×
10.04.2019
219.016.ff75

КАТОДНАЯ ФУТЕРОВКА АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002266983
Дата охранного документа
27.12.2005
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к алюминиевым электролизерам, в частности к катодной футеровке алюминиевого электролизера. Катодная футеровка алюминиевого электролизера включает углеродные блоки, теплоизоляционный слой и огнеупорную часть, состоящую из двух защитных слоев - верхнего, примыкающего к углеродным блокам, и нижнего защитного слоя, выполненных из порошкообразных материалов, верхний защитный слой состоит из материала алюмосиликатного состава, стойкого к воздействию компонентов электролита, с содержанием AlO от 27 до 35%, крупностью не более 2,5 мм и толщиной от 10 до 50% высоты огнеупорной части, а нижний защитный слой выложен герметичными металлическими емкостями, одной или несколькими, заполненными огнеупорным материалом, стойкого к воздействию расплавленного алюминия и компонентов электролита, углеродсодержащего состава с коэффициентом теплопроводности не более 0,1 Вт/(м·К), при этом в нижнем защитном слое емкости заполнены сажей и толщина его составляет от 50 до 90% высоты огнеупорной части. Изобретение обеспечивает увеличение срока службы электролизера и повышение показателей его работы. 2 з.п. ф-лы, 7 ил., 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к области цветной металлургии, в частности к электролитическому производству алюминия, а именно к конструкции катодной футеровки алюминиевого электролизера.

Известна катодная футеровка алюминиевого электролизера (Патент Венгрии №154854, МПК С 25 С 3/08), которая содержит углеродные блоки, теплоизоляционный слой, два защитных слоя, один из которых выполнен из оксидов и/или фторидов Са, Mg, Na или их смесей, а другой - в виде металлического листа.

Известная конструкция повышает срок службы электролизера, однако не обеспечивает полной защиты футеровки от проникновения алюминия и фторсолей в теплоизоляционный слой, что ухудшает его качество и снижает показатели работы электролизера. Другим недостатком футеровки является то, что соединения компонентов электролита с оксидами и/или фторидами Са, Mg, Na или их смесей имеют низкие значения вязкости. Металлические пластины под действием компонентов электролита и особенно расплавленного алюминия разрушаются, что приводит к снижению срока службы футеровки.

Наиболее близкой к заявляемой катодной футеровке по технической сущности и достигаемому результату является футеровка катодного кожуха алюминиевого электролизера (Патент РФ №2125621 МПК С 25 С 3/08, 1999). В катодной футеровке, включающей углеродные блоки и нижерасположенный цоколь, состоящий из теплоизоляционных слоев и огнеупорной части из двух защитных слоев, верхнего защитного слоя, представляющего собой утрамбованный кварцевый песок толщиной 10-60 мм с крупностью частиц 0,4-0,15 мм и нижнего. Нижний защитный слой состоит или из двух стальных листов, уложенных горизонтально один над другим с зазором в 1-3 мм, заполненным глиноземом, или из слоя керамического материала. В качестве керамического материала может быть использован красный кирпич.

Недостатком прототипа является то, что указанные слои не обеспечивают достаточную защиту от проникновения криолит-глиноземного расплава и жидкого алюминия. Так как утрамбованный кварцевый песок не является барьером ни для алюминия и натрия, которыми он легко восстанавливается, ни для фторидных расплавов, поскольку образующийся силикат натрия не способствует образованию стеклообразной фазы и к тому же имеет низкую температуру солидуса. Кроме того, глинозем, располагаемый между стальными листами, в случае разрушения последних (что часто наблюдается на практике), будет взаимодействовать с фтористым натрием со значительным увеличение объема (до 6,5 об.%). Продукты взаимодействия характеризуются низкой вязкостью и малым краевым углом смачивания на границе с огнеупорным материалом, что способствует продвижению фронта пропитки в глубь цоколя с повреждением теплоизоляционных слоев.

