×
29.04.2019
219.017.4662

УСТРОЙСТВО ДЛЯ ПОВОРОТА АХРОМАТИЧЕСКИХ ПУЧКОВ ЗАРЯЖЕННЫХ ЧАСТИЦ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области физики пучков заряженных частиц и ускорительной техники. Устройство для поворота ахроматических пучков заряженных частиц состоит из двух одинаковых магнитных зеркал, расположенных в плоскости поворота так, что каждое из них поворачивает пучок на половинный (по сравнению с требуемым) угол. Конструкция магнитопровода и обмоток зеркал обеспечивает спад магнитного поля (после его нарастания до максимума на краю зеркала), который позволяет компенсировать дефокусирующее действие входной области зеркала. Изобретение позволяет компенсировать угловые расходимости сильно немонохроматичных пучков в зазоре и получить после поворота пучок с близкими к входным параметрами. 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к области физики пучков заряженных частиц и ускорительной техники. Устройства для поворота немоноэнергетичных пучков (магнитные электронные зеркала) известны давно (В.М.Кельман, М.И.Корсунский, Ф.Ф.Ланге. «Магнитное электронное зеркало», ЖЭТФ 1939, т.9, вып.6, 1939). Однако практическая реализация этих схем (с образованием заряженными частицами траекторий в виде петель и без описания петель) по разным причинам не получила широкого распространения (сложность получения требуемых распределений магнитных полей, узкий диапазон величин поворота). У магнитных зеркал с траекториями без образования петель входное магнитное поле (поле рассеивания на краях полюсов) является дефокусирующим. Этот эффект расширения пучка по ширине щели зеркала остановил применение такой схемы поворота.

В связи с этим последующие ахроматические поворачивающие или смещающие магнитные системы стали содержать плоские поворотные магниты и фокусирующие системы (квадрупольные линзы), уменьшающие угловую расходимость пучка после поворота (W.K.H. Panofsky, J.A. McIntyre. Rev. Sci. Instr., 25, 287, 1954; В.В.Владимирский, Д.Г.Кошкарев. «Ахроматическая поворачивающая магнитная система», ПТЭ, 1958, №6, 46). Опыт создания подобной ахроматической системы для поворота электронного пучка импульсного ВЧ ускорителя ИЛУ-10 (50 кВт, 5 МэВ, разброс по энергии 15%) на 90 градусов (В.Л.Ауслендер, А.А.Брязгин и др. «Импульсный высокочастотный линейный ускоритель электронов ИЛУ-10», Radtech-Euroasia 1 (11), 2002) показал сложность применения ее в радиационном промышленном производстве. Основной трудностью стало нахождение оптимальных параметров большого числа элементов системы (2 поворотных магнита, 5 квадрупольных линз и 2 датчика положения пучка), особенно при изменении режимов облучения продукции.

В настоящем изобретении авторы предлагают использовать в поворотных системах (с траекториями без петель) два одинаковых магнитных зеркала с такой формой распределения магнитного поля по глубине, чтобы за нарастанием напряженности на краю магнита следовал ее спад.

На фигуре 1 схематически изображена форма железного сердечника и геометрия распределения ампервитков по глубине магнита (по оси z), спроектированного для поворота ахроматических пучков. Также здесь представлена форма распределения магнитного поля в средней плоскости B(z). На фигуре 2 показаны расчетная проекция пучка на среднюю плоскость (плоскость XZ), расположение зеркал M1 и М2 и развертка траекторий на плоскость XY. На фигуре 3 приведены сечения пучка по пути поворота. Цифрами 1, 2, 3 обозначены их места, показанные на фигуре 2: 1 - сечение пучка на входе в магнит, 2 - середина траектории между зеркалами, 3 - выходное сечение пучка. На всех фигурах размеры указаны в метрах.

В процессе поворота пучок заряженных частиц последовательно проходит через два одинаковых магнитных зеркала. Частицы, попадая в магнитное поле, движутся в плоскости, которая проходит посередине зазора между полюсами магнитов (средняя плоскость или плоскость антисимметрии магнитного поля), заворачиваются и выходят из зеркала с той же стороны, с которой они в него вошли. Вследствие двухмерности поля и вытекающей отсюда симметрии траектории угол отражения равен углу падения. После прохождения первого магнита пучок поворачивается на угол, равный удвоенному углу входа в зеркало. Суммарный угол поворота на выходе из системы двух зеркал удваивается. При этом магниты расположены относительно друг друга таким образом, что разворачивают пучок на одинаковый угол.

