×
18.05.2019
219.017.59fa

Результат интеллектуальной деятельности: БЛОКИРУЮЩИЙ ДИОД ДЛЯ СОЛНЕЧНЫХ БАТАРЕЙ КОСМИЧЕСКИХ АППАРАТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области дискретных полупроводниковых приборов, в частности к блокирующим диодам для солнечных батарей космических аппаратов. Техническим результатом заявленного изобретения является создание бескорпусного блокирующего диода для солнечных батарей космических аппаратов с высоким пробивным напряжением, низким прямым напряжением, устойчивого при термоциклировании в широком диапазоне температур (от -180°C до +100°С), диэлектрическая изоляция которого защищена от воздействия щелочных металлов. Сущность изобретения: блокирующий диод для солнечных батарей космических аппаратов содержит кремниевый кристалл с планарным p-n-переходом, омический контакт к области p-типа проводимости между областью эмиттера и полевой обкладкой кремниевого кристалла, омический контакт к области n-типа проводимости между областью базы и полевой обкладкой кремниевого кристалла, первый и второй выводы, расположенные параллельно лицевой и тыльной плоскостям кремниевого кристалла, первый и второй компенсаторы, расположенные между первым и вторым выводами и кремниевым кристаллом. 6 з.п. ф-лы, 2 ил.

Изобретение относится к области дискретных полупроводниковых приборов, в частности к блокирующим диодам для солнечных батарей космических аппаратов.

Из уровня техники известен диод с планарным диффузионным переходом, изготовленный диффузией p-типа через окно в маскирующем слое двуокиси кремния. Для того чтобы исключить пробой у края объемного заряда по периметру p-n-перехода выполнены полевые кольца p-типа проводимости. Таким образом, удается добиться увеличения пробивных напряжений [см. Тейлор П. Расчет и проектирование тиристоров, пер. с англ. под ред. Евсеева Ю.А., М., Энергоатомиздат, 1990 г., стр.33, 208].

Недостаток технического решения заключается в том, что кольца являются концентраторами механических напряжений в кристалле, и в результате уменьшается стойкость прибора в процессе термоциклирования.

Из уровня техники известно техническое решение, когда используется металлическая полевая обкладка, которая служит контактом к эмиттеру и выступает за его пределы поверх слоя двуокиси кремния, благодаря чему расширяется область объемного заряда в базе диода. Таким образом устраняется краевой эффект искривления поля у края p-n-перехода, который приводит к низковольтному пробою [см. Блихер А., Физика тиристоров, пер. с англ. под ред. Грехова И.В., Л., Энергоиздат, 1981 г., стр.264].

Таким диодам свойственна временная нестабильность, так как небольшие нарушения адгезии металла к диэлектрической изоляции приводят к электрическому пробою.

Из уровня техники известен планарный диод, в котором применяется трехслойная диэлектрическая изоляция. После формирования планарного p-n-перехода удаляется маскирующий окисел и на монокристаллическую поверхность базы осаждается из газовой фазы полевая обкладка, выполненная из поликристаллического кремния, легированного кислородом [см. Тейлор П., Расчет и проектирование тиристоров, пер. с англ. под ред. Евсеева Ю.А., М., Энергоатомиздат, 1990 г., стр.178, 208]. Сверху для защиты от проникновения щелочных металлов осаждается слой поликристаллического кремния, легированный азотом, а чтобы избежать пробоя по поверхности осаждается третий слой пиролитической двуокиси кремния. В таком диоде область объемного заряда расширяется за счет потенциала, приложенного к полевой обкладке.

Недостатком технического решения является то, что перед осаждением полевой обкладки удаляется маскирующий слой двуокиси кремния, который был сформирован для изготовления p-n-перехода. В такой технологии невозможно сохранить чистоту поверхности кремния, на которую осаждается полевая обкладка, на таком же уровне, как при изготовлении планарного диода с изоляцией термической двуокисью кремния. В результате повышается уровень обратных токов.

