вычисления приведенной частоты вращения ротора турбокомпрессора (nTKпр,), выход которого связан с входом второго задатчика 2.

Выход датчика Твх также связан с входом третьего задатчика 5.

Выходы датчиков nTK и αруд связаны с входами логического блока 9, второй выход которого соединен со входом задатчика 1.

Система укомплектована стандартными датчиками, которые используются по прямому назначению.

В качестве первого задатчика может быть использовано стандартное устройство, выдающее на выходе постоянный сигнал.

В качестве второго и третьего задатчиков могут быть использованы известные матричные устройства реализации произвольных функциональных зависимостей.

Выполнение блоков, узлов и агрегатов системы, не приведенное в настоящей заявке, является известным и не составляет предмета патентной охраны.

Способ управления ГТД с ФКС, с использованием приведенной выше системы управления, осуществляют следующим образом.

Работу системы при осуществлении способа рассмотрим на следующих режимах: запуск ГТД, дроссельные режимы работы ГТД, максимальные бесфорсажные и форсажные режимы работы, останов ГТД.

Запуск ГТД осуществляют переводом в РУД 21 на площадку малого газа (МГ) или выше. При этом раскручивается ротор ТК. Значения положения РУД и частоты вращения ТК соответствующими датчиками передаются на вход логического блока 9. Блок 9 формирует управляющий сигнал на вход переключателя 8 при выполнении следующих условий: РУД на площадке МГ или выше (αрудРУДмг) И частота вращения ТК ниже частоты вращения ТК на режиме МГ (nТК<nTKмг). По этому сигналу переключатель 8 (если не был переведен ранее) переводится в положение, при котором с первым входом третьего элемента сравнения 10 соединен выход первого задатчика 1, на вход которого поступает управляющий сигнал с второго выхода логического блока 9. В результате сформированный в задатчике 1 управляющий сигнал, усиленный усилителем 11, передается на ЭГУ 12, который перемещает распределительный золотник 13 в нейтральное положение.

Необходимо отметить, что задатчик 1 формирует заданное постоянное значение положения распределительного золотника 13 PC (LzCONSTнейтраль), в результате чего золотник устанавливается в нейтральное положение, которое является постоянным, что позволяет обеспечить минимальные утечки топлива через агрегат управления PC. Заданное постоянное значение положения распределительного золотника 13 PC рассчитывается известным образом по параметрам агрегата позиционирования створок PC.

При перемещении РУД выше площадки МГ частота вращения ТК увеличивается и ГТД выходит на дроссельные режимы работы. По измерениям датчиков (nТК и αРУД), в соответствии с условиями «РУД выше площадки МГ и ниже площадки МАКС» (максимального режима работы ГТД) И «частота вращения ТК выше частоты вращения ТК на режиме МГ И ниже частоты вращения ТК на режиме МАКС» (αРУДмгРУДРУДмакс И nTKмг=nТК<nTKмакс) логический блок 9 формирует команду на переключение переключателя 8 в положение, при котором с входом третьего элемента сравнения 10 связан выход регулятора 4. На данных режимах выполняется программа позиционирования ГЦ PC для поддержания требуемой площади критического сечения PC в зависимости от приведенной частоты вращения ротора компрессора низкого давления. Параллельно, значение с датчиков (nТК, Твх) поступает на вход блока 20, в котором вычисляется приведенное значение параметра (nTKпр) по зависимости:

Блок 20 может быть реализован на матричном устройстве реализации произвольных функциональных зависимостей.

Полученное в блоке 20 значение (nTKпр) поступает на вход задатчика 2, в котором формируется программа заданного положения ГЦ PC по зависимости ГЦпос=f(nTKпр). Заданное значение положения ГЦ PC поступает на первый вход первого элемента сравнения 3, на второй вход которого поступает измеренное датчиком 16 положение ГЦ 15 PC.

На элементе сравнения 3 сравнивается заданное значение положения ГЦ PC с выхода задатчика 2 с фактическим значением положения ГЦ 15 PC. Выходом элемента сравнения 3 является величина рассогласования, которая поступает на вход регулятора 4. В соответствии с величиной рассогласования регулятор 4 пропорционально формирует заданное значение положения золотника 13, которое поступает на первый вход третьего элемента сравнения 10, где сравнивается с действительным на данный момент положением золотника и полученный в результате сравнения управляющий сигнал, усиленный усилителем 11, поступает на ЭГУ 12, который перемещает в заданное положение распределительный золотник 13, соответствующим образом осуществляющий управление ГЦ 15 PC.

