×
18.05.2019
219.017.5502

Результат интеллектуальной деятельности: СПОСОБ ФУТЕРОВКИ КАТОДНОГО УСТРОЙСТВА АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области цветной металлургии, в частности к электролитическому производству алюминия, а именно к способам футеровки катодного устройства для производства алюминия. Способ включает кладку верхних рядов цоколя из шамотных кирпичей с использованием кладочного раствора, содержащего 70-72% карбида кремния, 23-27% шамота и 3-5% пека каменноугольного, а также 14-18% воды сверх 100% сухой массы. Причем не менее 15% карбида кремния представлено высококонцентрированной вяжущей суспензией (ВКВС), получаемой мокрым помолом, а остальное - наполнителем полидисперсного состава. Техническим результатом изобретения является повышение срока службы электролизера за счет замедления скорости проникновения компонентов криолитглиноземного расплава в теплоизоляционную часть цоколя и сохранение теплофизических свойств последней. 3 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области цветной металлургии, в частности к электролитическому производству алюминия, а именно к способу футеровки катодного устройства для производства алюминия.

Известен способ футеровки катодного устройства алюминиевого электролизера, включающий кладку из огнеупорного и теплоизоляционного кирпича, монтаж подовой и бортовой футеровки. Для предотвращения проникновения расплава алюминия и электролита, ведущего к разрушению катодного устройства и сокращению срока службы электролизера, кирпичи укладывают с перевязкой швов по горизонтали и вертикали на величину 0,25-0,5 длины кирпича. Швы между кирпичами заполняют материалом на основе оксидов материалов, например глинозема и/или оксида кремния, крупностью 20-30 мкм (патент РФ № 2149923, МПК C 25 C 3/08, 2000).

Недостатком такого способа футерования является то, что неуплотненный материал между кирпичами имеет высокую открытую пористость, благодаря которой жидкофазные фторсодержащие компоненты быстро проникают через швы в первоначальный момент и способствуют протеканию реакции взаимодействия по всей высоте шва. При этом оксид кремния не является барьером ни для алюминия, ни для натрия, которыми он легко восстанавливается, ни для фторидных расплавов, поскольку образующийся силикат натрия имеет низкую температуру солидуса и малую вязкость. Оксиды алюминия, в частности глинозем, взаимодействуют с фтористым натрием с увеличением объема (до 6,5 об.%), но в силу недостаточного уплотнения слоя из Al2О3 этого увеличения для герметизации межкирпичного шва недостаточно, тем более что в отсутствие кремния вязкость проникающих жидкофазных компонентов будет низка. Это способствует продвижению фронта пропитки в глубь цоколя с повреждением теплоизоляционных слоев. Кроме того, недостатком является нетехнологичность (пыление) тонкодисперсного материала.

Наиболее близким к заявляемому способу футеровки катодного устройства для получения алюминия по технической сущности и достигаемому результату является традиционно применяемый способ футеровки катодного устройства алюминиевого электролизера (Справочник металлурга по цветным металлам. М.: Металлургия, 1971, с.239-241).

В этом способе футеровки катодного устройства алюминиевого электролизера, включающем кладку трех верхних барьерных рядов цоколя с использованием шамотных кирпичей со швами 2-3 мм на растворе, состоящем из 75-80% шамотного порошка, на 20-25% из огнеупорной глины и 25-30% воды сверх 100% сухой массы.

Недостатком прототипа является низкая химическая стойкость швов, не обеспечивающих газоплотность кладки вследствие образования пор при испарении воды, неоптимального гранулометрического состава шамотного порошка и протекания газофазных реакций при взаимодействии жидкофазных компонентов электролита и шамота.

В основу изобретения положена задача разработки способа футеровки катодного устройства футеровки алюминиевого электролизера, обеспечивающего увеличение срока службы электролизера, улучшение его показателей работы за счет герметизации барьерных слоев и устранения попадания фторсолей и расплавленного алюминия в теплоизоляционные слои.

Поставленная задача решается тем, что в способе футеровки катодного устройства алюминиевого электролизера катодной футеровке алюминиевого электролизера, включающем кладку верхних рядов цоколя из шамотных кирпичей с использованием кладочного раствора, кладочный раствор содержит 70-72% карбида кремния, 23-27% алюмосиликатного мертеля шамотного состава, а также 3-5% пека каменноугольного и 14-18% воды сверх 100% сухой массы.