Из уровня техники известно применение карбид кремниевых блокирующих диодов Шоттки для солнечных батарей космических аппаратов, предназначенных для использования при повышенных температурах [см. E.Maset, E.Sanchis-Kilders, P.Brosselard, X.Jordá, M.Vellvehi, P.Godignon. 300°C SiC Blocking Diodes for Solar Array Strings, Materials Science Forum, 2009 г., v.615-617, p.925-928].

Достоинством диодов Шотки на основе карбида кремния являются высокие пробивные напряжения (600 вольт) и высокие рабочие температуры, в перспективе до 600°C. Эти преимущества имеют большое значение для спускаемых на Венеру или запускаемых к Меркурию аппаратов.

Недостатком диодов Шоттки на основе карбида кремния являются высокие прямые напряжения, которые втрое больше чем у кремниевых планарных диодов, большие на три порядка обратные токи, меньшая надежность. Большие прямые напряжения приводят к потере КПД всей солнечной батареи, большие обратные токи к разрядке аккумуляторов в период нахождения спутника в тени земли.

Из уровня техники известен блокирующий диод для солнечных батарей космических аппаратов, содержащий кремниевый кристалл с планарным p-n-переходом, окруженным по периметру диэлектрической изоляцией из термической двуокиси кремния, омические контакты к областям p- и n-типа проводимости и выводы, параллельные лицевой и тыльной плоскостям кристалла (см. патент США на изобретение US 3952324, опубл. 20.08.1976).

Недостатком известного диода является низкое пробивное напряжение, так как нет ни охранных полевых колец, ни полевой обкладки, вследствие этого в месте выхода перехода на поверхность происходит пробой. Практика показывает, что верхний предел обратных напряжений для таких диодов не превышает 200-300 Вольт. Поскольку диод вертикальный, велико последовательное сопротивление базы, что обуславливает высокое прямое напряжение. Двуокись кремния, которая находится на поверхности кристалла диода, не защищена от проникновения щелочных металлов. В этом случае характеристики бескорпусных диодов нестабильные.

Техническим результатом заявленного изобретения является создание блокирующего диода для солнечных батарей космических аппаратов с высоким пробивным напряжением, низким прямым напряжением, устойчивого при термоциклировании в широком диапазоне температур (от -180°C до +100°C), диэлектрическая изоляция которого защищена от воздействия щелочных металлов. Кроме того, в диоде используется маскирующий окисел (слой двуокиси кремния), получаемый в процессе формирования планарного p-n-перехода. Достигаемый технический результат обеспечивает надежную работу солнечных батарей космических аппаратов.

Технический результат заявленного изобретения достигается совокупностью существенных признаков, а именно: блокирующий диод для солнечных батарей космических аппаратов содержащий:

- кремниевый кристалл с планарным p-n-переходом, выполненным в эпитаксиальном слое, выращенном на низкоомной подложке,

- слой термической двуокиси кремния, являющийся маской для области эмиттера планарного p-n-перехода, на поверхности эпитаксиального слоя, в котором расположена область базы;

- слой нелегированного поликристаллического кремния, выполняющий роль полевой обкладки, на поверхности термической двуокиси кремния;

- слой нитрида кремния, расположенный на поверхности слоя нелегированного поликристаллического кремния, выполняющего роль полевой обкладки;

- первый и второй выводы, расположенные параллельно лицевой и тыльной плоскостям кремниевого кристалла соответственно;

- первый и второй компенсаторы, расположенные между первым и вторым выводами и кремниевым кристаллом соответственно;

- омический контакт к области p-типа проводимости между областью эмиттера и полевой обкладкой кремниевого кристалла, обеспеченный путем напыления и вжигания слоя алюминия;

- омический контакт к области n-типа проводимости между областью базы и полевой обкладкой кремниевого кристалла, обеспеченный протравленной на всю глубину в термической двуокиси кремния канавки в виде кольца;

- при этом область полевой обкладки в зоне омического контакта легирована примесью того же типа проводимости, что и область базы до уровня не ниже 1019 ат/см3.

Первый и второй выводы присоединены к первому и второму компенсаторам соответственно точечной сваркой.

Первый и второй компенсаторы присоединены к кремниевому кристаллу припоем, содержащим не менее 80% свинца.

