×
29.04.2019
219.017.3f43

Результат интеллектуальной деятельности: ОКСИДНЫЙ МАТЕРИАЛ ДЛЯ НЕСГОРАЕМЫХ АНОДОВ АЛЮМИНИЕВЫХ ЭЛЕКТРОЛИЗЕРОВ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области цветной металлургии и может быть использовано при изготовлении инертных анодов для получения металлов электролизом расплавов, в частности для электролитического получения алюминия в криолит-глиноземных расплавах. В качестве материала для несгораемых анодов алюминиевых электролизеров предлагаются высокозамещенные сложные оксиды на основе диоксида олова структурного типа рутила общей формулы или керметы на их основе с низкой растворимостью в криолит-глиноземном расплаве, высокой электропроводностью, а также повышенной устойчивостью к газовой коррозии и к контактному восстановлению металлами. Изобретение обеспечивает получение более чистого электролитического алюминия при низких энергетических потерях. 2 н. и 2 з.п. ф-лы, 1 табл.

Изобретение относится к области цветной металлургии и может быть использовано при изготовлении несгораемых анодов для получения металлов электролизом расплавов, в частности для электролитического получения алюминия в криолит-глиноземных расплавах.

В последние десятилетия интенсивно ведутся работы по созданию несгораемых (или инертных) анодов для замены расходуемых углеродистых анодов при электролитическом получении алюминия, так как они имеют ряд преимуществ по сравнению с углеродистыми: снижение затрат на производство алюминия, компактную конструкцию технологического аппарата (электролизера) с меньшими тепловыми потерями, экологически чистое производство и пр. Кроме металлических, описано множество оксидных материалов и материалов на оксидной основе в качестве кандидатов на несгораемые аноды [1-3]: индивидуальные и слаболегированные оксиды железа, никеля, кобальта, циркония, иттрия, редкоземельных элементов и некоторые другие, сложные, многокомпонентные и многофазные композиции оксидов, в основном на базе шпинельных и перовскитных структур, а также многофазные композиции на основе оксидов с металлами. Главными недостатками всех предложенных материалов являются низкая электропроводность и достаточно высокая растворимость компонентов в расплавленном электролите, а следовательно, высокие износ анода и уровень загрязнения алюминия. Применение дорогих и дефицитных компонентов также приводит к неприемлемости использования многих из них в промышленном масштабе.

Известны публикации - аналоги по первому варианту [4, 5], сообщающие о материалах для несгораемых анодов на основе диоксида олова, имеющих структуру рутила, которая устойчива в криолит-глиноземном расплаве, в отличие от оксидов с другой структурой (например, железо-никелевых и т.п. шпинелей, которые при контакте с криолит-глиноземным расплавом образуют алюминий содержащие шпинельные фазы, превращаясь в изоляторы). Предлагались также для использования в данном применении оксидные материалы, содержащие в своем составе металл: NiFe2O4-Cu, Cu2O-Cu - аналоги по второму варианту [6, 7]. В этом случае к оксидной основе для повышения электропроводности и улучшения механических свойств, особенно стойкости к термическим напряжениям, добавляют металл, получая керамику в виде так называемого кермета.

Наиболее близкими по совокупности существенных признаков к заявляемому изобретению являются материалы инертных анодов для электролитического получения алюминия в криолит-глиноземных расплавах, описанные в работах [8, 9]. По первому варианту: индивидуальный диоксид олова SnO2 для повышения электропроводности и спекаемости легируют небольшими добавками оксидов, составляющими в сумме менее 10% от массы образца, в частности оксидами сурьмы Sb2О3 и меди CuO в количествах по 1-2 мас.% [8]. По второму варианту: к оксидам или их смесям (например, NiFe2O4+NiO) для повышения электропроводности и улучшения механических свойств, особенно стойкости к термическим напряжениям, добавляют металлы в виде порошка, получая высокоэлектропроводный материал с повышенными механическими характеристиками при сохранении приемлемого уровня других эксплуатационных свойств.

И в том, и в другом случае порошки исходных компонентов смешивают, прессуют по форме анода и проводят термообработку для образования монолитного образца. Такие материалы обладают достаточно высокими служебными свойствами (хорошая электропроводность при температуре электролиза, относительно низкие растворимость в криолит-глиноземном расплаве и перенапряжение анодной реакции) и считаются одними из наиболее перспективных материалов для данного применения.