Предлагаемый способ дополняют частные отличительные признаки, направленные на решение поставленной задачи.

Карбид кремния представлен в виде смеси, состоящей из 15% высококонцентрированной вяжущей суспензии (ВКВС), получаемой мокрым помолом, и 85% наполнителя, имеющего следующий дисперсный состав (мас.%):

0,4-1,0 мм18±1
0,01-0,4 мм41±1
0-0,01 мм41±1

Дисперсный состав ВКВС из SiC не менее чем на 70% состоит из частиц размерами до 0,015 мм. Дисперсный состав алюмосиликатного мертеля шамотного состава на 60-94% состоит из частиц размерами до 0,5 мм. Дисперсность каменноугольного пека до 0,1 мм.

Сопоставительный анализ признаков заявляемого решения и признаков аналога и прототипа свидетельствует о соответствии решения критерию «новизна».

Выполнение кладочного раствора, содержащего 70-72% карбида кремния, 23-27% алюмосиликатного мертеля шамотного состава, а также 3-5% пека каменноугольного и 14-18% воды сверх 100% сухой массы обусловлено следующими обстоятельствами:

карбид кремния является термодинамически устойчивым материалом и не вступает в реакцию с расплавом алюминия, о чем свидетельствует положительная величина энергии Гиббса реакций 1-5:

Карбид кремния не вступает в обменные реакции с компонентами электролита:

Карбид кремния может хорошо противодействовать атаке паров натрия как в присутствии кремнезема, так и кремнезема вместе с глиноземом:

Таким образом, карбид кремния может противостоять любым воздействиям в катодном устройстве электролизера. Однако, как показали результаты исследований, кладочный раствор с использованием мертеля на основе смеси высококонцентрированной вяжущей суспензии и наполнителя - порошка из SiC - смачивался жидкой фазой электролита и легко ею пропитывался. Для предотвращения этого в кладочный раствор введен несмачиваемый фторсолями компонент - каменноугольный пек. Образец из такого материала продемонстрировал превосходную стойкость к расплавленным фторсолям и алюминию.

Однако кладочный раствор, приготовленный из ВКВС на основе карбида кремния и наполнителя из порошка SiC с добавками каменноугольного пека, имел низкую седиментационную устойчивость и водоудерживающую способность, что приводило к быстрой потере пластичных (кладочных) свойств растворной смеси. Так, через 20-25 мин исходная сметанообразная консистенция исчезала и происходило расслаивание смеси. Толщина слоя кладочной смеси, «налипавшей» на кирпич в первоначальный момент, достигала 12 мм. По истечении 40-50 мин после приготовления раствора наступала полная утрата адгезионных свойств. Толщина швов при кладке кирпича доходила до 6 мм при нормируемой 2-миллиметровой.

Для предотвращения этого явления в состав кладочного раствора добавляли алюмосиликатный мертель шамотного состава. При взаимодействии с водой тонкодисперсного мертеля вязкость раствора повышалась, что значительно увеличивало седиментационную устойчивость и водоудерживающую способность кладочного раствора. Кладочный раствор демонстрировал хорошие адгезионные свойства; толщина слоя на кирпиче оставалась постоянной и не превышала 3-5 мм. С точки зрения криолитоустойчивости, введение реагирующего с фторсолями компонента несколько ослабляет устойчивость кладочного раствора, но шамот образует слой нефелина по реакции (6):

При достаточно умеренном поступлении NaF нефелин реагирует с диоксидом кремния по реакции (7) с образованием альбита NaAlSi3O8, который будет находиться в вязком стеклообразном расплавленном состоянии:

Таким образом, формируется матрица из термодинамически устойчивого материала - SiC, поры между которыми заполнены алюмосиликатным материалом, образующим при взаимодействии с расплавленными фторсолями вязкие продукты, которые замедляют проникновение в глубь материала агрессивных компонентов как за счет повышенной вязкости, так и за счет наличия несмачивающих компонентов (пек) в составе кладочного раствора.