Первый и второй компенсаторы выполнены из металла, например из молибдена.

Площадь второго компенсатора, присоединенного к области n-типа проводимости, равна площади кремниевого кристалла.

На поверхности слоя нитрида кремния нанесен слой диэлектрика, например слой полиимида или слой двуокиси кремния.

Полевая обкладка из нелегированного поликристаллического кремния выполняет следующие функции:

- под действием отрицательного заряда, приложенного к полевой обкладке при обратном напряжении, расширяется область объемного заряда на поверхности и соответственно увеличивается пробивное напряжение;

- положительные заряды в двуокиси кремния, связанные с наличием в ней щелочных металлов и водорода, отсасываются от поверхности кремния, в результате исключается обогащение поверхности кремния электронами, которое приводит к снижению пробивного напряжения и увеличению токов утечки;

- уменьшается расстояние для миграции дырок в двуокиси кремния, возникших в результате образования электронно-дырочных пар при воздействии горячих электронов в момент приложения обратного напряжения. В результате уменьшается время жизни дырок до рекомбинации.

Для защиты от проникновения в двуокись кремния щелочных металлов поверх слоя двуокиси кремния осажден слой нитрида кремния. Чтобы избежать поверхностного пробоя, на слой нитрида кремния нанесен еще слой диэлектрика. В качестве такового может использоваться, например, пиролитический или плазмохимический оксид кремния, а также полиимид. Между первым и вторым выводами и кремниевым кристаллом находятся первый и второй компенсаторы, выполненные из металла, отличающегося от кремния по КТЛР не более чем на 4×10-6K-l.

Компенсатор на стороне n-типа проводимости выполнен из молибдена с никелевым покрытием и равен площади кремниевого кристалла. Если при монтаже диода в батарее диод установить нижней стороной по направлению к потоку излучения, то компенсатор и низкоомная часть подложки являются дополнительной защитой от ионизирующего излучения.

Припой, использованный для пайки компенсаторов к кремниевому кристаллу, содержит не менее 80% свинца. Благодаря этому сохраняется вязкость припоя при низких температурах.

Для уменьшения влияния разности коэффициента термического расширения (КТР) выводов и компенсаторов выводы присоединены к компенсаторам точечной сваркой.

Признаки и сущность заявленного изобретения поясняются в последующем детальном описании, иллюстрируемом чертежами, где показано следующее:

На фиг.1 - конструкция бескорпусного блокирующего диода для солнечных батарей космических аппаратов, где:

1 - кремниевый кристалл;

2 - первый слой припоя;

3 - первый компенсатор;

4 - первый вывод;

5 - второй слой припоя;

6 - второй компенсатор;

7 - второй вывод;

На фиг.2 изображен кремниевый кристалл диода в разрезе, где:

8 - слой нелегированного поликристаллического кремния (полевая обкладка);

9 - слой вженного алюминия;

10 - эпитаксиальный слой (область базы);

11 - область эмиттера (анода);

12 - слой термической двуокиси кремния;

13 - слой нитрида кремния;

14 - низкоомная подложка;

15 - канавка;

16 - кольцо.

Блокирующий диод для солнечных батарей космических аппаратов (см. фиг.1) состоит из кремниевого кристалла (1) размером 4×4 мм2, к которому при помощи припоя (2), в котором содержится не менее 80% свинца, со стороны эмиттера (анода) на стороне p-типа проводимости (с верхней стороны) присоединен первый компенсатор из металла, например молибдена (3), с никелевым покрытием, толщиной 0,2-0,3 мм, к первому компенсатору (3) точечной сваркой присоединен первый вывод (4) на стороне p-типа проводимости (медный или серебряный), с нижней стороны припоем (5) на стороне n-типа проводимости присоединен второй компенсатор (6) из металла, например молибдена с никелевым покрытием, толщиной 0,2-0,3 мм, второй компенсатор (6) может быть круглым или квадратным, равным по площади кремниевому кристаллу (1), к второму компенсатору (6) на стороне n-типа проводимости точечной сваркой присоединен второй вывод (7) (медный или серебряный).