Недостатком указанных анодных материалов являются: во-первых, хотя и относительно невысокая, но практически значимая растворимость в криолит-глиноземном расплаве, что приводит к недопустимому загрязнению катодного продукта компонентами анода, например, оловом, никелем, железом; во-вторых, склонность к восстановительной газовой коррозии, что способствует ускоренному износу и образованию экологически вредных летучих веществ; в-третьих, неустойчивость как низколегированной рутильной керамики, так и шпинельных материалов к взаимодействию с целым рядом металлов при температурах синтеза и эксплуатации анодных материалов, что приводит к ускоренной деградации анода в зоне контакта с токоподводом и трудности создания оксидно-металлической керамики (керметов) на ее основе; в четвертых, относительно невысокая электропроводность материалов, ведущая к повышенным энергетическим потерям.

Задачей настоящего изобретения является получение высокоэлектропроводных оксидных анодных материалов с улучшенной коррозионной стойкостью за счет снижения их растворимости в криолит-глиноземном расплаве электролита, уменьшения склонности к газовой коррозии и повышения устойчивости к взаимодействию с металлами для создания надежного токоподвода.

Поставленная задача достигается тем, что в составе материала для несгораемых анодов алюминиевых электролизеров на основе диоксида олова, структурного типа рутила, согласно заявляемому по первому варианту в качестве оксидов металлов используют высокозамещенные сложные оксиды общей формулы с пониженной растворимостью в криолит-глиноземном расплаве, повышенной устойчивостью к газовой коррозии и к контактному восстановлению металлами.

Вариант изобретения дополняют частные отличительные признаки, направленные также на решение поставленной задачи.

В качестве катиона трехвалентного металла Me3+ используют Cr, Fe, Al, а катиона Me5+ - Sb, V, Nb, причем величину х выбирают в пределах области гомогенности материала .

Поставленная задача достигается тем, что в составе материала для несгораемых анодов алюминиевых электролизеров на основе диоксида олова, структурного типа рутила, согласно заявляемому по второму варианту в качестве оксидов металлов используют высокозамещенные сложные оксиды общей формулы и дополнительно металлы, не взаимодействующие с оксидной основой при температурах синтеза и эксплуатации материала, при следующих соотношениях ингредиентов, мас.%: сложные оксиды общей формулы - 60...99; металлы - 40...1.

Вариант изобретения дополняют частные отличительные признаки, направленные также на решение поставленной задачи: в качестве металлов используют Cu, Ni, благородные металлы Ag, Pt, Pd, их сплавы.

В условиях электролиза алюминия из фтористых солей при высоких температурах около 960°С компоненты инертного анода растворяются в электролите, а затем переходят в конечный продукт - алюминий. Таким образом, решение задачи настоящего изобретения сводится к поиску таких оптимальных химических составов как самих оксидных соединений с кристаллической структурой рутильного типа, так и их смесей с металлами, которые бы обеспечивали минимальную скорость коррозии в электролите и агрессивной парогазовой среде изготовленных из этих материалов инертных анодов, их высокую электропроводность и совместимость с конструкционными металлами, что приведет к получению чистого алюминия с низкими энергетическими потерями.

Достигаемый при использовании изобретения технический результат возникает за счет того, что:

(1) материал для несгораемых анодов алюминиевых электролизеров на основе оксидных рутильных структур из высокозамещенных сложных оксидов общей формулы имеет пониженную растворимость в криолит-глиноземном расплаве, повышенную устойчивость к газовой коррозии и к контактному восстановлению металлами, причем в качестве катиона трехвалентного металла Me3+ могут быть выбраны Cr, Fe и Al, катиона Ме5+ - Sb, V и Nb, а величину х выбирают в пределах области гомогенности материала ;

(2) материал для несгораемых анодов алюминиевых электролизеров на основе высокозамещенных сложных оксидов, имеющих структуру рутила, общей формулы дополнительно содержит металл (Cu, Ni, благородные металлы Ag, Pt, Pd, их сплавы), не взаимодействующий с оксидной основой вплоть до температур спекания и эксплуатации материала, в количестве 1...40 мас.%, имеет повышенные электрические и механические свойства при пониженной растворимости в криолит-глиноземном расплаве и повышенной устойчивости к восстановительной газовой коррозии.