При перемещении РУД из области дроссельных режимов на площадку МАКС частота вращения ТК достигает своего максимального значения и ГТД выходит на максимальный режим работы. При перемещении РУД выше площадки МАКС следует розжиг форсажной камеры сгорания (ФКС) и ГТД выходит на форсажный режим работы.

Логический блок 9 анализирует показания датчиков (nTK и αРУД) и, в соответствии с условиями «РУД на площадке МАКС или выше» И «частота вращения ТК равна частоте вращения ТК на режиме МАКС» (αРУДРУДмакс И nТК=nTKмакс), выдает на переключатель 8 управляющий сигнал, в соответствии с которым переключатель 8 переводится в положение, при котором с первым входом третьего элемента сравнения 10 соединяется выход регулятора 7.

Третий задатчик 5 по измеряемому параметру Твх формирует заданное значение степени расширения газов на турбине. При этом используется зависимость πT=f(Твх).

По измеренным датчиками 18 значениям давления Рк и Рт делитель 19 формирует текущее значение степени расширения газов на турбинах, как отношение Рк к Рт. Элемент сравнения 6 сравнивает заданное значение и фактическое значения πт, и по величине ошибки, полученной в результате сравнения, регулятор 7 пропорционально формирует заданное значение положения распределительного золотника 13.

Таким образом, на данных режимах работы поддерживается заданное отношение давления в выбранных сечениях двигателя (например, отношение давления за ТК к давлению за турбиной - степень расширения газов на турбине).

При перемещении РУД ниже площадки МАКС частота вращения ТК снижается и ГТД переходит на дроссельные режимы работы.

По измерениям датчиков (nTK и αруд), при выполнении условий αРУДмгРУДРУДмакс И nTKмг=nтк<nTKмакс), блок 9 формирует команду на переключение переключателя 8. Переключатель 8 переводится в положение, при котором с входом третьего элемента сравнения 10 связан выход регулятора 4. На данных режимах снова выполняется программа позиционирования ГЦ PC для поддержания требуемой площади критического сечения PC в зависимости от приведенной частоты вращения ротора компрессора низкого давления.

При перемещении РУД ниже площадки МГ осуществляется останов двигателя, при этом частота вращения ТК опускается ниже частоты вращения ТК на режиме МГ.

На режиме останова ГТД при выполнении условий РУД ниже площадки МГ и частоте вращения ТК ниже частоты вращения ТК на режиме МГ (αРУДРУДмг И nТК<nTKмг) логический блок 9 подает команду на задатчик 1, для изменения заданного положения золотника (LzCONSTнейтраль) на положение, при котором в силовые ГЦ 15 подается расход на раскрытие PC (LzCONSTраскрытие). Логический блок 9 также переключает переключатель 8 в положение, при котором с первым входом элемента сравнения 10 связан задатчик 1. Во время выбега роторов ТК топливный насос продолжает работать и ГЦ 15 перекладывают PC в положение полного раскрытия. После останова ГТД это положение сохраняется до следующего его запуска. Раскрытое сопло на остановленном ГТД облегчает осмотр ФКС при техническом обслуживании ГТД.

Один контур регулирования не обеспечивает требования к регулированию PC ГТД на всех режимах работы.

На запуске ГТД необходимо обеспечить минимальные утечки через агрегат позиционирования ГЦ PC и разгрузить топливный насос и вал турбокомпрессора, для этого следует позиционировать распределительный золотник в нейтральном положении все время запуска.

Для обеспечения требуемого качества управления PC, минимизации влияния возмущений, оказываемых на параметры ГГ при изменении степени форсирования ГТД, обеспечения запасов газодинамической устойчивости компрессора и получения заданной тяги ГТД целесообразно использование контура управления степенью расширения газов на турбине. Однако использование данного контура на дроссельных режимах работы ГТД при докритических перепадах давления на PC не обеспечивает требуемой точности регулирования. Поэтому на дроссельных режимах работы необходимо использовать контур поддержания заданной площади PC.

Для удобства технического обслуживания ГТД (например, осмотра форсажной камеры) необходимо полностью раскрытое сопло на остановленном ГТД. Для выполнения данного требования используется контур позиционирования золотника в заданное положение.