В основу изобретения положена задача разработки катодной футеровки алюминиевого электролизера, конструкция которой обеспечивала бы увеличение срока службы электролизера, улучшение его показателей работы за счет устранения попадания фторсолей и расплавленного алюминия на теплоизоляционные слои.

Поставленная задача решается тем, что в катодной футеровке алюминиевого электролизера, включающей углеродные блоки, теплоизоляционный слой и огнеупорную часть, состоящую из двух защитных слоев - верхнего, примыкающего к углеродным блокам, и нижнего, выполненных из порошкообразного материала, согласно предлагаемому решению, верхний защитный слой состоит из материала алюмосиликатного состава, стойкого к воздействию компонентов электролита. Нижний защитный слой выложен герметичными металлическим емкостями, одной или несколькими, заполненными огнеупорным материалом, стойким к воздействию расплавленного алюминия и компонентов электролита, углеродсодержащего состава с коэффициентом теплопроводности не более 0,1 Вт/(м·К).

Предлагаемый способ дополняют частные отличительные признаки, направленные на решение поставленной задачи.

Верхний защитный слой выполнен из материала с содержанием Al2O3 от 27 до 35%, крупностью не более 2,5 мм и толщиной от 10 до 50% высоты огнеупорной части.

В нижнем защитном слое емкости заполнены сажей и толщина его составляет от 50 до 90% высоты огнеупорной части.

Сопоставительный анализ признаков заявляемого решения и признаков аналога и прототипа свидетельствует о соответствии решения критерию «новизна».

Выполнение верхнего защитного слоя в огнеупорной части порошкообразным с максимальным размером частиц менее 2,5 мм и имеющих алюмосиликатный состав с содержанием Al2O3 от 27 до 35% с толщиной от 50 до 10% высоты огнеупорной части обусловлено следующим:

Специальные исследования показали, что криолитоустойчивость определяется как средним размером пор, так и плотностью материала. С уменьшением размеров частиц уменьшается размер канальных пор и растет криолитоустойчивость, но падает величина плотности. Поэтому существует оптимальный размер частиц, при котором сохраняется величина плотности и достигается максимальная криолитоустойчивость. Как известно, для более плотной укладки распределения размеры частиц должны подчиняться кривым идеального распределения. С учетом этого обстоятельства максимальный размер частиц не должен превышать 2,5 мм. Если размеры частиц будут превышать указанную величину, то сокращается поверхность взаимодействия с проникающими компонентами электролита, растет размер пор, что приводит к увеличению пропитки и степени взаимодействия. Если максимальный размер частиц будет меньше, чем 2,5 мм, то падает плотность огнеупорного материала.

Частицы высокореакционного слоя должны иметь алюмосиликатный состав с содержанием Al2О3 от 27 до 35%. Во-первых, это наиболее дешевый материал, а во-вторых, образуется слой нефелина по реакции (1), который способствует образованию альбита, замедляющего инфильтрацию компонентов электролита:

При достаточно умеренном поступлении NaF нефелин реагирует с диоксидом кремния по реакции (2) с образованием альбита NaAlSi3O8, который будет находиться в вязком стеклообразном расплавленном состоянии:

При содержании Al2O3 менее 27% будет затруднено образование нефелина. При большем, чем 35%, содержании Al2O3 снижается реакционная способность и протекает реакция образования β-глинозема (3):

При этом из-за значительно более низкой плотности β-глинозема ниже α-глинозема могут происходить объемные изменения в футеровке, приводящие к подъему подины.

Выполнение нижнего защитного слоя из сажи толщиной от 50 до 90% высоты огнеупорной части обусловлено тем, что сажа обладает уникальными свойствами, такими как высокая огнеупорность, несмачиваемость фторсолями и низкий коэффициент теплопроводности до температур вплоть до t ˜800°C.

Предлагаемая конструкция катодного устройства по сравнению с прототипом позволяет повысить его срок службы за счет замедления скорости проникновения компонентов криолит-глиноземного расплава в теплоизоляционную часть цоколя и сохранения теплофизических свойств последней. Кроме того, стабилизация теплового баланса позволит снизить удельный расход электроэнергии.