Предлагаемые параметры являются оптимальными. Если кладочный раствор будет содержать более 70-72% карбида кремния, то ухудшаются его технологические свойства (седиментационная устойчивость и водоудерживающая способность). Если содержание карбида кремния будет меньше заявленных пределов, то снижается криолитоустойчивость материала. Введение менее 3-5% пека каменноугольного уменьшает вероятность его равномерного распределения в объеме смеси, а увеличение сверх заявленной величины снижает прочностные свойства материала и приводит к разрушению прилегающих слоев кирпича за счет восстановления кремнийсодержащих элементов и потере связки. Введение воды в количестве более 18% негативно сказывается на сроке службы электролизеров за счет взаимодействия водяных паров с фторсодержащими газообразными компонентами и образованием плавиковой кислоты. Использование раствора с меньшим чем 14% содержанием воды затрудняет кладку из за недостаточной пластичности раствора.

Подобранный дисперсный состав наполнителя обеспечивает максимальную плотность укладки материала. Из экспериментальных данных замечено, что получение порошковых огнеупоров из двух фракций приводит к высокой степени их нестабильности ввиду существенного колебания содержания зерен различного размера внутри этих фракций. С другой стороны, достижение наибольшей стабильности 8 фракционной смеси существенно усложняет производство наполнителей. Поэтому для производства наполнителя рекомендуется оптимальный 3-фракционный состав (мас.%), обеспечивающий наиболее плотную укладку зерен: 0,4-1 мм 18±1%; 0,01-0,4 мм 41±1%; 0-0,01 мм 41±1%.

Соотношение крупной и мелкой фракций наполнителя находили опытным путем по закону Фиббоначи. Содержание средней фракции принималось неизменным, поскольку при увеличении количества средней фракции происходила раздвижка крупных зерен, что приводило к разрыхлению упаковки. Проведенные исследования показали, что пористость упаковок снижается с увеличением содержания тонкомолотого компонента, проходя через минимум при 41% для исследованных масс (с максимальным размером зерна 1 мм).

Дисперсный состав алюмосиликатного мертеля шамотного состава на 60-94% состоит из частиц размерами до 500 мкм.

Предлагаемый способ футеровки катодного устройства для получения алюминия по сравнению с прототипом позволяет повысить срок службы за счет замедления скорости проникновения компонентов криолит глиноземного расплава в теплоизоляционную часть цоколя и сохранения теплофизических свойств последней.

Сущность изобретения поясняется следующим графическим материалом, где:

на фиг.1 результаты исследований на криолитоустойчивость предлагаемого кладочного раствора; а - тигель, в котором проходили испытания на криолитоустойчивость, б - электролит с алюминием, в - образец огнеупорного кирпича, подвергшийся воздействию фторсодержащего электролита, г - разрез, заполненный карбидкремниевым мертелем.

на фиг.2 - распределение частиц по размерам в составе ВКВС.

Использование вышеописанной катодной футеровки позволит увеличить в среднем срок службы каждого алюминиевого электролизера на 2 года, что приведет к увеличению выпуска алюминия примерно на 800 тонн. Ниже приведен пример способа футеровки катодного устройства с использованием кладочного раствора заявленного состава (см. таблицу).


Пример способа футеровки катодного устройства с кладкой шамотных кирпичей с использованием кладочного раствора заявленного состава)
SiCМертель шамотныйПекКриолитоустойчивость, %Трудозатраты, %Седиментационная устойчивость, минТолщина швов при кладке, мм
Состав 175205961103306-0
Состав 267303901204003
Состав 370273941003602
Состав 472235941003602

Техническим результатом, поддающимся количественной оценке, задачи увеличения срока службы электролизера, улучшения его показателей работы за счет герметизации барьерных слоев и устранения попадания фторсолей и расплавленного алюминия в теплоизоляционные слои может служить величина криолитоустойчивости. Криолитоустойчивость определяется как отношение массы непрореагировавшего материала к исходной в процессе его взаимодействия с расплавами фтористых солей, алюминия и паров натрия в специальных тиглях, помещаемых в печь с контролируемой атмосферой. Наряду с криолитоустойчивостью к техническому результату следует отнести и технологические свойства способа футеровки катодного устройства алюминиевого электролизера - трудозатраты при проведении футеровки и седиментационная устойчивость, определяемая по скорости расслаивания кладочного раствора.