Кремниевый кристалл диода (1) в разрезе (см. фиг.2) включает низкоомную подложку (14) с эпитаксиальным слоем (10), удельное сопротивление подложки (14) n-типа проводимости 0,01 Ом×см, легирующая примесь сурьма, эпитаксиальный слой (10) имеет толщину 60 мкм, n-тип проводимости с удельным сопротивлением 30 Ом×см, на поверхности эпитаксиального слоя (10) находится слой термической двуокиси кремния (12) толщиной 0,4-0,8 мкм, который служит маской при формировании области эмиттера (11) планарного p-n-перехода, глубина перехода составляет 10 мкм, поверх слоя термической двуокиси кремния (12) осажден слой нелегированного поликристаллического кремния (8) толщиной 0,2-0,4 мкм, который является полевой обкладкой, омический контакт между областью эмиттера и полевой обкладкой сформирован путем напыления и вжигания слоя алюминия (9), в слое термической двуокиси кремния (12) на всю глубину вытравлена канавка (15) в виде кольца (16) до кремния и область кремния в зоне канавки пролегирована фосфором до уровня концентрации примеси не менее 1019 ат/см3, в зоне контакта с эпитаксиальным слоем (10) слой нелегированного поликристаллического кремния (8) пролегирован фосфором в области канавки (15) до уровня концентрации примеси не менее 1019 ат/см3, что обеспечивает омический контакт полевой обкладки с областью базы диода, расположенной в эпитаксиальном слое (10). Область эмиттера может быть металлизирована, например, в следующей последовательности: слой алюминия толщиной 0,1 мкм, слой никеля толщиной 0,2 мкм, слой серебра толщиной 0,2 мкм, область n-типа проводимости (катода) также может быть металлизирована, например, в следующей последовательности: слой ванадия толщиной 0,1 мкм, слой никеля толщиной 0,2 мкм, слой серебра толщиной 0,2 мкм. Слой (8) - слой поликремния, для защиты слоя (12) двуокиси кремния от щелочных металлов поверх него находится слой (13) нитрида кремния толщиной 0,12 мкм, для того чтобы исключить дуговой разряд при подаче обратного напряжения между областью эмиттера (11) и кольцом (16), поверх слоя нитрида кремния (13) нанесен слой диэлектрика (на чертеже не показан).

Принцип работы заявленного блокирующего диода для солнечных батарей космических аппаратов осуществляется следующим образом.

При подаче обратного напряжения на диод, когда к выводу (4) (см. фиг.1) приложен отрицательный потенциал, а к выводу (7) положительный, в зоне p-n-перехода образуется область объемного заряда, которая расширяется вдоль полевой обкладки (8) (см. фиг.2), к которой также приложено обратное напряжение. Благодаря наличию омических контактов между областью эмиттера и полевой обкладкой и между областью базы и полевой обкладкой соответственно (к областям p- и n-типа проводимости), по полевой обкладке (8) течет микроток.

Положительным эффектом заявленного изобретения является тот факт, что если нет омических контактов полевой обкладки к областям n- и p-типа проводимости, то пробивные напряжения снижаются в два раза. Это подтверждается тем, что до операции вжигания алюминия пробивные напряжения не превышают 300-400 вольт. При этом наблюдается большой разброс параметров в партии пластин по пробивным напряжениям и обратным токам. После вжигания алюминия пробивные напряжения увеличиваются до 700-750 вольт и обратные токи уменьшаются с мА до 2-3 мкА.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 71.
20.08.2014
№216.012.e9b1

Солнечная батарея для малоразмерных космических аппаратов и способ ее изготовления

Изобретение относится к электротехнике, в частности к устройствам для генерирования электрической энергии путем преобразования светового излучения в электрическую энергию, и может быть использовано при создании и производстве малоразмерных космических аппаратов с солнечными батареями (СБ)....
Тип: Изобретение
Номер охранного документа: 0002525633
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.e9b2

Активный ультрафиолетовый солнечный датчик для системы ориентации малоразмерного космического аппарата