В линейном приближении для плоских полей составляющая магнитного поля в произвольной точке, ответственная за фокусировку в направлении, перпендикулярном к средней плоскости (радиальная фокусировка), пропорциональна расстоянию частицы от плоскости антисимметрии и величине первой производной распределения поля по глубине зеркала. Нарастающее поле на входе в зеркало оказывает дефокусирующее действие на пучок. Этот эффект компенсируется в последующей области спада поля, где происходит фокусировка (из-за смены знака первой производной). Другими словами, подбором параметров обмоток зеркала можно обеспечить спад магнитного поля по глубине, компенсирующий расширение пучка по щели. В области выхода из зеркала происходит обратное чередование сил в зазоре магнита, и пучок с сечением в виде разложенного по энергии линейного фокуса выходит из зеркала и транспортируется до второго магнита. Во втором зеркале происходит дополнительный половинный (от суммарного) поворот пучка и его обратная трансформация к входным параметрам.

В качестве примера рассмотрим результаты расчета разворота пучка на 180 градусов. Для этой цели был спроектирован магнит, обеспечивающий форму распределения поля по глубине в средней плоскости B(z), представленную на фиг.1. Конструкция магнитопровода зеркала и размещение ампервитков в нем обеспечивают спад магнитного поля после его нарастания до максимума на краю зеркала, компенсирующий дефокусирующее действие участка нарастания поля.

Для получения требуемой индукции магнитного поля (0.8 кГс) значение ампервитков (Iw) было взято равным 2000. Обмотки зеркала представляют собой две симметричные (относительно средней плоскости) плоские катушки, единственным требованием к которым является равномерность намотки по оси z каждого приведенного значения ампервитков на каждом из четырех участков. Длина магнита по оси Х равна 0.8 м. Форма железного сердечника и геометрия распределения ампервитков по глубине магнита (по оси z) приведены на фиг.1. Естественно, что число витков с прямыми (знак +) и обратными токами (знак -) одинаково. Угловые коэффициенты прямых на «B(z) - расчетное» равны 20, -20 и -3 для T1, T2 и Т3 соответственно.

В первый магнит пучок входит под углом 45 градусов. Для получения трехмерной трассировки пучка электронов решалась задача уравнения движения Ньютона в декартовых координатах. Расчет производился для указанных выше параметров ускорителя ИЛУ-10, причем разброс энергий, для демонстрации возможностей системы поворота, был выбран равным 50% (от 2.5 до 5 МэВ). Трассировалось 1000 траекторий, магниты зеркал M1 и М2 принимались одинаковыми с выбранным распределением B(z) для M1 и В(x) для М2 соответственно. Входной диаметр пучка составил 1 см, пучок имел Гауссово распределение и нулевые углы входа.

Расчетная проекция пучка на среднюю плоскость (плоскость XZ), расположение зеркал M1 и М2 и развертка траекторий на плоскость XY показаны на фиг.2 (на чертежах все размеры указаны в метрах). На фиг.3 приведены сечения пучка по пути поворота. Цифрами 1, 2, 3 обозначены их места, показанные на фиг.2: 1 - сечение пучка на входе в магнит, 2 - середина траектории между зеркалами, 3 - выходное сечение пучка.

Аналогичные расчеты были проведены для поворота пучка на 40, 90, 180, 270, 320 и 360 градусов. Их результаты идентичны приведенным выше. Данная система поворота позволяет разворачивать пучки заряженных частиц с немонохроматичностью до 70% практически на любой угол без возникновения радиальной расходимости пучка на всей трассе поворота.

Устройство для поворота ахроматических пучков заряженных частиц, состоящее из двух одинаковых магнитных зеркал, расположенных в плоскости поворота так, что каждое из них поворачивает пучок на половинный (по сравнению с требуемым) угол, отличающееся тем, что конструкция магнитопровода и обмоток зеркал обеспечивает спад магнитного поля (после его нарастания до максимума на краю зеркала), который позволяет компенсировать дефокусирующее действие входной области зеркала.
Источник поступления информации: Роспатент

Показаны записи 1-8 из 8.
10.01.2013
№216.012.1a60

Ускоряющая структура с параллельной связью

Изобретение относится к ускорительной технике. Техническим результатом является уменьшение размера отверстия в диафрагмах связи ускоряющих резонаторов ускоряющей структуры (УС) и тем самым уменьшение их влияния на структуру ускоряющего поля, при этом сохраняется критическая связь с подводящим...
Тип: Изобретение
Номер охранного документа: 0002472244
Дата охранного документа: 10.01.2013
20.04.2013
№216.012.37f5

Способ сепарации одноатомных ионов водорода в ионных источниках и импульсная нейтроногенерирующая трубка с сепарацией одноатомных ионов (варианты)

Изобретение может быть использовано в низковольтной ускорительной технике, физическом приборостроении, в частности при разработке импульсных генераторов нейтронов для нейтронно-активационного анализа, неразрушающего контроля, систем безопасности, а также для исследования геофизических и...
Тип: Изобретение
Номер охранного документа: 0002479878
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.3807