От наиболее близких аналогов заявляемые материалы отличаются тем, что в качестве оксидов металлов используют высокозамещенные сложные рутилоподобные оксиды общей формулы с пониженной растворимостью в криолит-глиноземном расплаве, повышенной устойчивостью к газовой коррозии и к контактному восстановлению металлами, а по второму варианту дополнительно металлы.

Элементный состав и соотношение компонентов при синтезе материала подбирается таким образом, чтобы достичь минимальных скоростей коррозии в электролите (определенной по результатам испытаний на растворимость анода в условиях разомкнутой электрической цепи) при максимально возможной электропроводности анодного материала (определенной по результатам измерения удельного электрического сопротивления в температурном интервале 25-950°С 4-х зондовым методом).

Для экспериментальной проверки заявляемых материалов были подготовлены несколько смесей ингредиентов (в соответствии с составами, приведенными в таблице). Был проведен синтез соединений с общей формулой AlxNbxSn2-2xO4, FexNbxSn2-2xO4, CrхSbхSn2-2хO4 и AlxSbxSn2-2xO4 (0,1<х<0,9). Порошки исходных оксидов (обычно квалификации "чда"), взятые в необходимой пропорции, тщательно перемешивали в фарфоровой ступке и затем подвергали термообработке для осуществления синтеза оксидного химического соединения желаемого состава. Температурный и временной режим термообработки выбирали, исходя из необходимости полного протекания твердофазного синтеза. Фазовый состав полученного продукта контролировали рентгенографически. Далее порошок оксидного соединения (или его смесь с металлическим порошком) прессовали в стальной пресс-форме двухсторонним и двухступенчатым сжатием в виде цилиндров диаметром 20-25 мм и длиной до 40 мм. Перед формованием в оксидную шихту вводили временную технологическую связку в виде 5%-ного водного раствора поливинилового спирта в количестве до 5% по массе. Отпрессованные образцы просушивали. Оксидные прессовки подвергали спеканию в воздушной атмосфере, а оксидно-металлические образцы - горячему прессованию при температуре 1000°С и давлении около 30 МПа в керамической пресс-форме. Температуру и продолжительность спекания оксидов выбирали, исходя из свойств конкретного материала и необходимости получения достаточно плотного и прочного керамического черепка. Например, спекание образцов составов №2-5 проводили при температуре 1300°С в течение 2 часов.

Готовый компактный материал тестировали по величине электропроводности и растворимости в расплаве электролита. Концентрацию компонентов в электролите после растворения измеряли методом рентгенофлюоресцентной спектроскопии.

В таблицу внесены ряд синтезированных материалов и их свойства в сравнении со свойствами прототипов - слаболегированного диоксида олова (легирующие компоненты: 1 мас.% Sb2О3 и 1 мас.% CuO) и оксидно-металлического материала 65NiFe2O4-18NiO-17Cu. В таблице представлены оценочные (из-за различий в величине пористости образцов и трудности создания надежных омических контактов к оксидным материалам) значения удельного электросопротивления полученных материалов, а также значения стационарных, близких к насыщению, концентраций олова в электролите, достигаемых при контакте указанных материалов с расплавленным электролитом в отсутствие поляризации образца (при разомкнутой цепи, без пропускания тока).

Условия испытаний близки к реальным условиям промышленного электролиза: температура - 950°С, продолжительность выдержки в расплаве - 3-6 ч (до достижения стационарного содержания), состав электролита (мас.%) -Na3AlF6 18%, Na5Al3F14 60,8%, CaF2 5,4%, NaF 15,8%, (криолитовое отношение 2,7), содержание глинозема Al2О3-8% (сверх 100%).

Из данных таблицы следует, что предлагаемые материалы на основе сложных, высокозамещенных рутилоподобных оксидов в области приведенных составов (№2-6, 8-10) обеспечивают получение инертных анодов со значительно большей устойчивостью во фторидном электролите, что выражается в более низкой концентрации олова в расплаве, и сохраняют при этом достаточно высокий уровень удельной электропроводности. При этом концентрация других компонентов сложных оксидов находится тоже на низком уровне (для материала №3): Nb - около 90 ppm, Sb - около 50 ppm. Кроме того, предлагаемые материалы сохраняют, подобно SnO2, высокую временную стабильность электропроводности в течение длительного времени работы анода, не взаимодействуя с электролитом и не изменяя свой фазовый состав.