Заявленное изобретение относится к системам ориентации космических аппаратов и может быть использовано в качестве активного ультрафиолетового солнечного датчика. Активный ультрафиолетовый солнечный датчик для системы ориентации малоразмерного космического аппарата содержит фотоприемник на...
Тип: Изобретение
Номер охранного документа: 0002525634
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ecb1

Способ радиотехнических доплеровских угломерных измерений космического аппарата и система для осуществления данного способа

Группа изобретений относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи. В способе используются три территориально разнесенные наземные измерительные станции (ИС) и приемоответчик КА. ИС измеряют значения радиальной скорости КА...
Тип: Изобретение
Номер охранного документа: 0002526401
Дата охранного документа: 20.08.2014
10.10.2014
№216.012.fbdc

Способ радиоприема высокоскоростной информации космической радиолинии и устройство для его реализации

Группа изобретений относится к вычислительной технике. Технический результат заключается в компенсации детерминированных искажений, вызываемых эффектом Доплера с целью уменьшения потери сигнала. Способ радиоприема высокоскоростной информации космической радиолинии, в котором выполняют прием...
Тип: Изобретение
Номер охранного документа: 0002530322
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fe90

Способ дистанционного зондирования земли (дзз)

Изобретение относится к области оптического приборостроения и может быть использовано для получения изображений земной поверхности через турбулентную атмосферу. Способ основан на совместном использовании длинно-экспозиционного изображения и серии из N спектрально-фильтруемых...
Тип: Изобретение
Номер охранного документа: 0002531024
Дата охранного документа: 20.10.2014
27.12.2014
№216.013.15b4

Способ очистки, активации и осветления серебряных покрытий в газоразрядной плазме

Заявленное изобретение относится к области радиоэлектронной техники и микроэлектроники, а также может использоваться в других областях техники для очистки, активации и осветления различных изделий с серебряным покрытием. Способ очистки, активации и осветления серебряных покрытий в газоразрядной...
Тип: Изобретение
Номер охранного документа: 0002536980
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1622

Способ синхронизации шкал времени двух и более территориально удаленных наземных хранителей времени и система для его реализации

Изобретение относится к космической области техники и может применяться в спутниковых навигационных системах типа ГЛОНАСС, GPS и др. для синхронизации как минимум двух территориально удаленных наземных хранителей времени спутниковой навигационной системы, например центральных синхронизаторов...
Тип: Изобретение
Номер охранного документа: 0002537090
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.18f6

Способ коррекции траектории полета космического аппарата и устройство для его реализации

Способ коррекции траектории полета космического аппарата и устройство для его реализации относится к космической технике, в частности к навигации спутниковых систем. Достигаемый технический результат - повышение точности навигации комплексированием ошибок детерминированного происхождения в...
Тип: Изобретение
Номер охранного документа: 0002537818
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1ade

Формирователь радиосигналов с цифровым предыскажением четными гармониками

Изобретение относится к области радиопередающих устройств и может быть использовано в составе бортовой аппаратуры космических аппаратов. Достигаемый технический результат - уменьшение величины продуктов интермодуляционных искажений третьего порядка, малые затраты ресурсов на реализацию....
Тип: Изобретение
Номер охранного документа: 0002538306
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.26ea

Микросистемный ёмкостной датчик измерения физических величин

Изобретение относится к области микроэлектроники - устройствам микросистемной техники, выполненным по технологиям микрообработки кремния, и может выполнять роль исполнительного элемента датчиковой аппаратуры в части измерения параметров перемещения, ускорения, температуры, механической силы,...
Тип: Изобретение
Номер охранного документа: 0002541415
Дата охранного документа: 10.02.2015
Показаны записи 31-40 из 42.
29.04.2019
№219.017.447e

Микросистемное устройство управления поверхностью для крепления малогабаритной антенны

Изобретение относится к области микросистемной техники и может быть использовано при создании микросистемных устройств управления и/или сканирования малогабаритной антенной или оптической отражающей поверхностью (зеркала) на основе подвижных термомеханических микроактюаторов, обеспечивающих...
Тип: Изобретение
Номер охранного документа: 0002456720
Дата охранного документа: 20.07.2012
01.05.2019
№219.017.47ea