Сущность изобретения поясняется следующим графическим материалом, где:

на фиг.1 изображена схема катодной футеровки алюминиевого электролизера;

на фиг.2 - результаты исследований на криолитоустойчивость;

на фиг.3 - вид отформованного образца сажи после испытаний на прямое воздействие электролита;

на фиг.4 - зависимость коэффициента теплопроводности сажи от температуры;

на фиг.5 - распределение температуры по высоте цоколя;

на фиг.6 - температурное поле и форма рабочего пространства (ФРП) электролизера при использовании прототипа;

на фиг.7 - температурное поле и ФРП электролизера при использовании заявляемого решения.

Изображенная на фиг.1 футеровка состоит из выравнивающей подушки 1, двух слоев теплоизоляционного материала 2, нижнего защитного слоя 3 огнеупорной части - металлических емкостей, заполненных сажей, верхнего защитного слоя 4 огнеупорной части, выполненного из алюмосиликатного материала, имеющего высокую реакционную способность к компонентам электролита, проникающим через подину, состоящую из углеродных блоков 5. Анод 6 помещен в электролизную ванну. Подовая масса 7 заполняет пространство между углеродными блоками 5 и бортовым блоком 8. Блюмс 9 через уплотнение 10 соединен с углеродным блоком 5. В нижней части электролизной ванны установлен компенсатор 11. Вид отформованного образца сажи после испытаний на прямое воздействие электролита показан на фиг.3, где электролит 12 находится на нижнем защитном слое 3. Образец помещен в тигель 13.

Как показали результаты исследований на криолитоустойчивость (фиг.2), измельчение частиц позволяет сократить долю прореагировавшего материала. Происходит уменьшение доли материала, прореагировавшего с компонентами фторсолей с 23 до 14-15%.

Испытания сажи в тестах на криолитоустойчивость показали, что сажа не смачивается и практически не взаимодействует с компонентами электролита (фиг.3). Сажа обладает уникальными свойствами, такими как высокая огнеупорность, несмачиваемость фторсолями и низкий коэффициент теплопроводности до температур, вплоть до 800°С.

Сопоставительный анализ температурных полей в катодных устройствах, полученных с использованием трехмерных математических моделей по прототипу, где высота огнеупорной части, заполненной сухими барьерными смесями (СБС) составляет 90 мм, расположенной под углеродными блоками и по прототипу, где высота нижнего защитного слоя составляет 30 мм, а верхнего - 60 мм, показал следующие характерные особенности (табл. и фиг.5).

Укладка слоя сажи толщиной 30 мм, помещенной в металлические емкости, приводит к повышению температуры на подине в центре электролизера по отношению к прототипу с 968,5 до 975°С. За счет этого резко сокращается длина настыли под проекцией анода (с 215 до 165 мм) и уменьшается толщина гарнисажа. Температура непосредственно под подовыми блоками увеличится на 15°С. Поэтому верхний слой СБС будет иметь более высокую температуру, а следовательно, и несколько более высокую вероятность взаимодействия с компонентами проникающего электролита.

Таблица
Параметр измеренияЕд.изм.Значение
прототипзаявляемое
МПРмм5149
Температура:
Центр МПР°С976977
ПБА электролизера°С960962
На подине в центре электролизера°C968,5975
Под подовым блоком°C952967
Под СБС°C876943
Под сажей или бетоном°C-524
Под 1 рядом кирпичей шамота°C850505
Под 2 рядом кирпичей шамота°C820485
Под 1 рядом кирпичей вермикулита°C545326
Под 2 рядом кирпичей вермикулита°C11468
Днища (в центре)°C9257
Длина настыли под проекцией анода:мм215165
Минимальная толщина гарнисажа:мм186178

В то же время из-за низкого значения коэффициента теплопроводности сажи слой имеет высокое тепловое сопротивление, что обеспечивает большой градиент температур по его высоте. Поэтому проникающий расплав электролита будет застывать, образуя корку, непроницаемую для газовой и жидкой фаз.