В то же время специальными экспериментами установлено, что: (1) предлагаемые материалы имеют более высокую химическую стойкость и за счет этого пониженную склонность к газовой коррозии, по сравнению со слаболегированным SnO2, в присутствии твердого (углерод) и газообразного (монооксид углерода) восстановителей, что является весьма важным свойством для анодного материала в условиях электролизной ванны; (2) предлагаемые материалы устойчивы к взаимодействию с рядом заявленных металлов и сплавов при температуре до 1000°С, что позволяет создать на их основе высокоэлектропроводный материал с добавками металла, а также более надежные токоподводящие контакты.

Таблица
№№ п/пХимический состав материалаУд. электросопротивление ρ, мОм·м (950°С)Растворимость SnO2, ppm (950°C)
1.SnO2 * (прототип)70150
2.Al0.3Nb0.3 Sn1.4O45033
3.Al0.2Nb0.2Sn1.6O42015
4.Al0.2Sb0.2Sn1.6O48047
5.Al0.3Sb0.3Sn1.4O41-100**48
6.Al0.4Sb0.4Sn1.2O41-100**65
7.Fe0.3Mb0.3Sn1.4O41-10**80
8.65NiFe2O4-18NiO-17Cu0,12Fe->500
(мас.%) (прототип)Ni->100
9.83Al0.2Nb0.2Sn1.6O4-17Cu0,0417
(мас.%)
10.83Al0.2Nb0.2Sn1.6O4-17Ni0,0920
(мас.%)
11.83Al0.2Nb0.2Sn1.6O4-17(80Cu-0,0619
20Ni) (мас.%)
* - оксидная керамика с относительной плотностью >99%.
** - диапазон удельного сопротивления для керамики с различной плотностью.

Как показывают результаты измерений и лабораторного тестирования, предлагаемые оксидные материалы обладают более низкой растворимостью в криолит-глиноземном расплаве при достаточно высокой электропроводности, повышенными устойчивостью к газовой коррозии и к контактному восстановлению металлами. Поэтому аноды, изготовленные с их использованием, способствуют получению более чистого электролитического алюминия при низких энергетических потерях.

Источники информации

1. Беляев А.И., Студенцов Я.В. Электролиз глинозема с несгораемыми анодами из окислов // Легкие металлы. 1937. №3. С.17-21.

2. Billehaug К., Оуе Н.А. Inert Anodes for Aluminium Electrolysis in Hall-Heroult Cells, part 1, part 2. // Aluminium. 1981. 57. №2, pp.146-150; №3, pp.228-231.

3. Zhang H., de Nora V., Sekhar J.A. Materials used in the Hall-Herault cell for alunimum production. The Minerals, Metals & Materials Society, Warrendale, 1994, 108 pp.

4. Alder H. U.S. Pat. 3,974,046 (1976).

5. Klein H.J. U.S. Pat. 3,718,550 (1973).

6. Tarcy G.P., Gavasto T.M., Ray S.P. U.S. Pat. 4,620,905 (1986).

7. Иванов В.В., Иванов Вл.Вл., Поляков П.В., Блинов В.А., Кирко В.И., Савинов В.И. Пат. России №2108204 (1998).

8. Alder H. U.S. Pat. 4,357,226 (1982).

9. Ray S.P, Liu X, Weirauch D.A. U.S. Pat. 6,217,739 (2001).

1.Оксидныйматериалдлянесгораемыханодовалюминиевыхэлектролизеровнаосноведиоксидаолова,структурноготипарутила,отличающийсятем,чтовкачествеоксидовметалловиспользуютвысокозамещенныесложныеоксидыобщейформулыcпониженнойрастворимостьювкриолит-глиноземномрасплаве,повышеннойустойчивостьюкгазовойкоррозииикконтактномувосстановлениюметаллами.12.Оксидныйматериалпоп.1,отличающийсятем,чтовкачествекатионатрехвалентногометаллаMeмогутбытьCr,Fe,Al,акатионаMe-Sb,V,Nb,причемвеличинухвыбираютвпределахобластигомогенностиматериала23.Оксидныйматериалдлянесгораемыханодовалюминиевыхэлектролизеровнаосноведиоксидаолова,структурноготипарутила,отличающийсятем,чтовкачествеоксидовметалловиспользуютвысокозамещенныесложныеоксидыобщейформулыидополнительнометаллы,невзаимодействующиесоксиднойосновойпритемпературахсинтезаиэксплуатацииматериала,приследующихсоотношенияхингредиентов,мас.%:сложныеоксидыобщейформулы-60-99;металлы-40-1.34.Оксидныйматериалпоп.3,отличающийсятем,чтовкачествеметалловиспользуютCu,Ni,благородныеметаллыAg,Pt,Pd,ихсплавы.4
Источник поступления информации: Роспатент