Свч фильтр на основе интегрированного в подложку волновода и способ его изготовления

Использование: для создания СВЧ фильтров. Сущность изобретения заключается в том, что СВЧ фильтр на основе интегрированного в подложку волновода, образованный цепочкой связанных резонаторов, конструкция которого состоит из следующих составных частей: металлического основания, подложки на основе...
Тип: Изобретение
Номер охранного документа: 0002686486
Дата охранного документа: 29.04.2019
15.06.2019
№219.017.8370

Способ формирования многофункциональных терморегулирующих покрытий на изделиях из алюминиевых сплавов

Изобретение относится к области гальванотехники и может быть использовано для формирования на изделиях прочно сцепленных с основой многофункциональных терморегулирующих оптических покрытий, обладающих повышенными теплозащитными функциями и применяемых для блоков бортовой аппаратуры и узлов...
Тип: Изобретение
Номер охранного документа: 0002691477
Дата охранного документа: 14.06.2019
22.06.2019
№219.017.8ec4

Способ изготовления сквозных микроотверстий в кремниевой подложке

Изобретение относится к области технологии микроэлектроники и может быть использовано при изготовлении 3D-устройств микросистемной техники, например микроинжекторов, микродвигателей, а именно при получении сквозных микроотверстий в кремниевой подложке. Способ изготовления сквозных...
Тип: Изобретение
Номер охранного документа: 0002692112
Дата охранного документа: 21.06.2019
26.06.2019
№219.017.92c4

Способ получения диэлектрического слоя на основе полимерного покрытия в изделиях микроэлектроники

Заявленное изобретение относится к области микроэлектроники, а именно к способам получения диэлектрического слоя межслойной изоляции определенной толщины в изделиях микроэлектроники на основе полимерного покрытия. Способ получения диэлектрического слоя на основе полимерного покрытия в изделиях...
Тип: Изобретение
Номер охранного документа: 0002692373
Дата охранного документа: 24.06.2019
23.07.2019
№219.017.b6fa

Миниатюрный измеритель параметров электризации космических аппаратов с микросистемным вибрационным модулятором электрического поля

Использование: для детектирования напряженности электрического поля на поверхности конструкции космического аппарата. Сущность изобретения заключается в том, что миниатюрный измеритель параметров электризации космических аппаратов включает: микросистемный вибрационный модулятор, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002695111
Дата охранного документа: 19.07.2019
05.09.2019
№219.017.c6e6

Шагающий инсектоморфный мобильный микроробот

Изобретение относится к микроробототехнике, а именно к шагающим мобильным микророботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса, невесомости, микрогравитации и выполнения задач напланетных миссий. Шагающий мобильный...
Тип: Изобретение
Номер охранного документа: 0002699209
Дата охранного документа: 03.09.2019
08.02.2020
№220.018.0022

Способ изготовления свч-гибридной интегральной микросхемы космического назначения с многоуровневой коммутацией

Использование: для изготовления СВЧ–гибридных интегральных микросхем космического назначения с многоуровневой коммутацией на основе органического диэлектрика. Сущность изобретения заключается в том, что способ изготовления СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на...
Тип: Изобретение
Номер охранного документа: 0002713572
Дата охранного документа: 05.02.2020
02.03.2020
№220.018.0822

Многослойная коммутационная плата свч-гибридной интегральной микросхемы космического назначения и способ её получения (варианты)

Изобретение относится к электронной технике, а именно к области СВЧ микроэлектроники. Техническим результатом заявленного изобретения является повышение адгезионной прочности монтажных соединений в коммутационной плате и технологичности коммутационной СВЧ-платы. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002715412
Дата охранного документа: 28.02.2020
16.05.2023
№223.018.630e

Ползающий космический микроробот-инспектор

Изобретение относится к микроробототехнике, а именно к мобильным микророботам, и предназначено для осуществления инспекционных работ на солнечных батареях космических аппаратов и/или Международной космической станции, в экстремальных ситуациях, преимущественно для минимизации рисков человека в...
Тип: Изобретение
Номер охранного документа: 0002771501
Дата охранного документа: 06.05.2022
+ добавить свой РИД