Таким образом, управление ГТД с ФКС осуществляется по одному из трех контуров управления, на каждом из контуров задается индивидуальная программа управления, которая корректируется по определенной группе датчиков, показания которых наиболее значимы для работы именно в данном режиме. Это позволяет существенно упростить процесс управления работой ГТД и в то же время сделать его более эффективным.

Источник поступления информации: Роспатент

Показаны записи 81-90 из 102.
09.05.2019
№219.017.4b8f

Поворотное осесимметричное сопло турбореактивного двигателя

Поворотное осесимметричное сопло турбореактивного двигателя содержит неподвижный корпус со сферической законцовкой на нем и подвижное относительно нее поворотное устройство. Поворотное устройство размещено с возможностью поворота относительно оси, установленной поперек продольной оси двигателя...
Тип: Изобретение
Номер охранного документа: 0002250383
Дата охранного документа: 20.04.2005
09.05.2019
№219.017.4b90

Поворотное осесимметричное сопло турбореактивного двигателя

Поворотное осесимметричное сопло турбореактивного двигателя содержит неподвижный корпус со сферической законцовкой и поворотное устройство. Поворотное устройство установлено по периферии сферической законцовки с возможностью поворота относительно оси, перпендикулярной продольной оси двигателя....
Тип: Изобретение
Номер охранного документа: 0002250385
Дата охранного документа: 20.04.2005
09.05.2019
№219.017.4b93

Двухсекционный центробежно-шестеренный насос

Изобретение относится к авиадвигателестроению и касается устройства центробежно-шестеренных насосов маслосистем авиационных газотурбинных двигателей. Двухсекционный центробежно-шестеренный насос содержит корпус с двумя парами разделителей полостей всасывания и нагнетания и шестерни с...
Тип: Изобретение
Номер охранного документа: 0002250394
Дата охранного документа: 20.04.2005
29.05.2019
№219.017.66a8

Плоское сопло турбореактивного двигателя

Изобретение относится к области авиационного двигателестроения, а именно к конструкции сопел турбореактивных двигателей. Плоское сопло турбореактивного двигателя содержит две неподвижные боковые стенки и установленные между ними верхнюю и нижнюю подвижные створки. В каждую подвижную створку...
Тип: Изобретение
Номер охранного документа: 0002374477
Дата охранного документа: 27.11.2009
29.05.2019
№219.017.688b

Магнитожидкостное уплотнение вала

Изобретение относится к конструкциям уплотнений между подвижными относительно одна другой поверхностями. Магнитожидкостное уплотнение вала содержит корпус из немагнитного материала с кольцевой магнитной системой внутри него, включающей постоянный магнит с полюсными приставками и жестко...
Тип: Изобретение
Номер охранного документа: 0002451225
Дата охранного документа: 20.05.2012
09.06.2019
№219.017.769d

Масляная система авиационного газотурбинного двигателя

Масляная система авиационного газотурбинного двигателя относится к области авиадвигателестроения, преимущественно к маслосистеме авиационного газотурбинного двигателя для маневренных самолетов, и позволяет замедлить снижение уровня масла в маслобаке авиационного газотурбинного двигателя...
Тип: Изобретение
Номер охранного документа: 0002273746
Дата охранного документа: 10.04.2006
19.06.2019
№219.017.8449

Способ запуска газотурбинных двигателей многодвигательного летательного аппарата

Способ запуска газотурбинных двигателей многодвигательного летательного аппарата заключается в запуске одного из двигателей летательного аппарата путем подвода к его ротору мощности от пускового устройства и последующем запуске второго двигателя летательного аппарата. Запуск второго двигателя...
Тип: Изобретение
Номер охранного документа: 0002277179
Дата охранного документа: 27.05.2006
19.06.2019
№219.017.853e

Стенд для испытания турбореактивного двигателя

Стенд для испытания турбореактивного двигателя /ТРД/ и для испытания двигателей с управляемым по направлению вектором тяги и/или испытания реверса тяги. Задачей изобретения является обеспечение измерений тяги по осям трехмерного пространства, в направлении действия измеряемых усилий, с заданной...
Тип: Изобретение
Номер охранного документа: 0002250446
Дата охранного документа: 20.04.2005
19.06.2019
№219.017.85ba