Показаны записи 11-18 из 18.
29.04.2019
№219.017.3f55

Способ нанесения смачиваемого покрытия подины алюминиевого электролизера

Изобретение относится к области цветной металлургии, в частности к производству алюминия электролизом криолит-глиноземных расплавов. Способ нанесения (синтеза) смачиваемого диборидного покрытия подины алюминиевого электролизера осуществляют в период пуска электролизной ванны непосредственно из...
Тип: Изобретение
Номер охранного документа: 0002299278
Дата охранного документа: 20.05.2007
29.04.2019
№219.017.3fe6

Устройство для подачи сыпучих материалов в электролизер

Изобретение относится к цветной металлургии, в частности к получению алюминия на электролизерах с верхним токоподводом к самообжигающемуся аноду. Устройство содержит бункер, прикрепленный к анодному кожуху электролизера, объемный дозатор клапанного типа, соединенный с бункером, и коаксиально...
Тип: Изобретение
Номер охранного документа: 0002239006
Дата охранного документа: 27.10.2004
09.05.2019
№219.017.4ad0

Кристаллизатор для вертикального литья слитков из алюминия и алюминиевых сплавов

Изобретение относится к металлургии и может быть использовано при отливке слитков из алюминия и его сплавов, преимущественно высоколегированных сплавов. Кристаллизатор имеет две изолированные камеры: охлаждающую и форкамеру с подводящими и отводящими каналами. Для подвода жидкой смазки на...
Тип: Изобретение
Номер охранного документа: 0002281183
Дата охранного документа: 10.08.2006
18.05.2019
№219.017.54e8

Катодное устройство электролизера для производства алюминия

Изобретение относится к области цветной металлургии, а именно к конструкции катодного устройства электролизера для производства алюминия. Технический результат заключается в снижении теплового сопротивления между футеровкой и фланцевым листом катодного устройства электролизера. Оно включает...
Тип: Изобретение
Номер охранного документа: 0002299277
Дата охранного документа: 20.05.2007
18.05.2019
№219.017.5502

Способ футеровки катодного устройства алюминиевого электролизера

Изобретение относится к области цветной металлургии, в частности к электролитическому производству алюминия, а именно к способам футеровки катодного устройства для производства алюминия. Способ включает кладку верхних рядов цоколя из шамотных кирпичей с использованием кладочного раствора,...
Тип: Изобретение
Номер охранного документа: 0002294403
Дата охранного документа: 27.02.2007
18.05.2019
№219.017.5563

Устройство компенсации

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия в электролизерах, размещенных в корпусе в два ряда поперечно, и может быть использовано для компенсации нежелательного влияния магнитного поля на крайние электролизеры в серии. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002237752
Дата охранного документа: 10.10.2004
19.06.2019
№219.017.8451

Футеровка катодной части алюминиевого электролизера

Изобретение относится к цветной металлургии, в частности к электролитическому производству алюминия, и может быть использовано при монтаже катодного узла алюминиевого электролизера. Техническим результатом изобретения является устранение попадания паров натрия, других компонентов фторсолей и...
Тип: Изобретение
Номер охранного документа: 0002276700
Дата охранного документа: 20.05.2006
19.06.2019
№219.017.84a2

Способ получения пека-связующего для электродных материалов

Изобретение относится к способам получения пека-связующего для электродных материалов и может быть использовано в электродной промышленности. Сущность: каменноугольный пек или его смесь с фракциями каменноугольной смолы обрабатывают гидроударными и кавитационными импульсами в атмосфере воздуха...
Тип: Изобретение
Номер охранного документа: 0002288938
Дата охранного документа: 10.12.2006
Показаны записи 21-30 из 58.
29.12.2017
№217.015.f812

Способ неинвазивного определения стадии фиброза печени у пациентов с хроническим вирусным гепатитом

Изобретение относится к медицине и может быть использовано для неинвазивного определения стадии фиброза печени у пациентов с хроническим вирусным гепатитом. Пациенту проводят общее и биохимическое исследование крови и УЗИ органов брюшной полости. Определяют возраст, абсолютное содержание...
Тип: Изобретение
Номер охранного документа: 0002639432
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.f86d