Свч-ввод антенного типа

Устройство относится к области СВЧ и ускорительной техники и может быть использовано для подачи СВЧ сигнала на изолированные, находящиеся под высоким напряжением электроды. СВЧ ввод выполнен в виде двух антенн коаксиального типа, с разрывом коаксиальной линии по внешней и внутренней жиле. Для...
Тип: Изобретение
Номер охранного документа: 0002479896
Дата охранного документа: 20.04.2013
29.04.2019
№219.017.4653

Способ рентгенографии

Изобретение относится к области рентгенографии быстропротекающих процессов. Исследуемый объект помещают между источником излучения и конвертером распределения интенсивности прошедшего через исследуемый объект излучения в видимое теневое изображение. Изображение регистрируют фото- или...
Тип: Изобретение
Номер охранного документа: 0002467525
Дата охранного документа: 20.11.2012
09.05.2019
№219.017.4eac

Многооборотный ускоритель-рекуператор

Использование относится к ускорительной технике, источникам излучения, ускорителям-рекуператорам. Многооборотный ускоритель-рекуператор с отдельными дорожками для ускоряемых и замедляемых частиц. Изобретение направлено на обеспечение независимого управления ускоряемыми и замедляемыми частицами,...
Тип: Изобретение
Номер охранного документа: 0002426282
Дата охранного документа: 10.08.2011
09.05.2019
№219.017.4fea

Способ изготовления liga-шаблона

Изобретение относится к LIGA-технологии, а точнее к способу изготовления LIGA-шаблона (ЛИГА-шаблона), используемого для проведения первой стадии LIGA-технологии - глубокой рентгеновской литографии. Технический результат - увеличение контрастности и рентгенопрозрачности LIGA-шаблона. Способ...
Тип: Изобретение
Номер охранного документа: 0002431881
Дата охранного документа: 20.10.2011
09.05.2019
№219.017.4fec

Способ изготовления liga-шаблона

Изобретение относится к LIGA-технологии. Заявленный способ изготовления LIGA-шаблона характеризуется тем, что исходную подложку изготавливают из бериллиевой фольги, на рабочей поверхности подложки создают буферный (защитный) слой из проэкспонированного и задубленного негативного фоторезиста...
Тип: Изобретение
Номер охранного документа: 0002431882
Дата охранного документа: 20.10.2011
09.05.2019
№219.017.4ff0

Способ дифференциальной диагностики и прогноза миомы и рака эндометрия

Изобретение относится к области медицины, в частности к онкологии. Предложен способ дифференциальной диагностики злокачественной опухоли и миомы эндометрия. В материале опухоли матки пациента, полученном во время операции, определяют содержание цинка и уровень экспрессии металлопротеаз (ММР)....
Тип: Изобретение
Номер охранного документа: 0002430371
Дата охранного документа: 27.09.2011
Показаны записи 1-4 из 4.
27.02.2015
№216.013.2e86

Способ и устройство для утилизации углеводородных отходов

Изобретение относится к переработке углеводородных отходов. Изобретение касается способа утилизации углеводородных отходов, включающего радиолиз углеводородов в проточном радиационно-химическом реакторе, накопление продуктов радиолиза в камере накопления, отвод легких углеводородных фракций из...
Тип: Изобретение
Номер охранного документа: 0002543378
Дата охранного документа: 27.02.2015
20.12.2015
№216.013.9a67

Радиационно-термический способ получения пека-связующего для производства электродов

Изобретение может быть использовано в электродной промышленности. Способ получения пека-связующего для электродных материалов включает разогрев каменноугольного пека до температуры выше 150°C. Полученный поток жидкотекучего каменноугольного пека подвергают облучению пучком электронов с дозой...
Тип: Изобретение
Номер охранного документа: 0002571152
Дата охранного документа: 20.12.2015
08.07.2018
№218.016.6e1b

Способ получения поликристаллических ферритов-гранатов

Изобретение относится к получению поликристаллических ферритов-гранатов. Способ включает синтез ферритового материала, приготовление пресс-порошка, прессование заготовок, радиационно-термическое спекание заготовок путем их нагрева до температуры спекания 1350-1450°С облучением проникающим...
Тип: Изобретение
Номер охранного документа: 0002660493
Дата охранного документа: 06.07.2018
06.12.2019
№219.017.ea1d

Устройство для перемотки кабельных изделий (трубок)

Устройство состоит из ведущего и ведомого барабанов, при помощи которых производится перемотка кабельных изделий и термоусаживаемых трубок в двух плоскостях, расположенных с зазором одна относительно другой. Особенность описываемого устройства заключается в способе реализации смещения витков...
Тип: Изобретение
Номер охранного документа: 0002707966
Дата охранного документа: 03.12.2019
+ добавить свой РИД