Заявляемые диапазоны являются оптимальными. Если содержание алюмосиликатного мертеля шамотного состава было ниже заявляемой величины 23%, как в составе №1, то снижалась седиментационная устойчивость - кладочный раствор начинал расслаиваться через 50-60 мин, приводя к ухудшению адгезии кладочного раствора к кирпичу. В первые полчаса толщина смеси на поверхности кирпича после его окунания достигала 6 мм, что формировало толщину швов при кладке кирпича до 3-4 мм (при нормируемой толщине шва не более 2 мм), по мере расслаивания наблюдалось все более слабое налипание, так что в целом по сравнению с прототипом снижалось качество кладки и увеличивались трудовые и финансовые (из-за более высокой стоимости SiC) затраты.

Если же содержание алюмосиликатного мертеля шамотного состава было выше заявляемой величины 27%, как в составе № 2, то в результате разбухания зерен шамота вязкость кладочного раствора увеличивалась, что приводило к повышению толщины слоя, налипающего на поверхности кирпича, увеличению расхода раствора и росту трудозатрат. Другим отрицательным моментом являлось снижение криолитоустойчивости из-за уменьшения содержания частиц термодинамически белее устойчивого карбида кремния. В то же время составы № 3 и № 4 на границах заявленных соотношений (естественно, и составы внутри указанных соотношений) обеспечивали не только хорошую седиментационную, но и высокую криолитоустойчивость.

Заявляемый способ был использован при футеровке катодных устройств на ОАО КрАЗ. Кладка шамотных кирпичей осуществлялась с применением кладочного раствора на основе карбидкремниевого мертеля с добавкой алюмосиликатного мертеля марки МШ-39 и пека с высокими технологическими характеристиками. Анализ состояния цоколей электролизеров по показаниям термопар по истечении более 1,5 лет показывает стабильные во времени характеристики, что свидетельствует о замедлении процесса проникновения агрессивных компонентов в теплоизоляционные слои электролизера, а следовательно, и достижении технического результата.

0,4-1,0мм18±10,01-0,4мм41±10-0,01мм41±1c0c1211none5521.Способфутеровкикатодногоустройстваалюминиевогоэлектролизера,включающийкладкуверхнихрядовцоколяизшамотныхкирпичейсиспользованиемкладочногораствора,отличающийсятем,чтоиспользуюткладочныйраствор,содержащий,мас.%:70-72карбидакремния,23-27алюмосиликатногомертеляшамотногосоставаи3-5пекакаменноугольногои14-18%водысверх100%сухоймассы;причемнеменее15%карбидакремнияпредставленовысококонцентрированнойвяжущейсуспензией(ВКВС),получаемоймокрымпомолом,аостальное-наполнителемполидисперсногосостава.12.Способпоп.1,отличающийсятем,чтонаполнительполидисперсногосоставакарбидакремнияимеетследующийдисперсныйсостав,мас.%:23.Способпоп.1,отличающийсятем,чтоВКВСизкарбидакремнияна70%состоитизчастицразмераминеболее15мкм.34.Способпоп.1,отличающийсятем,чтоалюмосиликатныймертельшамотногосоставана60-94%состоитизчастицразмерамидо500мкм.4
Источник поступления информации: Роспатент

Показаны записи 1-10 из 18.
20.02.2019
№219.016.bd86

Машина для загрузки анодной массы

Машина предназначена для транспортировки и загрузки анодной массы в электролизер для производства алюминия. На самоходном шасси размещены бункер и транспортирующие горизонтальный и наклонный шнеки. На валу горизонтального шнека установлен шнековый дозатор для подачи анодной массы из бункера....
Тип: Изобретение
Номер охранного документа: 0002255145
Дата охранного документа: 27.06.2005
29.03.2019
№219.016.eea4

Способ очистки регенерационного криолита от сульфата натрия

Изобретение относится к способам очистки регенерационного криолита от сульфата натрия. Способ включает загрузку криолита в промывную воду, отмывку при перемешивании и обезвоживание отмытого продукта. Отмывку проводят до остаточного содержания сульфата натрия в отмытом криолите 45-65% от его...
Тип: Изобретение
Номер охранного документа: 0002274606
Дата охранного документа: 20.04.2006
29.03.2019
№219.016.ef42