Способ изготовления композитного катодного материала

Изобретение относится к электронной технике, в частности к катодам, работающим в режиме автотермоэлектронной эмиссии. Cпособ изготовления композитного катодного материала включает подготовку порошка активного компонента и нанопорошка матричного металла, смешивание и перемешивание порошка...
Тип: Изобретение
Номер охранного документа: 0002639719
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.f9f3

Способ автоматического ограничения скорости автомобиля

Изобретение относится к технике автоматического управления ограничением скорости движения транспортных средств. При осуществлении способа автоматического ограничения скорости автомобиля задают допускаемую скорость движения. Сравнивают с допускаемой скоростью движения фактическую скорость...
Тип: Изобретение
Номер охранного документа: 0002639934
Дата охранного документа: 25.12.2017
19.01.2018
№218.016.0323

Катодный материал для тотэ на основе купрата празеодима

Изобретение относится к области электротехники, а именно к катодному материалу для твердооксидного топливного элемента на основе купрата празеодима. В качестве катодного материала взято соединение, допированное оксидом церия, с общей формулой PrCeCuO, где 0<х≤0.15, полученное криохимическим...
Тип: Изобретение
Номер охранного документа: 0002630216
Дата охранного документа: 06.09.2017
13.02.2018
№218.016.2563

Способ синтеза активного компонента катодной массы на основе lifepo и катодная масса, содержащая активный компонент

Изобретение относится к электротехническим материалам, используемым при производстве литийионных источников тока малой мощности, в частности к катодной массе, содержащей активный компонент на основе LiFePO. Катодная масса содержит активный компонент на основе LiFePO, органическое связующее,...
Тип: Изобретение
Номер охранного документа: 0002642425
Дата охранного документа: 25.01.2018
10.05.2018
№218.016.4b05

Способ определения значений параметров потока, обеспечивающих максимальную ориентацию вытянутых и пластинчатых нанообъектов вдоль потока жидкой среды

Использование: для определения значений параметров потока, обеспечивающих максимальную ориентацию вытянутых и пластинчатых нанообъектов вдоль потока жидкой среды. Сущность изобретения заключается в том, что используют измерительную ячейку в форме кольцевого канала переменного сечения для...
Тип: Изобретение
Номер охранного документа: 0002651606
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4bcb

Способ и устройство для определения состава электролита

Изобретение относится к способу и устройству для определения состава электролита на основе дифференциально-термических измерений для управления процессом электролиза алюминия. Устройство состоит из металлического блока, включающего эталон и емкость для отбора пробы электролита, температурных...
Тип: Изобретение
Номер охранного документа: 0002651931
Дата охранного документа: 24.04.2018
18.05.2018
№218.016.51f3

Способ измерения концентрации агломератов несферических наноразмерных частиц в жидких средах

Использование: для определения концентрации агломератов несферических наноразмерных частиц в жидких средах. Сущность изобретения заключается в том, что используют измерительную ячейку в форме кольцевого канала переменного сечения для создания ускоренного потока, содержащую побудитель...
Тип: Изобретение
Номер охранного документа: 0002653143
Дата охранного документа: 07.05.2018
09.06.2018
№218.016.5bf6

Батарея трубчатых твердооксидных элементов с тонкослойным электролитом электрохимического устройства и узел соединения трубчатых твердооксидных элементов в батарею (варианты)

Изобретение относится к высокотемпературным электрохимическим устройствам на основе твердооксидных элементов (ТОЭ) - элементов с твердым электролитом, точнее к конструкции батареи трубчатых ТОЭ и узлов соединения (УС) ТОЭ в батарею. Техническим результатом является создание батареи, в которой...
Тип: Изобретение
Номер охранного документа: 0002655671
Дата охранного документа: 29.05.2018
05.07.2018
№218.016.6afc

Устройство для ввода и чтения информации в коде брайля

Изобретение относится к обучающим устройствам для слепых. Техническим результатом является расширение функциональных возможностей и повышение удобства эксплуатации. Технический результат достигается устройством для ввода и чтения информации в коде Брайля, которое содержит корпус с лицевой...
Тип: Изобретение
Номер охранного документа: 0002660007
Дата охранного документа: 04.07.2018
+ добавить свой РИД