Способ наддува опор газотурбинного двигателя

Изобретение относится к области газотурбинного двигателестроения, а именно к способам наддува опор газотурбинных двигателей. Способ наддува опор двухконтурного газотурбинного двигателя заключается в подаче воздуха от одной из ступеней компрессора через стойки промежуточного корпуса компрессора...
Тип: Изобретение
Номер охранного документа: 0002344303
Дата охранного документа: 20.01.2009
19.06.2019
№219.017.85d0

Газотурбинный двигатель

Газотурбинный двигатель содержит наружный контур и внутренний контур, имеющий камеру сгорания, компрессор, охлаждаемую турбину с, по меньшей мере, двумя ступенями, размещенным между ними сопловым аппаратом и междисковой полостью. Думисная полость образована последней ступенью компрессора,...
Тип: Изобретение
Номер охранного документа: 0002347091
Дата охранного документа: 20.02.2009
Показаны записи 81-90 из 306.
10.07.2015
№216.013.5f49

Способ капитального ремонта турбореактивного двигателя (варианты) и турбореактивный двигатель, отремонтированный этим способом (варианты), способ капитального ремонта партии пополняемой группы турбореактивных двигателей и турбореактивный двигатель, отремонтированный этим способом

Изобретение относится к энергетике. Способ капитального ремонта турбореактивного двигателя, при котором создают ротационно-обновляемый запас восстановленных деталей - модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в...
Тип: Изобретение
Номер охранного документа: 0002555934
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4a

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к энергетике. Способ серийного производства газотурбинного двигателя (ГТД), при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до...
Тип: Изобретение
Номер охранного документа: 0002555935
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4b

Способ капитального ремонта газотурбинного двигателя (варианты) и газотурбинный двигатель, отремонтированный этим способом (варианты), способ капитального ремонта партии, пополняемой группы газотурбинных двигателей и газотурбинный двигатель, отремонтированный этим способом

Изобретение относится к энергетике. Способ капитального ремонта газотурбинного двигателя (ГТД), при котором создают ротационно обновляемый запас восстановленных деталей: модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в...
Тип: Изобретение
Номер охранного документа: 0002555936
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4c

Способ капитального ремонта газотурбинного двигателя (варианты) и газотурбинный двигатель, отремонтированный этим способом (варианты), способ капитального ремонта партии пополняемой группы газотурбинных двигателей и газотурбинный двигатель, отремонтированный этим способом

Изобретение относится к энергетике. Способ капитального ремонта газотурбинного двигателя, при котором создают ротационно обновляемый запас восстановленных деталей - модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в...
Тип: Изобретение
Номер охранного документа: 0002555937
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4d

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к энергетике. Способ серийного производства газотурбинного двигателя (ГТД), при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми. Помодульно собирают двигатель, который...
Тип: Изобретение
Номер охранного документа: 0002555938
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4e

Турбореактивный двигатель

Изобретение относится к энергетике. Турбореактивный двигатель (ТРД), выполненный двухконтурным, двухвальным, содержит не менее восьми модулей, включая компрессоры высокого и низкого давления, разделенные промежуточным корпусом, основную камеру сгорания, воздухо-воздушный теплообменник, турбины...
Тип: Изобретение
Номер охранного документа: 0002555939
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4f

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к энергетике. Способ серийного производства газотурбинного двигателя, при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до...
Тип: Изобретение
Номер охранного документа: 0002555940
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f50

Турбореактивный двигатель

Изобретение относится к энергетике. Турбореактивный двигатель выполнен двухконтурным, двухвальным, содержит не менее восьми модулей, смонтированных по модульно-узловой системе, включая компрессоры высокого и низкого давления, разделенные промежуточным корпусом, основную камеру сгорания,...
Тип: Изобретение
Номер охранного документа: 0002555941
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f51

Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом

Изобретение относится к энергетике. Способ серийного производства турбореактивного двигателя, при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя, собирают модули в количестве не менее восьми - от компрессора низкого давления до...
Тип: Изобретение
Номер охранного документа: 0002555942
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f53

Способ капитального ремонта турбореактивного двигателя и турбореактивный двигатель, отремонтированный этим способом (варианты), способ капитального ремонта партии, пополняемой группы турбореактивных двигателей и турбореактивный двигатель, отремонтированный этим способом (варианты)

Изобретение относится к энергетике. Способ капитального ремонта авиационных турбореактивных двигателей, при котором создают ротационно обновляемый запас восстановленных деталей - модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и...
Тип: Изобретение
Номер охранного документа: 0002555944
Дата охранного документа: 10.07.2015
+ добавить свой РИД