Ошиновка модульная мощных электролизеров для производства алюминия

Изобретение относится к производству алюминия методом электролиза расплавленных криолитовых солей в электролизерах при двухрядном поперечном расположении их в корпусе электролиза, в частности к ошиновке электролизера. В ошиновке электролизера, содержащей анодную ошиновку, соединенную с анодами...
Тип: Изобретение
Номер охранного документа: 0002288976
Дата охранного документа: 10.12.2006
29.03.2019
№219.016.ef48

Электролит для получения алюминия

Изобретение относится к цветной металлургии, в частности к производству алюминия электролизом криолит-глиноземного расплава. Технический результат заключается в интенсификации процесса получения алюминия, повышении его технико-экономических показателей, увеличении срока службы электролизера,...
Тип: Изобретение
Номер охранного документа: 0002288977
Дата охранного документа: 10.12.2006
29.03.2019
№219.016.f000

Способ управления алюминиевым электролизером при изменении скорости растворения глинозема

Изобретение относится к цветной металлургии и может быть использовано для управления процессом получения алюминия из глинозема электролитическим методом. Причины, препятствующие получению технического результата при использовании существующих способов, состоят в том, что в алгоритме не...
Тип: Изобретение
Номер охранного документа: 0002255149
Дата охранного документа: 27.06.2005
10.04.2019
№219.016.ff4a

Силовой гидравлический блок питания мобильной машины

Блок питания относится к машиностроительной гидравлике и может быть использовано в гидросистемах мобильных машин. Предлагаемый гидравлический блок питания мобильной машины содержит регулируемый насос, коллектор нагнетания которого сообщен с напорным трубопроводом для подачи рабочей жидкости к...
Тип: Изобретение
Номер охранного документа: 0002277188
Дата охранного документа: 27.05.2006
10.04.2019
№219.016.ff75

Катодная футеровка алюминиевого электролизера

Изобретение относится к алюминиевым электролизерам, в частности к катодной футеровке алюминиевого электролизера. Катодная футеровка алюминиевого электролизера включает углеродные блоки, теплоизоляционный слой и огнеупорную часть, состоящую из двух защитных слоев - верхнего, примыкающего к...
Тип: Изобретение
Номер охранного документа: 0002266983
Дата охранного документа: 27.12.2005
10.04.2019
№219.016.ffe2

Способ автоматического устранения анодных эффектов

Изобретение относится к области электролитического получения алюминия из расплавов и предназначено для автоматического устранения анодных эффектов в электролизерах с самообжигающимся анодом. Техническим результатом является увеличение надежности гашения, снижение времени гашения анодного...
Тип: Изобретение
Номер охранного документа: 0002285755
Дата охранного документа: 20.10.2006
10.04.2019
№219.017.014a

Способ управления подачей глинозема в электролизер при помощи точечных питателей

Изобретение относится к цветной металлургии и может быть использовано для оптимизации подачи глинозема в электролизер. При управлении подачей глинозема в алюминиевый электролизер для поддержания концентрации глинозема в заданных пределах измеряют напряжение электролизера. Формируют циклы,...
Тип: Изобретение
Номер охранного документа: 0002233914
Дата охранного документа: 10.08.2004
29.04.2019
№219.017.3e6c

Многополярная электролизная ванна для получения жидких металлов электролизом расплавов и способ установки электролизных ванн

Группа изобретений относится к цветной металлургии, а именно к конструкциям для производства металлов электролизом расплавленного электролита, в частности алюминия, и способу установки электролизных ванн. Получаемыми металлами помимо алюминия могут быть магний, литий, натрий, свинец....
Тип: Изобретение
Номер охранного документа: 0002275443
Дата охранного документа: 27.04.2006
Показаны записи 1-10 из 69.
10.04.2013
№216.012.3376