Другим положительным фактором предлагаемого технического решения является то, что вышерасположенный подовый блок в случае применения сажи будет находиться в более однородном температурном поле. Так, перепад температур по высоте подового блока по прототипу составляет 16,5°С, а в предлагаемом варианте - всего 8°С. В период разогрева и обжига подины этот фактор определяет целостность подины, поскольку при прогреве перепад температур по высоте массивного подового блока уменьшается. В период пропитки подовых блоков компонентами электролита за счет капиллярных сил уменьшение градиента температур по их высоте способствует уменьшению количества проникающего фтористого натрия. Но самым примечательным в случае применения предлагаемого решения является резкое (на 356°С) снижение температур в нижерасположенных слоях. В результате этого (при условии сохранения свойств сажи под действием компонентов электролита, в частности паров натрия) открывается возможность уменьшения количества материалов, используемых в цоколе, что влечет за собой экономический эффект. Вышесказанное иллюстрируется картинами распределения температур и ФРП алюминиевого электролизера (фиг.6 и 7).

Использование вышеописанной катодной футеровки позволит увеличить в среднем срок службы каждого алюминиевого электролизера на 1 год, что приведет к увеличению выпуска алюминия примерно на 400 т. При этом достигается снижение удельного расхода электроэнергии на 125 тыс. кВт·ч.

1.Катоднаяфутеровкаалюминиевогоэлектролизера,включающаяуглеродныеблоки,теплоизоляционныйслойиогнеупорнуючасть,состоящуюиздвухзащитныхслоев-верхнего,примыкающегокуглероднымблокам,инижнегозащитногослоя,выполненныхизпорошкообразныхматериалов,отличающаясятем,чтоверхнийзащитныйслойсостоитизматериалаалюмосиликатногосостава,стойкогоквоздействиюкомпонентовэлектролита,анижнийзащитныйслойвыложенгерметичнымиметаллическимиемкостями,однойилинесколькими,заполненнымиогнеупорнымматериалом,стойкогоквоздействиюрасплавленногоалюминияикомпонентовэлектролита,углеродсодержащегосоставаскоэффициентомтеплопроводностинеболее0,1Вт/(мК).12.Футеровкапоп.1,отличающаясятем,чтоверхнийзащитныйслойвыполненизматериалассодержаниемAlOот27до35%,крупностьюнеболее2,5ммитолщинойот10до50%высотыогнеупорнойчасти.23.Футеровкапоп.1,отличающаясятем,чтовнижнемзащитномслоеемкостизаполненысажейитолщинаегосоставляетот50до90%высотыогнеупорнойчасти.3
Источник поступления информации: Роспатент

Показаны записи 1-10 из 18.
20.02.2019
№219.016.bd86

Машина для загрузки анодной массы

Машина предназначена для транспортировки и загрузки анодной массы в электролизер для производства алюминия. На самоходном шасси размещены бункер и транспортирующие горизонтальный и наклонный шнеки. На валу горизонтального шнека установлен шнековый дозатор для подачи анодной массы из бункера....
Тип: Изобретение
Номер охранного документа: 0002255145
Дата охранного документа: 27.06.2005
29.03.2019
№219.016.eea4

Способ очистки регенерационного криолита от сульфата натрия

Изобретение относится к способам очистки регенерационного криолита от сульфата натрия. Способ включает загрузку криолита в промывную воду, отмывку при перемешивании и обезвоживание отмытого продукта. Отмывку проводят до остаточного содержания сульфата натрия в отмытом криолите 45-65% от его...
Тип: Изобретение
Номер охранного документа: 0002274606
Дата охранного документа: 20.04.2006
29.03.2019
№219.016.ef42

Ошиновка модульная мощных электролизеров для производства алюминия

Изобретение относится к производству алюминия методом электролиза расплавленных криолитовых солей в электролизерах при двухрядном поперечном расположении их в корпусе электролиза, в частности к ошиновке электролизера. В ошиновке электролизера, содержащей анодную ошиновку, соединенную с анодами...
Тип: Изобретение
Номер охранного документа: 0002288976
Дата охранного документа: 10.12.2006
29.03.2019
№219.016.ef48