Способ дифференцирования подвидов туляремийного микроба

Изобретение относится к области биотехнологии, а именно к способу дифференцирования подвидов туляремийного микроба. Изобретение может быть использовано в лабораторной диагностике туляремии. Способ включает проведение ПЦР-амплификации с использованием специфических для гена iglC и регионов...
Тип: Изобретение
Номер охранного документа: 0002478717
Дата охранного документа: 10.04.2013
20.05.2013
№216.012.410e

Катодное устройство алюминиевого электролизера с рельефной подиной

Изобретение относится к конструкции катодного устройства электролизера в электролизерах Содерберга или электролизерах с обожженными анодами. Катодное устройство алюминиевого электролизера с рельефной подиной содержит футерованный катодный кожух и подину, выполненную из подовых блоков большей...
Тип: Изобретение
Номер охранного документа: 0002482224
Дата охранного документа: 20.05.2013
27.06.2013
№216.012.509f

Способ получения топливных брикетов

Изобретение относится к способу получения топливных брикетов, включающий смешение углеродного наполнителя с измельченным углем, добавление связующего вещества и брикетирование смеси под давлением, при этом осуществляют сухое смешение углеродного наполнителя, представляющего собой отходы...
Тип: Изобретение
Номер охранного документа: 0002486232
Дата охранного документа: 27.06.2013
27.01.2014
№216.012.9bf0

Ошиновка электролизера для получения алюминия

Изобретение относится к ошиновке электролизеров алюминия с любым подводом тока, размещенных в корпусе продольно в два ряда и соединенных друг с другом в последовательную электрическую цепь. Ошиновка содержит секционированную катодную ошиновку и анодную ошиновку, при этом анодная ошиновка...
Тип: Изобретение
Номер охранного документа: 0002505626
Дата охранного документа: 27.01.2014
20.03.2014
№216.012.ac54

Анододержатель алюминиевого электролизера

Изобретение относится к анододержателю анодного устройства алюминиевых электролизеров. Анододержатель содержит кронштейн с двумя и более ниппелями, расположенными равномерно или с разным шагом вдоль продольной оси обожженного угольного блока и закрепленными в выполненных в нем ниппельных...
Тип: Изобретение
Номер охранного документа: 0002509831
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b033

Способ изготовления комбинированных подовых блоков

Настоящее изобретение относится к способу производства комбинированных подовых блоков для алюминиевых электролизеров. Способ включает введение материала углеродистой подложки в форму и нанесение на нее слоя композиционного жаростойкого материала, содержащего борид металла, уплотнение...
Тип: Изобретение
Номер охранного документа: 0002510822
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c5e0

Способ замены четырехстоячной ошиновки на трехстоячную в алюминиевом электролизере содерберга

Изобретение относится к способу замены ошиновки алюминиевых электролизеров действующей электролизной серии. Способ включает сначала переключение крайнего гибкого спуска катодной шины, подключенной на входной анодный стояк с лицевой стороны последующего электролизера, на катодную шину, идущую на...
Тип: Изобретение
Номер охранного документа: 0002516415
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c5e1

Способ определения степени износа карбидокремниевых блоков для боковой футеровки кожуха алюминиевых электролизеров

Изобретение относится к определению степени износа в среде алюминиевых электролизеров образцов карбидокремниевых блоков, используемых для боковой футеровки кожуха алюминиевых электролизеров. Способ включает погружение закрепленных образцов карбидокремниевых блоков в электролит при температуре...
Тип: Изобретение
Номер охранного документа: 0002516416
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.ca18

Способ получения пека-связующего для электродных материалов

Изобретение относится к способам получения пека-связующего для электродных материалов и может быть использовано в электродной промышленности. Проводят обработку воздухом смеси каменноугольного пека с нефтяным пеком или с тяжелыми нефтяными остатками в поле гидроударно-кавитационных импульсов....
Тип: Изобретение
Номер охранного документа: 0002517502
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.ca91

Способ обслуживания алюминиевого электролизера с самообжигающимся анодом

Изобретение относится к способу обслуживания алюминиевого электролизера с самообжигающимся анодом в процессе его эксплуатации. Способ включает загрузку анодной массы в анодный кожух, перемещение анодного кожуха, перемещение анодной рамы относительно зеркала катодного металла и перестановку...
Тип: Изобретение
Номер охранного документа: 0002517623
Дата охранного документа: 27.05.2014
+ добавить свой РИД