Электролит для получения алюминия

Изобретение относится к цветной металлургии, в частности к производству алюминия электролизом криолит-глиноземного расплава. Технический результат заключается в интенсификации процесса получения алюминия, повышении его технико-экономических показателей, увеличении срока службы электролизера,...
Тип: Изобретение
Номер охранного документа: 0002288977
Дата охранного документа: 10.12.2006
29.03.2019
№219.016.f000

Способ управления алюминиевым электролизером при изменении скорости растворения глинозема

Изобретение относится к цветной металлургии и может быть использовано для управления процессом получения алюминия из глинозема электролитическим методом. Причины, препятствующие получению технического результата при использовании существующих способов, состоят в том, что в алгоритме не...
Тип: Изобретение
Номер охранного документа: 0002255149
Дата охранного документа: 27.06.2005
10.04.2019
№219.016.ff4a

Силовой гидравлический блок питания мобильной машины

Блок питания относится к машиностроительной гидравлике и может быть использовано в гидросистемах мобильных машин. Предлагаемый гидравлический блок питания мобильной машины содержит регулируемый насос, коллектор нагнетания которого сообщен с напорным трубопроводом для подачи рабочей жидкости к...
Тип: Изобретение
Номер охранного документа: 0002277188
Дата охранного документа: 27.05.2006
10.04.2019
№219.016.ffe2

Способ автоматического устранения анодных эффектов

Изобретение относится к области электролитического получения алюминия из расплавов и предназначено для автоматического устранения анодных эффектов в электролизерах с самообжигающимся анодом. Техническим результатом является увеличение надежности гашения, снижение времени гашения анодного...
Тип: Изобретение
Номер охранного документа: 0002285755
Дата охранного документа: 20.10.2006
10.04.2019
№219.017.014a

Способ управления подачей глинозема в электролизер при помощи точечных питателей

Изобретение относится к цветной металлургии и может быть использовано для оптимизации подачи глинозема в электролизер. При управлении подачей глинозема в алюминиевый электролизер для поддержания концентрации глинозема в заданных пределах измеряют напряжение электролизера. Формируют циклы,...
Тип: Изобретение
Номер охранного документа: 0002233914
Дата охранного документа: 10.08.2004
29.04.2019
№219.017.3e6c

Многополярная электролизная ванна для получения жидких металлов электролизом расплавов и способ установки электролизных ванн

Группа изобретений относится к цветной металлургии, а именно к конструкциям для производства металлов электролизом расплавленного электролита, в частности алюминия, и способу установки электролизных ванн. Получаемыми металлами помимо алюминия могут быть магний, литий, натрий, свинец....
Тип: Изобретение
Номер охранного документа: 0002275443
Дата охранного документа: 27.04.2006
29.04.2019
№219.017.3f43

Оксидный материал для несгораемых анодов алюминиевых электролизеров (варианты)

Изобретение относится к области цветной металлургии и может быть использовано при изготовлении инертных анодов для получения металлов электролизом расплавов, в частности для электролитического получения алюминия в криолит-глиноземных расплавах. В качестве материала для несгораемых анодов...
Тип: Изобретение
Номер охранного документа: 0002291915
Дата охранного документа: 20.01.2007
Показаны записи 1-2 из 2.
29.04.2019
№219.017.402d

Катодный кожух алюминиевого электролизера (варианты)

Изобретение относится к металлургии цветных металлов, в частности к оборудованию цехов по производству алюминия электролитическим способом, а именно к конструкции катодного кожуха алюминиевого электролизера шпангоутного типа. Техническим результатом изобретения является увеличение срока службы...
Тип: Изобретение
Номер охранного документа: 0002214480
Дата охранного документа: 20.10.2003
18.05.2019
№219.017.5563

Устройство компенсации

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия в электролизерах, размещенных в корпусе в два ряда поперечно, и может быть использовано для компенсации нежелательного влияния магнитного поля на крайние электролизеры в серии. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002237752
Дата охранного документа: 10.10.2004
+ добавить свой РИД